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Abstract
The systemic circulation depends upon a highly organized, hierarchal blood
vascular network that requires the successful specification of arterial and
venous endothelial cells during development. This process is driven by a
cascade of signaling events (including Hedgehog, vascular endothelial
growth factor (VEGF), Notch, connexin (Cx), transforming growth
factor-beta (TGF- β), and COUP transcription factor 2 (COUP-TFII)) to
influence endothelial cell cycle status and expression of arterial or venous
genes and is further regulated by hemodynamic flow. Failure of endothelial
cells to properly undergo arteriovenous specification may contribute to
vascular malformation and dysfunction, such as in hereditary hemorrhagic
telangiectasia (HHT) and capillary malformation-arteriovenous
malformation (CM-AVM) where abnormal vessel structures, such as large
shunts lacking clear arteriovenous identity and function, form and
compromise peripheral blood flow. This review provides an overview of
recent findings in the field of arteriovenous specification and highlights key
regulators of this process.
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Introduction
Systemic blood circulation depends upon a highly organized 
vessel network to efficiently deliver nutrient-rich blood to, and 
remove waste from, peripheral tissues. The mechanisms that 
drive development of the blood vasculature are of significant  
scientific interest with regard to improving our basic understand-
ing of developmental vascular biology and to advancing the  
fields of personalized and regenerative medicine, where the abil-
ity to engineer blood vessels in a laboratory setting would be of 
significant therapeutic value. In particular, the cell signaling 
programs that govern the acquisition of specialized endothelial 
cell identities such as arteries and veins—both crucial for the 
formation of a functional circulatory system—are the focus of  
this review.

During early embryonic development, the vasculature forms 
when primitive endothelial cells coalesce into a primordial 
microvascular network. Subsequent remodeling of this primi-
tive vasculature organizes the network into the hierarchal archi-
tecture typical of mature vessel beds. Specifically, vascular 
remodeling processes (including endothelial cell proliferation 
and migration as well as mural cell recruitment and differentia-
tion) drive the formation of anatomically distinct large vascular 
structures such as arteries and veins (reviewed by dela Paz and  
D’Amore1 in 2009). The arterial and venous sides of the sys-
temic circulation are connected to one another at one end by 
the heart, and at the other end by dense networks of microves-
sels in the periphery; altogether, this systemic circuit supports  
circulation of blood throughout the body. Arteries and smaller 
arterioles are located upstream of the microvasculature and bear 
a characteristically thick layer of circumferentially organized  
smooth muscle cells that regulate vessel diameter to influ-
ence luminal blood flow and downstream perfusion. In contrast, 
the smooth muscle layer of veins and venules is thinner and  
less organized, resulting in a less rigid vessel wall capable of 
supporting the large blood volume typical of the venous side of 
the vasculature, and venous valves prevent luminal backflow 
through these vessels. Microvascular capillaries are a network 
of thinly walled, small-caliber blood vessels surrounded by a  
perivascular layer of pericytes that together support exchange of 
oxygen, fluid, nutrients, and waste into and out of surrounding  
tissue.

Throughout the vasculature, an inner endothelial layer forms the 
interface between the vessel lumen and the vessel wall. How-
ever, endothelial cells are not a homogeneous cell population: 
rather, endothelial cells of specialized vascular structures (that 
is, arteries, veins, and microvessels) express distinct molecu-
lar signatures2 that reflect their individual location and function 
in the vascular tree. Moreover, acquisition of specialized  
endothelial cell signatures occurs prior to network formation1,3, 
suggesting that molecular specification of endothelial cells toward 
arterial or venous identities (termed arteriovenous specification) 
or other endothelial cell lineages (such as lymphatic or  
hemogenic) can drive the morphological reorganization of  
nascent vessel networks. Defects in vascular specification, prolif-
eration, and remodeling can result in arteriovenous malformations  
(AVMs) that express both arterial and venous markers4 and may 

even express markers of lymphatic vasculature5. Collectively, 
these data emphasize the importance of proper endothelial cell  
specification for normal development and function of the vascular 
system.

Early embryonic vessel development and endothelial 
specification
During embryogenesis, vascular endothelial cells originate from 
mesoderm-derived angioblasts (that is, endothelial progenitor 
cells) that, in mice, first appear at embryonic day 7.0 to 7.5 
in the extra-embryonic yolk sac. During the process of vas-
culogenesis, precursor cells progressively acquire markers of 
endothelial cell phenotype—vascular endothelial growth factor 
receptor type 2 (VEGFR2), vascular endothelial cadherin,  
and so on6,7 —and form a primitive vascular plexus in the yolk 
sac and in the embryo proper8. Recently, Plein et al.9 reported 
that a subset of yolk sac endothelial cells that acquire hemogenic 
potential to become erythro-myeloid progenitor cells are also 
capable of re-differentiating into endothelial cells and inte-
grating back into the yolk sac and embryonic vasculature9,10.  
The primitive vasculature that is comprised of these two endothe-
lial cell sources undergoes stepwise remodeling to produce  
the earliest extra- and intra-embryonic vessels, which collectively 
form the embryo’s first closed circulatory loop8. As endothe-
lial cells of the dorsal aorta and the cardinal vein within the  
embryo progressively acquire expression of arterial and 
venous markers, respectively, the remaining endothelial cells 
of primitive plexi undergo sprouting angiogenesis to expand 
the vascular network, followed by additional remodeling and  
specification to further reorganize the network into a hierarchal 
branching architecture.

Arteriovenous specification of the endothelial cells that form 
the dorsal aorta and cardinal vein appears to be molecularly  
determined prior to the onset of systemic blood flow. Dis-
crete, non-overlapping expression of neuropilin-1 (Nrp1) and 
neuropilin-2 (Nrp2) is observed in vascular plexi of chick embryos 
and these endothelial cell populations subsequently segregate 
into the earliest embryonic arteries and veins, respectively3. 
Expression of ephrinB2, enriched in some arterial endothelial 
cells, and the receptor EphB4, enriched in some venous cells, is 
also observed in the primitive vasculature prior to the onset of 
blood flow11. Despite these findings, the early morphogen or mor-
phogens that first induce formation of the initial vascular plexus 
and support arteriovenous specification therein remain unclear. 
Furthermore, it is still uncertain whether these arteriovenous 
specification pathways are common across all vertebrate species 
or even whether, within the same organism, all endothelial cells 
synchronously acquire their arteriovenous identity via the same 
initiating signal(s) or downstream mechanism(s).

Role of shear stress
The observations that embryonic arterial and venous mark-
ers are expressed prior to the onset of blood flow3,11,12 and that 
blood flow is dispensable for early arteriovenous specification 
events in the chick embryo13 suggest that the initiating arteriov-
enous specification event for angioblasts is not necessarily blood  
flow. However, blood flow is nonetheless crucial for certain  
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arteriovenous specification events and is necessary for the  
maintenance of arterial identity.

Supporting this point, loss of systemic blood flow in chick13,14 
and mice15,16 produces defects in arteriovenous specification 
and induces AVMs. For example, in Ncx1−/− mouse embryos 
(which lack a heartbeat), blood flow is not required for initial 
formation of the dorsal aorta and the cardinal vein but is nec-
essary to induce separation of these vessel structures and to  
maintain arterial marker expression and suppress venous iden-
tity genes in the dorsal aorta15. Thus, early endothelial cell fate 
acquisition is dynamic, and hemodynamic signaling is needed  
to sustain arteriovenous identity in the remodeling vasculature.

Consistent with this model, expression of arterial identity genes 
is induced in cultured endothelial cells and is greatest when 
cells are exposed to shear stress magnitudes typical of arterial 
vessels (~15 dynes/cm2), relative to higher or lower shear  
magnitudes17. Furthermore, maintenance of arterial gene expres-
sion in cultured arterial endothelial cells requires pulsatile, 
not constant, flow14. These data indicate that endothelial cell  
specification is tightly calibrated to hemodynamic flow pro-
file and suggest that other endothelial cell types, such as venous 
and lymphatic, may be similarly promoted by vessel-specific 
flow profiles. Consistent with the idea that endothelial cell iden-
tity is plastic and influenced by hemodynamic flow, several  
studies show that vessel grafts generally lose markers of their  
vessels of origin and assume the molecular identity of their  
grafted location18. Although the particular mechanosensi-
tive pathways that govern these flow-sensitive specification 
events remain unclear, activation of mechanosensitive receptors,  
such as activin receptor-like kinase 1 (ACVRL1, or Alk1) and 
Notch1 or Notch4, likely leads to the downstream transactiva-
tion of fundamental regulators of endothelial cell specification 
and vascular remodeling, which is discussed in greater detail  
below.

Role of cell cycle control
A growing body of evidence suggests that endothelial cell 
cycle arrest is necessary to enable the acquisition of special-
ized endothelial cell phenotypes. Cell cycle control critically 
regulates cell fate decisions during embryonic stem cell  
differentiation19,20, suggesting that a similar process may 
occur for acquisition of specialized cell phenotypes in other  
contexts, such as for endothelial cells in the vasculature. In  
undifferentiated stem cells, cell cycle progression is tightly 
regulated21, and cell cycle length governs both pluripotency20  
and cell differentiation19. In blood vessels, molecular regula-
tion of cell cycle state may similarly be required to achieve  
a balance between expansion and maturation of vessel networks.

Consistent with this hypothesis, angiogenic endothelial cells 
are highly proliferative22, whereas proliferation is substantially 
suppressed in remodeling vessel networks undergoing arte-
riovenous specification17,23, particularly in developing arterial- 
associated vascular beds17. In addition, fluid shear stress at  
physiologically arterial levels significantly reduces proliferation  
of endothelial cells in culture24 and endothelial cells in mature 

arteries are characteristically quiescent25. Recent studies show 
that pharmacological induction of G

1
 arrest is sufficient to ena-

ble the expression of arterial identity genes in endothelial cells 
in culture even in the absence of other conventional activators 
of arterial specification17. In addition, during coronary vascu-
lar development, transition from venous to arterial endothe-
lial cell phenotypes is associated with G

1
 growth arrest that 

is prevented by expression of the venous identity regulator  
COUP-TFII26, and endothelial cell G

1
 arrest is also required for 

hemogenic specification27. Thus, signaling pathways, includ-
ing those reviewed below, may regulate endothelial specification, 
at least in part, by modulating cell cycle state to enable subse-
quent endothelial cell specification events. Whether a specific cell  
cycle state is necessary to enable venous and lymphatic 
endothelial cell specification is unclear and this is under  
investigation.

Regulators of arteriovenous specification
Vascular network morphogenesis and endothelial cell specifica-
tion require coordinated cell–cell signaling between endothe-
lial cells, mural cells, and adjacent cell types. Specification of 
endothelial cell identity is regulated by the integrated balance of 
multiple cell–cell signaling pathways that antagonistically induce 
arterial or venous identity. In particular, an “arterialization”  
cascade involving Hedgehog, vascular endothelial growth  
factor (VEGF), Notch, and connexin (Cx) signaling plays an 
important role in inducing arterial specification. There is also 
cross-talk of this pathway with transforming growth factor-beta 
(TGF-β) signaling and this pathway is inhibited by regulators of  
venous identity, such as COUP-TFII.

Hedgehog
Binding of the morphogen Sonic Hedgehog (Shh) to its cell sur-
face receptor Patched-1 (PTCH1) alleviates repression of the 
central downstream Shh effector, Smoothened (Smo). In turn, 
Smo induces the expression of numerous gene targets essen-
tial for embryonic development28. In endothelial cells, Shh acti-
vates endothelial cell survival and alters cytoskeletal arrangement  
in culture29, and studies in zebrafish show that Shh signal-
ing is necessary for arteriovenous specification. Specifically, 
in zebrafish mutants lacking Shh, endothelial cells of the dor-
sal aorta fail to acquire expression of the arterial-enriched 
gene ephrinB2. This is thought to be the result of loss of VEGF  
expression in Shh-deficient somites, leading to reduced VEGF 
signaling and reduced downstream Notch30. However, Shh also 
regulates endothelial cell identity independent of its stimula-
tion of VEGF/Notch signaling. Specifically, Hedgehog represses 
venous identity31 and promotes arterial specification via  
calcitonin receptor-like receptor (Crlr) signaling32 as well as by  
directly upregulating expression of Notch signaling effectors33.

Vascular endothelial growth factor
VEGF functions at multiple levels during vasculogenesis and 
vessel remodeling, including during arteriovenous specification. 
Although loss of even a single allele of VEGF-A is sufficient 
to disrupt vessel formation resulting in embryonic lethality in  
mice34, VEGF-A knockdown in zebrafish morphants preserves 
embryonic survival albeit with arteriovenous specification 
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defects30. Recent studies indicate that whereas early VEGF 
signaling governs endothelial cell development from angiob-
lasts, mid-somitogenic VEGF signaling primarily influences 
arterial specification by activating Etv2, a member of the Ets  
family of transcription factors35, to regulate downstream Notch  
signaling effector expression36,37.

Recent findings indicate that, in addition to its effects on Etv2 
and downstream Notch, VEGF/VEGFR2 activation directly 
regulates the balance of signaling through either phosphatidyli-
nositol-3-kinase (PI3K) or mitogen-activated protein kinase 
(MAPK) pathways to determine arterial and venous cell fates. 
In a small-molecule screen, Hong et al.38 report that inhibi-
tion of PI3K signaling induces ERK1/2 (MAPK signaling)  
activation—a signaling pathway that regulates endothelial cell 
proliferation (among other functions)39—to promote arterial 
specification. This effect is capable of rescuing arteriovenous 
defects of the gridlock zebrafish mutant, where the Notch- 
targeted transcription factor Hey2 is affected, indicating that 
MAPK signaling influences arterial identity downstream of Notch  
signaling38. In contrast, small-molecule inhibitors of MAPK, or 
constitutive activation of PI3K signaling via induction of pro-
tein kinase B (Akt), prevents arterial specification and instead 
induces venous identity38, indicating that the antagonistic  
relationship between MAPK and PI3K signaling pathways  
strongly influences endothelial cell fate.

Notch
Members of the Notch family of transmembrane receptors, as 
well as their membrane-bound ligands, are expressed in mul-
tiple cell types of the developing and mature vasculature40. In 
response to VEGF-activated expression of members of the Sox 
family of transcription factors (for example, Sox7, Sox17, and  
Sox18)41 or stimulation of the Wingless/Integrated (Wnt) sig-
naling pathway42, primordial endothelial cells are induced to  
express the transmembrane receptor Notch1 and its ligand  
Dll443. Notch1 and related endothelial-expressed Notch recep-
tors are activated by membrane-bound Notch ligands of  
adjacent endothelial cells (homocellular signaling) as well as 
those expressed by other stromal cell types (heterocellular sig-
naling). Indeed, the developing vasculature expresses multiple 
Notch ligand and receptor types, and some are restricted to spe-
cific regions of the expanding and remodeling vascular tree40.  
Binding of ligand to the Notch receptor results in proteolytic 
cleavage of the Notch intracellular domain, which translocates 
to the nucleus and binds to and activates DNA-binding protein  
RBPJκ, resulting in transcription of genes that influence 
endothelial cell cycle status17 and function, leading to induced  
expression of arterial identity genes44.

In animals treated with Notch inhibitors or in transgenic ani-
mals lacking either Notch ligands or receptors, sprouting 
angiogenesis and arteriovenous specification fail to occur  
normally17,22,45–47. Instead, vascular endothelial cells hyper-
proliferate and do not properly remodel into arteriovenous  
networks17,45. In gridlock zebrafish mutants, ephrinB2 expres-
sion is lost and formation of the dorsal aorta is compromised  
but the cardinal vein is enlarged12.

One possible explanation for the central role for Notch in arte-
riovenous specification is as a mechanism to couple mech-
anosensory receptor signaling to downstream endothelial cell 
specification pathways. Fluid shear stress activates Notch  
signaling in endothelial cells in a dose-dependent fashion with  
Notch activation peaking at17 or slightly above48 physiologi-
cally arterial levels of shear. Ablation of Notch1 signaling  
compromises classic flow-sensitive endothelial cell responses, 
including quiescence17 and cell alignment48, whereas constitu-
tive activation of Notch4 induces focal vessel enlargement by 
disrupting normal hemodynamic signaling49. Although the exact 
mechanosensory signaling complex or complexes that render  
Notch signaling flow-sensitive have yet to be identified,  
ligand-dependent Notch activation is force-dependent50,51, which 
suggests that the Notch receptor itself may participate in an  
as-yet-undescribed mechanosensory complex.

Other studies suggest that Notch may also enable arterio-
venous specification by determining the cell cycle state of 
remodeling endothelial cells. In response to flow, Notch sign-
aling activation alters the expression of cell cycle regulators17.  
In addition, Notch-mediated G

1
 arrest is required for acquisi-

tion of arterial17,45 as well as hemogenic27 cell fates. In contrast,  
suppression of Notch signaling by COUP-TFII drives venous  
specification52, and transgenic ablation of Notch signaling com-
ponents enhances lymphatic endothelial cell specification53. 
Taken together, these data suggest that, in the developing  
vasculature, Notch signaling may play a central role in precisely  
coupling endothelial cell cycle state to hemodynamic flow 
sensing to achieve proper fate specification. However, it 
is still unclear whether venous and lymphatic endothelial  
cell fates are similarly specified in distinct cell cycle states, which 
requires further intensive investigation. Nonetheless, in sup-
port of this hypothesis, dysregulated Notch signaling leads to 
focal appearance of AVMs at sites of high flow that are associ-
ated with failure to acquire (or maintain) specialized endothelial  
cell identities49,54. Whether in animals lacking Notch (or Alk, 
see below) signaling AVMs are a direct result of disrupted  
arteriovenous specification or whether EC fail to undergo proper 
arteriovenous specification as a by-product of enlarged, mal-
formed vessels that result from aberrant responses to shear 
(such as failure to migrate against the direction of flow49,55)  
remains unclear.

Lastly, Notch is an important regulator of hemogenic endothelial 
cell development in the yolk sac and embryonic aorta–gonad–
mesonephros region27,56, and circulating yolk sac-endothelium–
derived hematopoietic progenitors have recently been shown to 
reintegrate into the developing vasculature9,10. Thus, it is inter-
esting to speculate that Notch may contribute to arteriovenous  
network formation, in part, by regulating the relative abundance 
of these two endothelial cell sources, which may have differ-
ent propensities for arterial versus venous identity. However,  
much more work is needed to address these possibilities.

Ephrin/Eph
The ephrin family of transmembrane ligands and their cog-
nate Eph receptors mediate cell–cell signaling between adjacent 
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cells and often involve the repulsion of Eph receptor–express-
ing cells from ephrin-expressing neighbors. In a landmark study 
of the developing vasculature, Wang et al.11 found that ephrinB2 
expression is highly enriched in arteries and EphB4 expression 
is enriched in veins. Expression of both genes is observed prior 
to the onset of blood flow, suggesting that they participate in a  
genetic arteriovenous program. Furthermore, EphB4 venous 
expression depends upon arterial expression of ephrinB211,  
suggesting that during development arterial specification may 
drive venous specification via ephrin-Eph signaling. Muta-
tions that affect the EphB4 gene or downstream Ras signaling  
are associated with the autosomal-dominant congenital vascu-
lar disease, capillary malformation-arteriovenous malformation  
(CM-AVM), wherein patients present with numerous cutaneous 
capillary malformations as well as AVMs57.

Transforming growth factor-beta
The TGF-β superfamily of soluble ligands and their cognate 
membrane-bound receptors play a variety of key roles during 
vessel development. This pathway includes signaling through 
the TGF-β1-TGFβR2-Alk5 ligand-receptor complex, which 
predominantly activates Smads2/3 signaling, as well as Bone 
morphogenetic protein (BMP) 9/10-Alk1-Eng ligand-receptor  
signaling, which predominantly activates Smads1/5/858. Spe-
cifically, signaling through TGF-β1-TGFβR2 typically mediates 
mural cell recruitment and differentiation59, whereas Alk1/Eng 
signaling regulates endothelial cell quiescence, limits vessel cal-
iber, and enables arteriovenous specification54,55,60. However, 
there is also evidence of significant cross-talk between distinct  
TGF-β signaling pathways61,62 as well as between TGF-β  
superfamily pathways and other cell signaling pathways (for  
example, Notch) and that it is the balance of Smad signaling 
activation via these distinct pathways that establishes proper  
vessel formation63,64. Indeed, patients bearing heterozygous 
mutations affecting either Alk1 or Eng, or downstream Smad4,  
exhibit the congenital disease hereditary hemorrhagic telangiecta-
sia (HHT), which is characterized by microvascular overgrowth 
and the focal appearance of large-caliber AVMs that lack clear  
arterial or venous identity60,65.

Several recent studies have focused on the cross-talk between 
BMP and Notch signaling pathways to modulate endothelial 
cell behavior during vessel development. BMP-activated sprout-
ing angiogenesis is negatively regulated by Notch upregula-
tion of Smad6, an inhibitor of BMP signaling66. Meanwhile, 
nuclear translocation of BMP-activated phospho-Smads not 
only upregulates BMP target genes but also participates in the  
Notch/RBPJ-κ gene regulatory complex to regulate Notch-
activated transcriptional responses67. Consequently, inhibited 
expression of endothelial-expressed BMP regulatory proteins, 
BMPER and TWSG1, disrupts Notch signaling and expression 
of arterial identity genes, resulting in increased venous speci-
fication in zebrafish embryos68. Alk1 inhibition also depresses  
Notch signaling and produces AVMs in mice54. In separate stud-
ies, BMPER is reported to activate ERK1/2 signaling69 (which 
promotes arterial specification38) while the Alk1 co-receptor  
Endoglin suppresses PI3K/Akt signaling (which promotes 
venous identity38) to support endothelial cell migration against 

the direction of blood flow, a process hypothesized to sup-
port arteriogenesis and prevent AVMs70. Thus, currently  
available evidence suggests that BMP9/10-Alk1 signaling may 
regulate arteriovenous specification, at least in part, by modu-
lating endothelial cell responsiveness to VEGF- and Notch-
activated signaling. However, other studies suggest that other 
endothelial cell behaviors, such as responsiveness to shear or  
migration (or both), are also affected49,55.

Connexins
Membrane-expressed connexin (also known as Cx) proteins 
form multimeric complexes (termed connexons) that dock 
with connexons of adjacent cells to form intercellular chan-
nels (termed gap junction channels) that mediate passage of 
ions and small signaling molecules to support electrochemical  
coupling and intercellular communication. At least four connexin 
proteins (Cx37, Cx40, Cx43, and Cx45) are commonly reported 
at endothelial cell–cell junctions of the blood vasculature71,72,  
and some studies report endothelial expression of a fifth con-
nexin (Cx32)73,74. Furthermore, an additional connexin (Cx47) is 
expressed in lymphatic endothelial cells and contributes to lym-
phatic vessel development75. Of the commonly studied vascular 
connexins, Cx40 (encoded by the gene Gja5) is well recognized  
as a potent marker of arterial endothelial cells owing to its high 
expression in arteries invested with smooth muscle14,17. Deletion 
of this connexin inhibits flow-activated arterial specification 
in the chick14 and affects sprouting angiogenesis and mural 
cell recruitment in the neonatal mouse retina76. Furthermore,  
loss of Cx40 potentiates the appearance of AVMs in Alk1-hap-
loinsufficient animals77, suggesting that it may suppress the for-
mation of these vascular defects in wild-type animals, at least in 
part, by functioning downstream of BMP9/10-Alk1 signaling. 
Recently, Su et al.26 employed a single-cell transcriptomic analy-
sis of developing coronary vessels to identify a Cx40-enriched  
population of venous-originating “pre-artery” cells that express 
markers of mature arteries. The majority of these cells were 
later found to line the coronary arteries and were excluded 
from coronary veins, suggesting that expression of Cx40 is  
a critical intermediary step for arterial identity acquisition.

Endothelial-expressed Cx37 is also almost exclusively expressed 
in large arteries of the adult vasculature78 as well as in develop-
ing arteries and arterioles of remodeling vessels17. However, 
unlike Cx40, Cx37 is additionally expressed in remodeling  
capillaries and in arteriolar vessels that have yet to be invested 
with mural cells17, suggesting that it may play an earlier role 
than Cx40 in arteriovenous specification during development.  
Deletion of Cx37 disrupts developmental and injury-induced 
vessel growth and remodeling17,79, and transgenic ablation of 
both connexins in combination results in embryonic lethality 
due to failure of the vasculature to form80, suggesting that  
Cx37 and Cx40 play essential and possibly distinct roles dur-
ing vessel development. For example, many connexins regulate 
cell proliferation, and Cx37 is a particularly potent inhibitor 
of cell cycle progression81. Cx37 directly modulates endothe-
lial cell cycle status downstream of flow-activated Notch  
signaling by upregulating p27, causing late G

1
 arrest to enable 

expression of arterial genes Cx40 and ephrinB217. It is possible 
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that Cx37 plays a similar cell cycle arrest role to enable specifi-
cation towards other endothelial cell fates. In support of this 
possibility, transgenic ablation of one or both copies of Cx37 
is associated with endothelial cell hyperproliferation and 
defects in not only arterial development17 but also venous82 and  
lymphatic83,84 development.

MicroRNAs
A growing body of evidence indicates that microRNA (miRNA) 
species likely play an important, if currently underappreciated, 
role in endothelial cell specification. Although several studies 
show that miRNAs are necessary for endothelial cell differ-
entiation from angioblasts, less is known about their involve-
ment in specifying endothelial cell phenotypes. Endothelial  
and mural cells express numerous miRNA species, and miRNA 
processing machinery, including Drosha and Dicer, appears to 
be crucial for vessel development85,86. Mutants lacking expres-
sion of Dicer in Etv2-positive mesodermal progenitor cells 
exhibit defects in vessel remodeling and patterning due, at 
least in part, to loss of miR-130a expression87. Meanwhile, 
miR-27b is required for venous formation in zebrafish88, and  
miR-181 destabilizes expression of Prox1, a key regula-
tor of lymphatic endothelial cell specification and mainte-
nance89. In addition, endothelial-specific mutation of Drosha 
in mice produces leaky, dilated microvessels and aberrant arte-
riovenous connections (but lack clear AVMs), and missense point  
mutations in the Drosha gene are more prevalent among 
patients with HHT compared with healthy populations, sug-
gesting that miRNA processing defects may contribute to the 
pathogenesis of this disease or modulate its severity or do 

both86. Taken together, these studies suggest that miRNAs likely 
play a broad role in endothelial cell specification and vascular 
remodeling. However, more work is needed to identify critical  
miRNA regulators of these processes and to fully elucidate their 
molecular roles.

Conclusions
Endothelial cell specification toward arterial and venous 
fates is critical for the formation and remodeling of the blood  
circulatory system during development and post-natally. Failure 
of the vasculature to properly undergo arteriovenous specifi-
cation may contribute to the malformation or dysfunction of 
blood vessels, such as occurs in patients with HHT, who exhibit  
aberrant vessel structures that compromise quality of life and that  
can even be fatal.

During normal development, acquisition of arterial identity is 
driven by a molecular program (see proposed model, Figure 1) 
that includes Hedgehog, VEGF, Notch, and connexin signal-
ing and downstream PI3K and MAPK signaling. This pathway is 
modulated by TGF-β signaling and miRNAs and is antagonized 
by COUP-TFII, which promotes venous formation. Although early  
endothelial specification events may occur via a “hardwired” 
genetic program prior to the onset of blood flow, hemodynamic 
flow is precisely calibrated to arteriovenous identity and vessel 
identity is sustained by blood flow forces. Recent studies suggest  
that flow-sensitive regulation of Notch signaling48 may play a  
central role in modulating endothelial cell cycle state to enable the 
specification of different endothelial cell phenotypes in distinct  
cell cycle states17; however, this requires further investigation.

Figure 1. A proposed model of the regulation of arteriovenous specification in primitive endothelial cells, highlighting key players 
and some of the evidence of cell signaling cross-talk. A proposed model of the regulation of arteriovenous specification in primitive 
endothelial cells, highlighting key players and some of the evidence of cell signaling cross-talk.
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An improved understanding of the molecular mechanisms that 
regulate the initial acquisition of endothelial cell identity, as 
well as the signals that sustain specialized vessel structures and 
functions, is therefore an important frontier for new and ongo-
ing research in the field of vascular biology. Additional insights 
into the molecular regulation of arteriovenous specification  
will profoundly influence our understanding of the physiology 
of vessel maintenance and the pathophysiology of numerous  
diseases involving disorganized vessel growth and remodeling.
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