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Modification mapping from cDNA data has become a tremendously important approach 
in epitranscriptomics. So-called reverse transcription signatures in cDNA contain 
information on the position and nature of their causative RNA modifications. Data mining 
of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing 
in importance, and the field is still lacking effective tools. Here we present a versatile 
user-friendly graphical workflow system for modification calling based on machine 
learning. The workflow commences with a principal module for trimming, mapping, and 
postprocessing. The latter includes a quantification of mismatch and arrest rates with 
single-nucleotide resolution across the mapped transcriptome. Further downstream 
modules include tools for visualization, machine learning, and modification calling. From 
the machine-learning module, quality assessment parameters are provided to gauge 
the suitability of the initial dataset for effective machine learning and modification calling. 
This output is useful to improve the experimental parameters for library preparation and 
sequencing. In summary, the automation of the bioinformatics workflow allows a faster 
turnaround of the optimization cycles in modification calling.

Keywords: RT signature, Watson–Crick face, Galaxy platform, RNA modifications, machine learning, m1A

INTRODUCTION

In the rapidly growing field of epitranscriptomics (Saletore et al., 2012), the detection of RNA 
modifications is typically based on a combination of reagents and tools for wet work on the one 
hand, and bioinformatics processing of massive amounts of RNA-Seq data, on the other hand. 
Because of a sequence space that may include up to 107 nucleotides and more, transcriptomes must 
be scrutinized by computer-assisted detection schemes, resulting in what is called modification 
calling (Helm and Motorin, 2017).

With the exception of the up-and-coming nanopore direct RNA sequencing technology (Byrne 
et al., 2017; Garalde et al., 2018; Smith et al., 2019), RNA-Seq data are obtained after reverse 
transcription of the modified RNA template into DNA, a process during which information about 
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modification type and position may get erased, partially or 
completely, since the newly synthesized cDNA is composed only 
of the four canonical deoxynucleotides. Attempts to circumvent 
this problem included, for example, the use of various chemical 
reagents, which specifically react with a given modification, 
to alter cDNA synthesis at sites of RNA modifications. One 
such reagent is CMCT, a carbodiimide leading to stalling of 
cDNA synthesis at sites of pseudouridine modification in the 
RNA template (Ofengand and Bakin, 1997; Carlile et al., 2014; 
Schwartz et al., 2014). Other modifications do not require 
chemical derivatization to alter cDNA synthesis. In particular, 
modifications with chemical alterations on their Watson–Crick 
face are liable to cause cDNA synthesis differing from that 
expected of an unmodified RNA template. A case in point is 
m1A, a modification featuring a methyl group on the Watson–
Crick face of adenosine, which interferes with proper base 
pairing, in RNA structure (Helm et al., 1998) (Helm et al., 1999) 
(Lempereur et al., 1985; Zhou et al., 2016), as well as during cDNA 
synthesis by reverse transcription (Motorin et al., 2007). In the 
particular case of m1A, the resulting cDNA was shown to contain 
products of transcription arrest, i.e. abortive cDNA fragments, 
as well as misincorporation, most frequently of dATP being 
incorporated instead of dTTP at the position corresponding to 
the modification site. The ensemble of erroneous events in cDNA 
synthesis has been termed reverse transcription signature and 
was shown to depend on a number of factors including e.g. the 
nature of the penultimate base encountered by the RT enzyme 
before engaging the modified RNA residue (Hauenschild et al., 
2015). The RT signature of m1A can be experimentally altered 
e.g. by enzymatic demethylation with the AlkB enzyme (Zheng 
et al., 2015; Liu et al., 2016; Li et al., 2017) or at alkaline pH, 
which induces a Dimroth rearrangement to m6A (Dominissini 
et al., 2016; Safra et al., 2017). Since these processes are relatively 
specific to m1A, they can be exploited to increase confidence in 
modification calling, therein being used as a validation (Helm 
and Motorin, 2017).

All of the above processes require significant computing 
efforts to extract information on RNA modifications from RNA-
Seq data. Given that the composition of RT signature of a given 
modification in terms of RT arrest, misincorporation, and even 
template nucleotide skipping (“jumps”) (Ebhardt et  al., 2009; 
Findeiss et al., 2011; Ryvkin et al., 2013; Hauenschild et  al., 
2015) is subject to variations caused by factors that are not 
fully characterized and thus cannot be entirely controlled, an 
innovative approach to account for a maximum of these features 
and exploit them for computer-based prediction (“modification 
calling”) involves machine learning. A particular brand of 
machine learning, the random forest, was used for the purpose 
of modification by several groups, including us (Hauenschild 
et al., 2015).

Optimizing the performance of a modification calling 
protocol requires multiple rounds, beginning with a wet work 
part of library preparation and subsequent Illumina sequencing, 
as illustrated in Figure 1A. Here, a pretreatment (A1) of the 
samples by using auxiliary reagents such as the demethylase AlkB 
or changes in the library preparation part (A2), e.g. by employing 
different reverse transcriptase enzymes or variegated reaction 

conditions, are implemented experimentally. After sequencing 
(A3), a fast evaluation of their influence on the RT signature and 
consequently on RF performance (A4) is necessary to proceed 
with the next round of optimized library preparation in the wet 
lab. The associated computational data mining thus represents a 
bottleneck on the path to optimal modification calling.

To address this shortcoming, we here present an automated 
workflow implementation based on Galaxy (Afgan et al., 2018), 
whose components are depicted in Figure 1B. The Galaxy 
implementation provides a first module (B1) for the automation 
of typical and recurrent RNA-Seq–associated operations such 
as trimming and mapping. While these operations can be 
customized to accommodate a range of data formats, it allows 
procedurally stable and reproducible treatment of data package 
of comparable content, such as RNA-Seq data obtained under 
variegated conditions for library preparation. This, in turn, allows 
a comparative evaluation of those experimental conditions, as 
outlined above. The same holds true for subsequent modules 
(B2), designed and implemented following the requirement for 
fast comparison of data packages. The implemented tools allow 
to quantify mismatch, jump, and arrest rates in the relevant 
transcriptome, thus compiling RT signatures at single-nucleotide 
resolution. Still automatized, RT signatures of modified RNA 
nucleotides can be transferred as positive instances for machine 
learning, along with negative instances, i.e. signatures of 
unmodified nucleotides. Positive and negative instances are then 
used to train a Python-based random forest implementation of 
machine learning, and the performance of the trained machine 
in modification calling is evaluated and reported as a feedback 
in a further round of experimental optimization. Finally, with 
the implementation of a visualization module, graphics can be 
displayed and extracted for visual examination and comparison 
of individual sequence segments as well as the entire RNA 
fragments in a publishable manner.

MATERIALS AND METHODS

RNA Sequencing Analysis
The present workflow serves as the main process for the analysis 
of RNA sequencing data in respect to the detection of several 
modifications. Its Galaxy distribution comes with a number 
of adjustable elements for variegated workflows, in which the 
particular element (Workflow RNA_Seq_Standard_Workflow) 
serves as basis for the remaining workflows and functionalities. 
Therefore, it is referred to as “standard workflow.” The overall 
scheme of the workflow is illustrated in Figure 1 (B1) and 
consists of the following steps:

Preprocessing of Raw Reads (Trimming)
The raw reads from the sequencing data (stored in fastq-
format) are first subjected to removal of auxiliary sequences 
such as adapters, barcodes, and unique molecular identifiers 
(UMIs). For this task, the workflow uses the Cutadapt trimming 
software (Martin, 2011). Due to the necessity to remove multiple 
sequences from the raw reads, their respective arrangement, and 
the configuration of Cutadapt, the trimming is separated into 
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FIGURE 1 | Main overview of the modification calling pipeline. A diagram showing the different steps for creating and analyzing RNA-Seq data. The pipeline has 
two parts: (A) general workflow for the processing of RNA samples and (B) the implemented automated graphical workflow system with the available modules for 
bioinformatics data analysis. (A) consists of (A1) possible and partly necessary pretreatments for different RNA species, (A2) library preparation with the possibility 
of adaptations (e.g. conditions for reverse transcription), (A3) sequencing with Illumina sequencing platforms (e.g. MiSeq/NextSeq and HiSeq), and (A4) data 
processing including basic data treatment like adapter trimming, alignment, and format conversion, as well as data analysis (e.g. machine learning and RT-signature 
analysis). The elaborate data processing (A4) was fully automated in (B) by using the open-source Galaxy platform to create and provide a quick and user-friendly 
feedback mechanism to optimize the experimental design, sample preparation, and data processing. The standard workflow (B1) is supplemented by various 
additional modules (B2) including workflows for (a) machine learning, (b) visualization, and (c) filtering.
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multiple steps. In a typical Illumina paired-end sequencing run, 
the forward and reverse reads are stored in individual fastq files; 
the reads show slightly different characteristics concerning the 
auxiliary elements; hence, the trimming for forward and reverse 
reads is performed separately. The first substep in the trimming 
process consists of the removal of Illumina adapter sequences. 
In a second step, terminal barcode sequences and UMIs (Miner 
et al., 2004; McCloskey et al., 2007; Casbon et al., 2011) are cut 
from the raw reads.

Alignment
Mapping to a given sequence reference file is performed with 
Bowtie 2 (Langmead and Salzberg, 2012). Again, this process 
is performed separately for forward and reverse reads (–nofw/–
norc option) and therefore in single-end mode. For the detection 
of RT-impairing modifications like m1A, it is necessary to allow 
for mismatches (One mismatch [“N1”] allowed in seed length of 
6 [“L6”]). Values are tailored toward tRNAs (e.g. high amounts 
of RT-impairing modifications). Additionally, if the evaluation is 
performed on samples containing a large number of modifications 
(affecting the RT), the amount of allowed mismatch occurrences 
has to be increased by adjusting the seed-length option (Bowtie 
standard parameters allow for one mismatch within a given 
seed; hence, seed length has to be decreased for highly modified 
samples). The alignment is stored in BAM format.

The two BAM files, one for the forward and one for the reverse 
reads correspondingly, are merged using the SAMtools (Li 
et al., 2009) “merge” function, and the aligned reads are sorted 
according to chromosomal coordinates.

File Conversion and Overhang Trimming
Further analysis steps require information of mapped reads 
at single base resolution for each position in the reference 
sequence, as every position is evaluated for mismatch and arrest 
properties. Accordingly, the BAM-file is converted into Pileup-
format using the SAMtools (Li et al., 2009) “mpileup” function. 
As described in Tserovski et al. (2016), the library preparation 
includes a step in which C-tailing at the 3′ end of the cDNA 
strand was performed. Due to this tailing step in the library 
preparation protocol, despite the previous trimming steps, some 
tailing bases (overhangs) can remain and were then aligned 
with the reads. As these overhangs can impede the detection 
of modified sites, they have to be removed from the alignment. 
Therefore, a Python-based algorithm for postalignment 
manipulation was developed. This algorithm finds read-ending 
bases and compares them to reference base and removes them 
in case of a mismatch. After the overhang trimming, the data are 
still stored in Pileup format.

Feature Extraction
Information on each position of the reference is then extracted 
from the Pileup format and subsequently stored in a format 
termed “Profile” (example shown in Table 1). The information 
consists of the following features:

Arrest rate: Drop in coverage in relation to the preceding 
(N+1) position (arrest).

Mismatch rate: Relative amount of mapped nucleobases 
not matching the respective base in the reference 
(mismatch).

Jump rate: Relative amount of deletions (bases left out 
during reverse transcription) occurring at the given 
position in the reference (jump). A distinction is made 
between deletions at the given position in the reference 
(single jumps direct), deletions at the neighboring 
position (−1 position) (single jump delayed), and 
deletions at the given position, as well as the neighboring 
position (double jump).

In addition, the reference name (ref seg), reference base 
(refbase), reference position (pos), and coverage at the respective 
position (cov) are stored in the Profile. Also included is detailed 
information on the alignment numbers for each type of base (A, 
C, G, T) and unknown read bases (N), as well as the type of base 
preceding the position (prebase) in question.

In many cases, modified positions heavily differ from 
nonmodified positions in these key characteristics. Nonmodified 
bases are not expected to cause arrest and mismatch signals (at 
least not at high levels), making these features a main target for 
differentiation between modified and unmodified sites.

Downstream Analysis
The generation of the Profile file concludes the standard workflow. 
From this point on, the proceedings heavily vary depending on 
the question being investigated, with the Profile file serving as 
the starting point. Options for downstream analysis are shown in 
Figure 1 (B2) and include the following:

Filtering
An option for further evaluation is a simple filtering process. 
Here, adenosine instances can be separated into two categories, 
namely, “likely m1A” and “likely non-m1A.” The selectable filter 
criteria include threshold values for mismatch and arrest rates, 
minimum coverage, and the nucleobase of interest. In most cases, 
the arrest and mismatch rates should be sufficient to separate 
m1As from non-m1As.

Another filtering option includes the comparison of two 
samples after different treatment. In our Galaxy pipeline, the 
sample comparison after enzymatic or chemical treatment is 
implemented wherein one sample serves as a reference (Figure 2). 
The algorithm calculates the absolute and relative changes in the 
mismatch rate between 2 samples for each position and filters 
by means of adjustable thresholds for changes and coverage. The 
resulting Profile file contains candidates filtered according to the 
selected thresholds. This module can be used for verification of 
modification candidates by e.g. applying enzymatic or chemical 
treatment to remove the alterations at the Watson–Crick face 
impeding reverse transcription and therefore decreasing the 
mismatch rate (exemplary analysis shown in Results section).

Machine Learning
For the prediction of m1A and other modifications, a machine 
learning model for binary classification is included in the Galaxy 
distribution (Workflow Workflow_Prediction). The associated 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


S
chm

idt et al.
M

odification C
alling on G

alaxy P
latform

5
S

eptem
ber 2019 | Volum

e 10 | A
rticle 876

Frontiers in G
enetics | w

w
w

.frontiersin.org

TABLE 1 | Extracted Profile file after filtering with Demethylation_relative_change module with all m1A candidate positions.

ref_seg pos refbase cov prebase mismatch A G T C N a g t c n single_
jump_
direct

single_
jump_

delayed

double_
jump

arrest

tdbR00000370|Saccharomyces_
cerevisiae|4932|Arg|TCT

57 A 699 C 0.29471 493 8 2 94 0 0 5 5 92 0 0.00000 0.02710 0.00285 0.10941

tdbR00000300|Saccharomyces_
cerevisiae|4932|Asn|GTT

59 A 961 C 0.37045 605 7 6 125 0 0 7 69 142 0 0.00000 0.00407 0.02238 0.15544

tdbR00000021|Saccharomyces_
cerevisiae|4932|Cys|GCA

57 A 405 T 0.21728 317 13 39 0 0 0 7 28 1 0 0.00000 0.00000 0.00000 0.43399

tdbM00000003|Saccharomyces_
cerevisiae|4932|Gln|TTG

57 A 475 A 0.15789 400 11 18 1 0 0 12 29 4 0 0.00000 0.00000 0.00000 0.26810

tdbR00000170|Saccharomyces_
cerevisiae|4932|Ile|AAT

59 A 919 T 0.38085 569 55 88 6 0 0 67 127 7 0 0.00429 0.00000 0.01072 0.15350

tdbM00000006|Saccharomyces_
cerevisiae|4932|Ile|TAT

58 A 373 T 0.25469 278 13 28 4 0 0 7 34 9 0 0.00000 0.00000 0.00000 0.31934

tdbR00000192|Saccharomyces_
cerevisiae|4932|Lys|CTT

58 A 2715 G 0.16317 2272 102 103 9 0 0 108 112 9 0 0.00037 0.00000 0.00293 0.07658

tdbR00000193|Saccharomyces_
cerevisiae|4932|Lys|TTT

58 A 619 G 0.43942 347 49 75 10 0 0 62 68 8 0 0.00478 0.00000 0.00955 0.16511

tdbR00000323|Saccharomyces_
cerevisiae|4932|Pro|TGG

57 A 459 T 0.43573 259 3 69 0 0 0 12 112 4 0 0.00000 0.00000 0.00000 0.18905

tdbR00000324|Saccharomyces_
cerevisiae|4932|Pro|TGG

57 A 439 T 0.43508 248 4 56 1 0 0 9 121 0 0 0.00000 0.00000 0.00000 0.20364

tdbR00000443|Saccharomyces_
cerevisiae|4932|Thr|AGT

58 A 396 A 0.28283 284 23 23 3 0 0 28 30 5 0 0.00000 0.00222 0.12195 0.38608

tdbR00000444|Saccharomyces_
cerevisiae|4932|Thr|AGT

58 A 616 A 0.31656 421 39 47 5 0 0 41 54 9 0 0.00145 0.00000 0.10320 0.30152

tdbR00000464|Saccharomyces_
cerevisiae|4932|Val|AAC

59 A 1066 T 0.18386 870 33 55 22 0 0 18 61 7 0 0.00187 0.00000 0.00094 0.69026
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workflows for training and prediction are based on a random 
forest model from the “scikit-learn” Python package (Pedregosa 
et al., 2011). For the training process, the positive class (modified 
bases) and negative class (nonmodified bases) are given as 
input in a 1:1 ratio. This ratio is used in order to counter the 
tendency of RF models to bias toward the majority class. This 
RF property frequently leads to false negatives for the positive 
class (the modifications) when making predictions. Importantly, 
this bias is not necessarily reflected by the evaluation scores. 
The random forest performs e.g. 10 repetitions of a 5-fold cross-
validation. These parameters can be adjusted as required for 
different models. The model’s performance is measured by the 
area under the receiver operating characteristic curve. A detailed 
description of the concept of the random forest model used for 

this workflow can be found in Hauenschild et al. (2015). The 
prediction workflow requires a trained random forest model and 
a Profile file as input and performs a binary classification.

Visualization
A graphical representation of the position of interest within 
sequence context can be created using a Python-based script 
(Workflow Visualize_V3), extracted from the CoverageAnalyzer 
tool (Hauenschild et al., 2016). The user can plot a sequence 
containing up to 1000 bases where the leftmost and rightmost 
bases can be selected by position. In addition, various sizes can 
be adjusted, including the width and height of the plot, the font 
size, and the size of markers within the graphic (exemplary plot 
shown in Figure 3).

FIGURE 2 | Galaxy Filtering module Demethylation_relative_change interface. As input, two Profile files, yeast total tRNA untreated and yeast total tRNA AlkB 
treated, are used with the following selected parameters for filtering: adenosine (A) as nucleobase of interest, 0.5 or 50 (%) and 0.3 or 30 (%) as thresholds for the 
minimum relative and absolute changes in the mismatch rate and 250 as threshold for the minimum coverage required.

FIGURE 3 | Graphical plots of untreated (A) and AlkB-treated (B) yeast tRNALys (CTT) using the additional module Visualize_V3 for visualization. Sites with error rates 
of more than 10% are highlighted with yellow arrows, with colored bars indicating the nature of the reads. Mismatch rates are depicted as black crosses, and arrest 
rates as red lines. The m1A site is located in the middle of the shown sequence segment at position 58.
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RNA Sequencing—Sample Preparation
Library Preparation and Sequencing
Sample preparation and sequencing are performed according to a 
previously published protocol (Hauenschild et al., 2015; Tserovski 
et  al., 2016). This library preparation protocol includes the possibility 
to catch abortive products during the reverse transcription step, 
important for the detection of modifications impeding reverse 
transcription and generating a certain amount of RT stop products. 
The protocol also allows the adaptation of almost all necessary steps 
for preparation of RNA-Seq libraries, including adapter ligations, 
reverse transcription, and polymerase chain reaction. This allows 
fast screening of different conditions during sample preparation. 
Special experimental changes (e.g. buffer changes or pretreatment 
of the RNA) during library preparation for the preparation of our 
shown exemplary data are mentioned in the Results section.

RESULTS

Enzymatic Demethylation of m1a Sites in 
Yeast tRNA With AlkB
In an exemplary sample processing, two samples of total tRNA 
from Saccharomyces cerevisiae were used for sample preparation, 
sequencing, data processing, and analysis. One of the samples 
had been subjected to pretreatment (Figure 1 [A1]) with 
α-ketoglutarate–dependent dioxygenase AlkB that “repairs” 
alkylated DNA and RNA containing 3-methylcytosine (m3C) 
or 1-methyladenine (m1A) by oxidative demethylation. Protein 
preparation and sample treatment were performed according to 
a previously published protocol (Zheng et al., 2015). The second 
sample was used as reference. Both samples were then used as 
starting material for library preparation and subsequent sequencing 
(Figure 1 [A2, A3]). Library preparation and sequencing were 
performed as described in our published workflow by Hauenschild 
et al. (2015) and Tserovski et al. (2016). The sequencing output data 
packages in FASTQ format were then processed with the standard 
automated Galaxy workflow RNA_Seq_Standard_Workflow 
(Figure 1 [B1]) to create Profile files for downstream analysis.

Filtering for Demethylation Candidates
The Profile files were used for statistical analysis. Figure 2 
illustrates the Galaxy Filtering module Demethylation_relative_
change, which was used to filter and extract all positions that show 
an absolute and relative change in the mismatch rate of a certain 
threshold between the untreated and AlkB-treated sample. 
Table 1 shows the extracted Profile file with all candidate positions 
after filtering. From our sample comparison, with our selected 
thresholds, 13 candidate positions fulfilling the requirements 
were filtered out, with high probability to be m1A sites.

Visualization of Demethylation Candidates
In addition, the Profile files were used in the visualization workflow 
Visualize_V3 to obtain graphical plots for each sample. The visual 
comparison of the untreated (A) and AlkB-treated (B) yeast tRNALys 

(CTT), which includes an m1A at position 58, is shown in Figure 3. The 
strong decreases of the mismatch and arrest rate from 0.845 and 0.518 
to 0.163 and 0.077 after AlkB treatment at position 58 of the shown 

sequence segment indicate a successful removal of the methylation 
and therefore enabled valid reverse transcription. Such changes in the 
reverse transcription signature are considered as effective validation 
of the actual presence of m1A at the considered position.

Influence of Mn2+ on the RT Signature at 
m1A Sites in Yeast tRNA
In a second exemplary sample processing, four samples of total 
tRNA from S. cerevisiae were used for sample preparation, 
sequencing, data processing, and analysis. The samples were used 
for library preparation and differed in the reverse transcription step 
(Figure  1 [A2]). For reverse transcription, we used SuperScript® 
III Reverse Transcriptase (Thermo Fisher Scientific, Germany) in 
four different buffer mixtures to investigate the influence of Mn2+ 
during reverse transcription (Zhou et al., 2018). Sample A served 
as a reference and was prepared according to the supplier’s manual, 
using the standard RT buffer with Mg2+. For the other three test 
samples, custom-made RT buffers, including the standard buffer 
components, and Mn2+ in different concentrations (0.5 mM [B], 
1.0 mM [C] or 3.0 mM [D]) instead of Mg2+, were used. Library 
preparation and sequencing were performed as described in our 
published workflow by Hauenschild et al. (2015) and Tserovski 
et al. (2016). The sequencing output data packages in FASTQ 
format were then processed with the standard automated Galaxy 
workflow RNA_Seq_Standard_Workflow (Figure 1 [B1]) to create 
Profile files for downstream analysis.

Visualization of tRNAAsn (GTT) Using Mg2+ or 
Mn2+ as Buffer Components for Reverse 
Transcription During Library Preparation
The Profile files were used in the visualization workflow Visualize_
V3 to obtain graphical plots for each sample. The visual comparison 
of the reference (Figure 4A) and the Mn2+ (0.5 mM [Figure 4B], 
1.0 mM [Figure 4C], or 3.0 mM [Figure 4D]) yeast tRNAAsn (GTT) 
samples, including an m1A at position 59, is shown in Figure 4. The 
high mismatch rates (≥90%) throughout all samples are driven by the 
prebase influence (Hauenschild et al., 2015), leading to a consistently 
high C mismatch. Considering the m1A at position 59, the strong 
decrease in the arrest rate at position 59 from 0.846 (A) over 0.869 
(B) and 0.704 (C) down to 0.070 (D) indicates an increasing read-
through capability of the reverse transcriptase due to a stabilizing 
effect by increased Mn2+ concentrations. In addition, by exchanging 
Mg2+ through Mn2+, the number of jumps (single_jump_direct, 
single_jump_delayed, double_jump) increases with higher Mn2+ 
concentrations, visible in Table 2, as well as in the graphical plots 
by coverage drops (through deletions/jumps), especially visible in 
Figure 4D.

DISCUSSION

We here present a versatile, user-friendly graphical workflow 
system for modification calling to analyze RNA-Seq data. It can 
also be used to analyze any high-throughput data as long as they 
follow the formats listed in this technology report. Although 
this package allows creation and implementation of various 
workflows for processing and analysis, the application of this 
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TABLE 2 | Extracted Profile data for yeast tRNAAsn (GTT) after library preparation with 4 different buffer mixtures for the reverse transcription step. Shown are data for positions 58, 59 (m1A), and 60.

ref_seg pos refbase cov prebase mismatch A G T C N a g t c n single_
jump_
direct

single_
jump_

delayed

double_
jump

arrest

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT Reference

58 A 3238 A 0.02471 3158 4 4 33 2 0 5 7 25 0 0.01927 0.00056 0.00000 0.4574

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 0.5 mM Mn

58 A 1380 A 0.04855 1313 4 1 47 3 0 2 0 10 0 0.02404 0.00000 0.00060 0.32355

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 1.0 mM Mn

58 A 3546 A 0.04061 3402 15 9 79 0 0 13 6 22 0 0.02913 0.00000 0.00067 0.14965

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 3.0 mM Mn

58 A 2239 A 0.04332 2142 9 6 37 7 0 12 5 21 0 0.05623 0.00172 0.00138 0.0565

tdbR00000300| 
Saccharomyces_
cerevisiae|4932|Asn| 
GTT Reference

59 A (m1A) 6311 C 0.90160 621 79 36 3431 6 0 119 25 1994 0 0.00000 0.01048 0.04161 0.84647

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 0.5 mM Mn

59 A (m1A) 2210 C 0.93167 151 37 59 1238 8 0 37 15 665 0 0.00041 0.01630 0.09902 0.86879

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 1.0 mM Mn

59 A (m1A) 4454 C 0.95757 189 65 95 2208 1 0 75 35 1786 0 0.00038 0.02481 0.14907 0.70422

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 3.0 mM Mn

59 A (m1A) 2568 C 0.96145 99 9 9 1149 14 0 7 5 1276 0 0.00000 0.05323 0.16101 0.06965

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT Reference

60 C 42890 C 0.00445 87 30 22 42699 21 20 10 1 0 0 0.00000 0.00000 0.00000 0.36943

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 0.5 mM Mn

60 C 18703 C 0.00733 51 12 10 18566 50 11 3 0 0 0 0.00000 0.00005 0.00000 0.43528

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 1.0 mM Mn

60 C 17706 C 0.00345 17 7 10 17645 10 9 6 2 0 0 0.00006 0.00011 0.00011 0.35852

tdbR00000300| 
Saccharomyces_ 
cerevisiae|4932| 
Asn|GTT 3.0 mM Mn

60 C 3287 C 0.01156 2 1 9 3249 14 5 5 2 0 0 0.00000 0.00000 0.00030 0.03294
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pipeline has limitations, which we would like to indicate hereafter 
and to point out possible solutions for adjustment.

Limitations and Adjustability
The limitations of the workflow pertain mostly to the specific 
characteristics of the library preparation protocol. The workflow 
is tailored to the analysis of short RNA sequences, mostly 
tRNAs, and uses a “splice unaware” alignment because in the 
examples given, splicing is irrelevant. Accordingly, analysis 
of transcriptomic data should use an alignment tool that is 
specifically tailored to mapping of splice variants (“splice aware”).

Furthermore, algorithms such as the overhang trimming are 
not optimized for parallelization, which can lead to very long 
runtimes for the analysis, a problem potentially exacerbated by the 
large size of transcriptomic input data. Of course, as this Galaxy 
distribution makes use of the local computer’s processing power, 
large-scale analysis should not be performed on a device with weak 
computing capabilities. This Galaxy distribution, developed in a 
Unix environment, has not been tested on Windows platforms.

Detection efficiency of modified ribonucleotides is highly 
dependent on the dataset. tRNA samples show a high number 
of RT-impairing modifications, which can negatively affect the 
RT signals for surrounding positions, making it more difficult to 
detect modified positions of interest through filtering or machine 
learning. We also observed that detectability is highly dependent 
on read coverage. In some cases, modified low-coverage sites could 

not be detected as the RT signatures were noisy and thus not very 
pronounced. Moreover, the machine learning and prediction 
processes require an adequate number of training instances for 
a given modification. Modifications that are present only in low 
amounts are not compatible with the available machine learning 
process. Lastly, the workflow here presented was created and 
optimized to detect modifications, which naturally impair reverse 
transcription. However, this does not preclude modifications, which 
are made accessible for analysis through changes in the structural 
or chemical characteristics in a pretreatment by generating RT 
events like increased mismatch and arrest rates. Examples include 
the generation of RT signatures for N6-methyladenosine (m6A) 
with an engineered polymerase with reverse transcriptase activity 
to induce mutations at m6A sites (Aschenbrenner et al., 2018), the 
enzymatic introduction of a bio-orthogonal propargyl group to 
trigger RT termination for m6A detection (Hartstock et al., 2018), 
and the site-specific installation of an allyl group to the N6-position 
of adenosines, spontaneously inducing the formation of N1,N6-
cyclized adenosine by iodination to create mutations to differentiate 
m6A, which is inert to allyl labeling, from adenosines at individual 
RNA sites (Shu et al., 2017).

While the available workflows were tailored toward our specific 
library preparation protocol and were created with the goal of 
detecting m1A, the workflows are easily adjustable for analysis 
of other modifications and other protocols. For example, the 
standard workflow also works without the overhang-trimming 

FIGURE 4 | Graphical plots of yeast tRNAAsn (GTT), which was used for library preparation, visualized by using the additional module Visualize_V3. The reverse 
transcription step was performed by using SuperScript® III Reverse Transcriptase in different reaction buffers. The supplier’s standard reaction buffer (First Strand 
Synthesis buffer) with Mg2+ serves as reference (A), and the tested buffer mixtures differ by increased concentrations of Mn2+ [0.5 mM (B), 1.0 mM (C), 3.0 mM (D)] 
as Mg2+ substitute. Sites with error rates of more than 10% are highlighted with yellow arrows, with colored bars indicating the nature of the reads. Mismatch rates 
are depicted as black crosses, and arrest rates as red lines. The m1A site is located in the middle of the shown sequence segment at position 59.
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step, which allows the user to remove this step when using other 
library preparation protocols. In addition, the Galaxy interface 
allows for user-friendly customization of many input parameters. 
The customization is not limited to the software packages such as 
Cutadapt (Martin, 2011) and Bowtie (Langmead and Salzberg, 
2012), but also includes individual Python scripts for the multiple 
workflows. Accordingly, adapter and barcode sequences can be 
replaced to fit the library preparation protocol, and other tasks like 
quality trimming can be performed. For the Python scripts, the range 
of adjustable parameters allows the user to change the modification 
of interest, filter criteria, features, and parameters for the machine 
learning model as well as several options for the visualization.

Furthermore, existing workflows can be easily rearranged to suit 
the desired analysis. The associated Galaxy toolshed allows for the 
installation of additional bioinformatics programs and enables the 
user to create entirely new workflows. For example, other alignment 
tools can be implemented that may improve or accelerate data 
processing or allow transcriptome-wide analysis for other data 
packages. In the provided tutorial, the installation of new software 
is described. As an example, we have incorporated the CUSHAW2 
tool (Liu et al., 2012), which allows significant acceleration of the 
alignment speed, as a substitute for Bowtie 2. Our performance 
assessment showed that the alignment process could be sped up by 
a factor of up to six of the same datasets and on the same hardware 
platform. By reducing the time of the rather costly alignment step of 
the pipeline, it is possible to increase overall throughput. In return, 
the analysis of larger datasets is feasible within the same time in 
order to further increase the accuracy of the obtained results.

CONCLUSION/SUMMARY

Machine learning as an efficient tool for data mining is currently 
receiving enormous attention, which also extends to high-
throughput sequencing data. Based on previous progress in machine 
learning for modification calling (Hauenschild et al., 2015), we here 
present a workflow that not only automatizes all steps, but which 
also, in principle, allows adaptation to “nonnatural” modifications, 
i.e. bioconjugate derivatives of RNA nucleotides after treatment with 
a chemical reagent or enzymes (Ofengand and Bakin, 1997; Carlile 
et al., 2014; Schwartz et al., 2014; Shu et al., 2017; Hartstock et al., 
2018). In the course of development of reagent- and enzyme-based 
mapping procedures, repeated cycles of optimization, e.g. of reaction 
conditions, are necessary, but an assessment of modification calling 
performance for a given set of reaction conditions is extremely time 
consuming. The workflow here presents a solution to this bottleneck; 
while developed using the naturally occurring modification m1A 
as an example, it is conceived as such to be easily adaptable to the 
development of chemical reagents for modification mapping.

DATA AVAILABILITY

The graphical workflow system, an instruction manual, and 
a tutorial are available at: https://github.com/HelmGroup, 
Repository: Galaxy_modification_calling.

Operating system(s): Linux, Programming language for 
custom scripts: Python, Other requirements: Docker (software) 
needs to be installed.

The AlkB test datasets analyzed and generated for this study 
can be found in the repository: Galaxy_modification_calling 
(https://github.com/HelmGroup/Galaxy_modification_calling/
tree/master/TestData/AlkB).

Compressed files are provided in PKZIP and ZIP format and 
were compressed with 7-Zip.

Files: total_tRNA_yeast_untreated_R1.fastq (untreated yeast 
total tRNA – Read 1)

total_tRNA_yeast_untreated_R2.fastq (untreated yeast total 
tRNA – Read 2)

 total_tRNA_yeast_AlkB_treated_R1.fastq (AlkB-treated 
yeast total tRNA – Read 1)

total_tRNA_yeast_AlkB_treated_R2.fastq (AlkB-treated 
yeast total tRNA – Read 2)

 total_tRNA_yeast_untreated.profile (untreated yeast total 
tRNA – Profile)

total_tRNA_yeast_AlkB_treated.profile (AlkB-treated yeast 
total tRNA – Profile)

total_tRNA_yeast_reference.fasta (Reference total tRNA yeast)
Files for testing of the machine learning workflow can be 

found in the repository: Galaxy_modification_calling (https://
github.com/HelmGroup/Galaxy_modification_calling/tree/
master/TestData/Prediction).

Files: Known_m1A_sites_yeast (list of known m1A sites)
 total_tRNA_yeast_untreated.profile (untreated yeast total 

tRNA – Profile)
All other data are available from the corresponding authors 

upon reasonable request.
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