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Abstract. Tumor protein p53-binding protein 2 (TP53BP2), 
a member of the apoptosis-stimulating protein of p53 (ASPP) 
family, has previously been reported to be associated with 
tumor development. However, to the best of our knowledge, 
the role of TP53BP2 in neuroblastoma has not been elucidated. 
The aim of the present study was to investigate the function of 
TP53BP2 in the proliferation and autophagy of neuroblastoma. 
An expression vector that expresses TP53BP2‑specific short 
hairpin RNA (shTP53BP2) was used for the experimental 
group and green fluorescent protein short hairpin RNA was 
used as a control. Cell proliferation was measured using MTT 
assays, self-renewal was evaluated using soft agar assays, light 
chain 3 (LC3) II expression level was examined by western blot 
and immunofluorescence analysis, and the autophagy‑related 
3 homolog (ATG3), autophagy-related 5 homolog (ATG5) 
and autophagy-related 9 homolog (ATG7) expression levels 
were examined using the reverse transcription-quantitative 
polymerase chain reaction (RT-qPCR). A genomics analysis 
revealed that TP53BP2 expression was associated with the 
survival of patients with neuroblastoma. Western blot and 
RT-qPCR assays indicated that TP53BP2 could be implicated 
in neuroblastoma, as the proliferative ability of the experi-
mental group decreased compared with that of the control 
group (P<0.001) and the expression levels of genes associ-
ated with autophagy, including LC3 II. ATG3, ATG5 and 
ATG7, increased in the experimental group. In conclusion, an 
increased expression of TP53BP2 in patients with neuroblas-
toma may be associated with poor survival and shTP53BP2 
may decrease the proliferative abilities of neuroblastoma cells, 

including BE(2)C and SK-N-DZ cell lines. In addition, the 
LC3 II, ATG3, ATG5 and ATG7 expression levels increased 
and were associated with increased rates of autophagy 
following upregulation of TP53BP2.

Introduction

Neuroblastomas are common pediatric extracranial tumors 
of neural crest origin that account for 10% of cancer cases 
in children and ~15% of cancer-associated mortalities in 
children (1-6). Clinical features of neuroblastoma include 
heterogeneity, high malignancy and metastasis (7,8). Common 
therapeutic methods include surgery, radiotherapy and 
chemotherapy, and novel methods include immunotherapy 
and differentiation therapy; however, the treatment of neuro-
blastoma remains unsatisfactory and the prognosis is poor (9). 
Therefore, an increasing number of studies have aimed to 
identify feasible biotherapies and drug targets (10).

TP53BP2 is a member of the apoptosis-stimulating protein 
of p53 (ASPP) family, which can regulate p53-dependent 
apoptosis (11). A number of studies have indicated that 
TP53BP2 is overexpressed in various tumor types, and is a 
critical factor in tumorigenesis and development (12,13). 
TP53BP2 inhibits squamous cell carcinoma by regulating 
p63 (14). In breast cancer, overexpression of TP53BP2 is 
often associated with a poor prognosis, and TP53BP2 can 
interact with microRNA-548d-3p to regulate proliferation and 
apoptosis (15). In gastric cancer, the expression of TP53BP2 
is associated with tumor stage (16). Survival data from R2 
genomic analyses in the present study indicate that TP53BP2 
may be associated with the prognosis of patients with neuro-
blastoma; however, to the best of our knowledge, the role and 
molecular mechanisms of TP53BP2 in neuroblastoma have not 
been reported. Therefore, the aim of the present study was to 
investigate the mechanism of TP53BP2 in neuroblastoma and 
provide a theoretical basis for clinical treatment.

Autophagy is an evolutionally conserved mechanism that 
can degrade organelles, proteins, macromolecules and ribo-
somes via lysosomes, which is critical for the maintenance 
of intracellular stability and stress responses (17). There are 
four types of autophagy, including macroautophagy (also 
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termed autophagy), selective autophagy, microautophagy 
and chapter-one-mediated autophagy (18-20). Autophagy 
consists of several key steps, including initiation, nucle-
ation, expansion and maturation of autophagosomes. A 
number of autophagy-related (ATG) genes participate in 
autophagy (21-23). Previously, autophagy has been reported 
to be associated with pathological and disease processes, 
including infectious diseases, autoimmune diseases, myop-
athy, neurodegenerative diseases and cancer (21,24,25). The 
present study demonstrated that TP53BP2 can regulate prolif-
eration and autophagy of neuroblastoma cells. Knockdown 
of TP53BP2 inhibited cell proliferation and increased the 
expression level of LC3 II (also termed LC3B). LC3 I is the 
precursor of LC3 II; LC3 I is activated when autophagy 
occurs and induces the production of LC3 II, which promotes 
autophagy (26). In summary, the results of the present study 
revealed that TP53BP2 may be used as a prognostic marker 
for neuroblastoma and may regulate the proliferation of 
neuroblastoma cells.

Materials and methods

Cell culture. The human neuroblastoma cell lines SK-N-AS, 
BE(2)C, SK-N-DZ, SK-N-F1 and SHEP1 were obtained from 
the American Type Culture Collection (ATCC; Manassas, 
VA, USA). The BE(2)C cells were cultured in a 1:1 mixture 
of Dulbecco's modified Eagle's medium (DMEM) and Ham's 
nutrient mixture F12 (DMEM/F12; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) with 10% fetal bovine serum (FBS; 
Thermo Fisher Scientific, Inc.) and 1% penicillin/streptomycin 
(P/S). SK-N-AS, SK-N-DZ, SK-N-F1 and SHEP1 cells were 
cultured in DMEM (Thermo Fisher Scientific, Inc.) with 10% 
FBS and 1% P/S. The 293FT cell line (ATCC) was cultured 
with DMEM (Gibco; Thermo Fisher Scientific, Inc.) containing 
1% glutamine, glycine and pyruvate. All cells were incubated 
at 37˚C in an incubator with 5% CO2.

Lentiviral infection. TP53BP2 short hairpin (shRNA) and 
green fluorescent protein (GFP) shRNA were purchased from 
BGI (Shanghai, China). The sequences of TP53BP2 shRNA 
(shTP53BP2) were as follows: shTP53BP2-1# forward, 
5'-CACCGC AGAATGCCAAGCTACAACACGAATGTT 
GTAGCT TGG CAT TCT GC-3' and reverse, 5'-AAAAGCAGA 
ATGCCA AGC TAC AAC ATT CGT GTT GTA GCTTGG CAT 
TCTGC-3'; and shTP53BP2-2# forward, 5'-CAC CGC TGC 
AGTAGG TCC CTA TAT CCG AAG ATATAG GGA CCT ACT 
GCAGC-3' and reverse, 5'-AAA AGC TGC AGTAGG TCC CTA 
TATCTT CGG ATA TAG GGA CCT ACT GCAGC-3'. The 
PLKO.1 vector (Thermo Fisher Scientific, Inc.) was digested 
using AgeI and BamHI, and the annealed human TP53BP2 
shRNA was inserted into the PLKO.1 vector using T4 ligase. 
Subsequently, the vector was transformed and monoclonal 
clones were selected for sequencing. The plasmids were 
extracted using a plasmid extracted kit (Tiangen Biotech Co., 
Ltd., Beijing, China). Lentiviruses were generated by co-trans-
fecting the 293FT cell line with the packaging plasmids pLP1, 
pLP2 and pLP/VSVG (all from Invitrogen; Thermo Fisher 
Scientific, Inc.) and the shRNA plasmids. Lipofectamine® 
2000 (Invitrogen; Thermo Fisher Scientific, Inc.) was used for 
all transfections, according to the manufacturer's protocol. 

After 48 h, virus-containing media were harvested. BE(2)C 
and SK-N-DZ cells were plated at a density of 5x105 cells in 
100 mm plates and cultured for 24 h. Subsequently, the 
virus-containing media were mixed with 4 µg/ml Polybrene 
(Invitrogen; Thermo Fisher Scientific, Inc.) and used for cell 
infection. At 24 h after infection, the medium was removed 
and cells were cultured with 2 mg/ml puromycin for 2 days. 
The cells were then selected for subsequent experiments.

Cell proliferation assay. MTT assays were used to investigate 
cell proliferation. Briefly, ~1,000 cells were seeded in 96‑well 
plates with 200 µl DMEM/F12. After 24 h of culture, 20 µl 
MTT was added to each well and the cells were incubated for 
4 h. Dimethylsulfoxide was added to the wells to dissolve the 
purple formazan crystals. After 10 min on a shaking table, 
the absorbance was determined at 560 nm using a microplate 
reader daily for 7 days. All experiments were performed inde-
pendently in triplicate.

5‑Bromo‑2‑deoxyuridine (BrdU) staining assay. For BrdU 
immunofluorescence staining, BE(2)C and SK-N-DZ cells 
were cultured in 24-well plates and incubated with 10 µg/ml 
BrdU for 45 min at 37˚C. The cells were then washed with 
PBS three times and fixed for 20 min with 4% paraformal-
dehyde (PFA) at room temperature. Subsequently, the cells 
were exposed to 0.3% Triton X-100 for 5 min, treated with 
1 mol/l HCl and blocked for 1 h with 10% goat serum (Thermo 
Fisher Scientific, Inc.) diluted with PBS at room temperature. 
The cells were then incubated with a monoclonal rat primary 
antibody against BrdU (1:200; catalog no. ab6326; Abcam, 
Cambridge, UK) for 1 h at room temperature and with Alexa 
Fluor® 594 goat anti-rat immunoglobulin G (IgG) secondary 
antibody (1:400; catalog no. A-21211; Invitrogen; Thermo 
Fisher Scientific, Inc.) for 1 h at room temperature. DAPI 
(300 nM) was used for nuclear staining for 15 min at room 
temperature. A Nikon 80i fluorescence microscope (Nikon 
Corporation, Tokyo, Japan) was used to observe the number 
of stained cells (magnification, x200). Images of ten randomly 
selected microscopic fields were captured.

Soft agar assay. Soft agar assays were used to determine cell 
tumorigenicity. In total, 800 BE(2)C and SK-N-DZ cells were 
mixed with 0.3% Noble agar in DMEM/F12 and then plated 
in 6‑well plates containing a solidified bottom layer of 0.6% 
Noble agar in growth medium. Following solidification, the 
plates were transferred to a 37˚C incubator with 5% CO2. After 
4 weeks, colonies were stained with MTT (1 µg/ml) for 30 min 
at 37˚C and images were captured using a light microscope 
(magnification, x200).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). RT-qPCR was used to determine the expression 
of mRNA. According to the manufacturer's protocol, 1 ml 
TRIzol® (Takara Bio, Inc., Otsu, Japan) was added to each 
group (shGFP-, shTP53BP2-1#- and shTP53BP2-2#-transfected 
cells, and untransfected cells), and the cells were then harvested 
and extracted for total RNA purification. The mRNA was 
reverse-transcribed into cDNA using Moloney murine leukemia 
virus reverse transcriptase (Promega Corporation, Madison, 
WI, USA). The mRNA expression levels of TP53BP2, ATG3, 
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ATG5 and ATG7 were determined using the SYBR Green 
PCR Master mix (Takara Bio, Inc.) using qPCR. The qPCRs 
were performed in triplicate using the OneStep plus7500 
RT-PCR system (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA). The amplification conditions were as follows: 95˚C for 
10 min, 95˚C for 15 sec, 60˚C for 30 sec and 35 cycles of 30 sec 
at 72˚C. The following primer sequences were used: GAPDH 
forward, 5'-ACG GAT TTG GTC GTA TTG GG-3' and reverse, 
5'-TCC TGG AAG ATG GTG ATG GG-3'; TP53BP2 forward, 
5'-AGT CAG TTC CTT GTG GAG CC-3' and reverse, 5'-CCG 
CAG AAA CAC CTG TGA AC-3'; ATG3 forward, 5'-TTG GCT 
ATG ATG AGC AAC GG-3' and reverse, 5'-CCC CTC CTT CTG 
CAA CAG TCT-3'; ATG5 forward, 5'-TCA GCT CTT CCT TGG 
AAC ATC A-3' and reverse, 5'-CCC ATC CAG AGT TGC TTG 
TGA-3'; and ATG7 forward, 5'-TTT GCT TCC GTG ACC GTA 
CC-3' and reverse, 5'-CTT TTC CCA TCC AAC TGC TTT A-3'. 
The data were analysed using the 2-ΔΔCq method (27). GAPDH 
was used as the control.

Western blot assay. SK-N-AS, BE(2)C, SK-N-DZ, SK-N-F1 
and SHEP1 cells were digested with trypsin and washed 
twice with PBS. Cells were harvested and suspended in 1% 
radioimmunoprecipitation assay lysis buffer (Beyotime 

Institute of Biotechnology, Haimen, China). Protein concen-
trations were measured using a Bicinchoninic Acid protein 
assay kit (Beyotime Institute of Biotechnology). Total protein 
(50 µg) was separated using SDS-PAGE (30% gel) and then 
the proteins were transferred onto polyvinylidene difluoride 
membranes. Following blocking for 2 h with 5% goat serum 
(diluted with PBS) at room temperature, the membranes 
were incubated overnight at 4˚C with the following primary 
antibodies: Anti-TP53BP2 (1:1,000, catalog no. ab181377; 
Abcam), anti-LC3 II (1:1,000; catalog no. ab48394; Abcam) 
and anti-tubulin (1:5,000; catalog no. ab7291; Abcam). The 
membranes were than incubated at room temperature for 
2 h with horseradish peroxidase-conjugated anti-mouse IgG 
secondary antibody (1:10,000; catalog no. 04-18-06) or horse-
radish peroxidase-conjugated rabbit anti-goat IgG secondary 
antibody (1:10,000; catalog no. 14-13-06; both from KPL, 
Inc., Gaithersburg, MD, USA). Proteins were visualized using 
BeyoECL Plus reagent (Beyotime Institute of Biotechnology). 
Western blot data were quantified with Gel‑Pro Analyzer 4 
software (Media Cybernetics, Inc., Rockville, MD, USA).

Immunofluorescence assay. The expression of LC3 II was 
detected using immunofluorescence. In total, ~2x104 cells 

Figure 1. Increased expression of TP53BP2 is associated with poor prognosis. (A) Kaplan-Meier analysis of overall survival using data from the Versteeg 
dataset. The P-value calculated using the log-rank test is presented. (B) Kaplan-Meier analysis of overall survival using data from the SEQC dataset. The 
P-value calculated using the log-rank test is presented. (C) Kaplan-Meier analysis of overall survival using data from the Kocack dataset. The P-value calcu-
lated using the log‑rank test is presented. (D) The mRNA expression level of TP53BP2 in five neuroblastoma cell lines was determined using the reverse 
transcription-quantitative polymerase chain reaction. Data are presented as the mean ± standard deviation. (E) The protein expression level of TP53BP2 
was determined using western blot analysis. Tubulin was used as the loading control. (F) Quantification of the western blot data. Data are presented as the 
mean ± standard deviation. TP53BP2, tumor protein p53-binding protein 2.
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were seeded into 24-well plates, washed three times with PBS 
and fixed for 20 min with 4% PFA at room temperature. PBS 
with 1% Triton X-100 was then added for 20 min. Following 
three washes with PBS, the cells were blocked for 1 h with 
4% goat serum (diluted with PBS) at room temperature. The 
cells were then incubated with a rabbit monoclonal antibody 
against LC3 II (1:100; catalog no. ab48394; Abcam) at 4˚C 
overnight. Alexa Fluor® 488 goat anti-rat IgG secondary anti-
body (1:400; Invitrogen; catalog no. O-6382; Thermo Fisher 
Scientific, Inc.) was then added for 2 h at room temperature 
in the dark. DAPI (300 nM) was used for nuclear staining for 
15 min at room temperature. Images of ten randomly selected 
microscopic fields were captured using a confocal microscope 
(magnification, x2,000).

Patient data analysis. Patient data and gene expression datasets 
were obtained from the R2: Microarray analysis and visualiza-
tion platform (http://hgserver1.amc.nl/cgi-bin/r2/main.cgi), 
which contains data from the ‘Tumour Neuroblastoma public 
Versteeg’, ‘Tumour Neuroblastoma-SEQC’ and ‘Tumour 
Neuroblastoma-Kocak’ datasets (28). These datasets contain 
mRNA expression data and no protein expression data. The 
Versteeg dataset contains 88 cases of neuroblastoma with tumor 
grade and gene variation. All prognosis analyses were performed 
with R2, and all data and P-values from a log-rank test were 
downloaded. Kaplan-Meier analysis was performed and the 
resulting survival curves were generated using GraphPad Prism 
6.0 software (GraphPad Software, Inc., La Jolla, CA, USA). All 
cut-off values for generating high and low expression groups 
were determined using the online R2 database algorithm.

Statistical analysis. All data were analyzed using SPSS 
software (version 20.0; IBM Corp., Armonk, NY, USA). 
Quantitative data are presented as the mean ± standard 
deviation. One-way analysis of variance followed by Fisher's 
least significant difference test was used to assess significant 
differences. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Increased expression of TP53BP2 is associated with poor 
prognosis of patients with neuroblastoma. To investigate 
whether TP53BP2 can be used as a prognostic indicator of 
neuroblastoma. A Kaplan-Meier analysis of progression-free 
survival for the Versteeg data indicated that an increased 
expression level of TP53BP2 is associated with a poor prog-
nosis and a low expression level of TP53BP2 is associated 
with improved overall survival (Fig. 1A). Similar results were 
observed for the SEQC and Kocak data (Fig. 1B and C). In 
summary, all data indicated that an increased expression level 
of TP53BP2 is associated with a poor prognosis for patients 
with neuroblastoma.

Subsequently, RT-qPCR and western blot assays were 
performed to determine the expression of TP53BP2 in the 
neuroblastoma cell lines SK-N-AS, BE(2)-C, SK-N-DZ, 
SK-N-F1 and SHEP1. It was identified that TP53BP2 was 
expressed in all five cell lines (Fig. 1D and E). The aim of these 
experiments was to illustrate the involvement of TP53BP2 in 
the tumorigenesis of neuroblastoma (29).

Downregulation of TP53BP2 inhibits the proliferation of 
neuroblastoma cells. To investigate the role of TP53BP2 in 
cell proliferation, the human neuroblastoma cell lines BE(2)
C and SK-N-DZ were selected. Lentivirus vectors containing 
shTP53BP2 were successfully constructed and shGFP 
was used as a control (30,31). Through screening, stable 
TP53BP2-knockdown cells were established. Western blot and 
RT‑qPCR analysis revealed that TP53BP2 was significantly 
downregulated in the transfected cells compared with in the 
controls (Fig. 2A-D). Subsequently, immunofluorescence 
staining using a BrdU label in BE(2)C and SK-N-DZ cells 
confirmed that cell proliferation was significantly inhibited in 
the TP53BP2-knockdown cells compared with in the controls 
for the two cell lines (Fig. 3). Furthermore, MTT assays 
demonstrated that downregulation of TP53BP2 significantly 
decreased cell proliferation (Fig. 4A and B). These results 
indicate that TP53BP2 is essential for the proliferation of 
neuroblastoma cells.

Figure 2. Efficiency of TP53BP2 knockdown. The reverse transcrip-
tion-quantitative polymerase chain reaction was used to determine the 
expression level of TP53BP2 in (A) BE(2)C and (B) SK-N-DZ cells following 
knockdown of TP53BP2. Western blot analysis was used to determine the 
expression level of TP53BP2 in (C) BE(2)C and (D) SK-N-DZ cells following 
knockdown of TP53BP2. Tubulin was used as the control. Quantification 
of the western blot data regarding TP53BP2 expression in (E) BE(2)C and 
(F) SK-N-DZ cells following knockdown of TP53BP2. Data are presented as 
the mean ± standard deviation. ***P<0.001. sh, short hairpin RNA; TP53BP2, 
tumor protein p53-binding protein 2.
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Inhibition of TP53BP2 suppresses neuroblastoma cell colony 
formation in vitro. In numerous studies, a soft agar assay 
has been used as a human tumor stem-cell assay to investi-
gate the ability of individual cancer cells to proliferate and 
form colonies (32). As presented in Fig. 4C and D, the role 
of TP53BP2 in neuroblastoma tumorigenesis was examined, 
which revealed that the colonies were smaller and significantly 
fewer in number for the TP53BP2-knockdown cells compared 
with for the controls (Fig. 4C and D). These results indicate 
that TP53BP2 can suppress neuroblastoma cell colony forma-
tion in vitro.

Inhibition of TP53BP2 induces neuroblastoma cell autophagy. 
Immunofluorescence assays were performed to detect the 
expression of LC3 II, which is a marker of autophagy (33). The 
results revealed that LC3 II expression increased markedly in 
the TP53BP2-knockdown cells compared with the controls 

(Fig. 5A). Furthermore, the expression levels of LC3B proteins 
in TP53BP2-knockdown and shGFP neuroblastoma cells were 
detected using western blot analysis. It was identified that the 
expression level of LC3 II was significantly increased in the 
TP53BP2-knockdown cells compared with in the controls 
(Fig. 5B‑G). To confirm the occurrence of autophagy, RT‑qPCR 
analysis revealed that the expression levels of ATG3, ATG5 and 
ATG7 were significantly upregulated in TP53BP2‑knockdown 
cells (Fig. 5H and I). These results indicate that the inhibition 
of TP53BP2 upregulates the expression of LC3 II and ATG 
proteins. This suggests that the downregulation of TP53BP2 
promotes the upregulation of LC3 II and induces autophagy.

Discussion

TP53BP2, also termed ASPP2, is a member of the ASPP family 
and cooperates with p53 to repress tumor growth (34). Previous 

Figure 3. BrdU immunofluorescence staining assay. Immunofluorescence staining of BrdU in (A) BE(2)‑C and (B) SK‑N‑DZ cells. Scale bar, 20 µm. 
Quantification of BrdU‑positive (C) BE(2)‑C and (D) SK‑N‑DZ cells. Data are presented as the mean ± standard deviation. **P<0.01, ***P<0.001. sh, short 
hairpin RNA; TP53BP2, tumor protein p53-binding protein 2; BrdU, 5-bromo-2-deoxyuridine.
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studies have reported that TP53BP2 serves a critical role in the 
tumorigenesis of different cancer types (12,13). TP53BP2 has been 
identified to be associated with susceptibility to gastric cancer (16). 
Furthermore, it has been demonstrated that TP53BP2 serves an 
important role in epithelial plasticity, which suppresses tumor 
metastasis (35). Previously, it has been reported that TP53BP2 is 
regulated by signal transducer and activator of transcription 1 to 
form part of the signaling pathway that suppresses tumors (36). In 
breast cancer, proliferation is inhibited and apoptosis is induced 
following knockdown of TP53BP2 (15). However, to the best of 
our knowledge, the role of TP53BP2 in neuroblastoma remains 
unknown. Therefore, the aim of the present study was to elucidate 
the role of TP53BP2 in neuroblastoma cells.

The results of the present study identified that the expres-
sion level of TP53BP2 was associated with the prognosis of 
patients with neuroblastoma. An increased expression level of 
TP53BP2 was identified to be associated with a worse prog-
nosis. Furthermore, TP53BP2 was revealed to be expressed 
in all five neuroblastoma cell lines investigated, which 
suggests that TP53BP2 may be involved in the development 

of neuroblastoma. Subsequently, the effect of TP53BP2 
knockdown on the proliferation of neuroblastoma cells was 
investigated. The results indicated that the proliferation of 
neuroblastoma cells was inhibited when TP53BP2 was down-
regulated. In addition, BrdU assays confirmed an inhibition 
of proliferation following TP53BP2 knockdown. Furthermore, 
the results of the present study indicated that a downregula-
tion of TP53BP2 suppresses the colony-formation capability 
of neuroblastoma cells in vitro. Notably, it was identified that 
a downregulation of TP53BP2 induces autophagy; indicated 
by an increased level of LC3 II (37-39). Subsequently, using 
western blot and RT-PCR analysis, the expression levels of 
autophagy-associated proteins, including LC3 II and ATG, 
were identified to increase following knockdown of TP53BP2.

In conclusion, the results of the present study indicated 
that TP53BP2 can regulate the proliferation and autophagy of 
neuroblastoma cells. However, the specific regulatory mecha-
nisms of TP53BP2 were not determined and require further 
investigation. Another limitation of the present study was 
the absence of data regarding solid tumors, as there may be 

Figure 4. TP53BP2 knockdown inhibits cell proliferation and suppresses colony formation of neuroblastoma cells. (A) MTT assays were performed 
to evaluate the proliferation of (A) BE(2)C and (B) SK-N-DZ cells following knockdown of TP53BP2. (C) Soft agar colony assays were performed with 
TP53BP2‑knockdown BE(2)C and SK‑N‑DZ cells. (D) Quantification of colony formation numbers in the soft agar assay. Cells were counted in five selected 
fields. Data are presented as the mean ± standard deviation. **P<0.01, ***P<0.001. sh, short hairpin RNA; TP53BP2, tumor protein p53-binding protein 2; OD, 
optical density.
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differences between neuroblastoma cell lines and tumors. In 
summary, TP53BP2 may prevent autophagy and promote the 
proliferation of neuroblastoma.
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