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Abstract
Primary gastrointestinal diffuse large B-cell lymphoma (PGI-DLBCL) is the most common extra-nodal DLBCL. Metabo-
lism-related factors have been associated with tumor progression, but the relationship between abnormal metabolism and 
prognosis of PGI-DLBCL remains unelucidated. In our study, consensus clustering based on metabolism-related genes 
classified PGI-DLBCL patients into two metabolic subtypes, and poor prognosis was associated with immunosuppressive 
microenvironment. A prognostic signature based on five metabolism-related genes (APOE, ALDH6 A1, PLOD2, IKBKB 
and ALDH1B1) was developed. Patients in high-risk group had a worse prognosis, with an immunosuppressive micro-
environment. Moreover, 159 PGI-DLBCL patients were enrolled and divided into training cohort (n = 87) and validation 
cohort (n = 72). Univariate and multivariate Cox regression analysis showed metabolism-related factors were indepen-
dent prognostic factors in PGI-DLBCL. A novel model (A-IPI score) combining APOA and NCCN-IPI was developed, 
and A-IPI score was better than NCCN-IPI score in predicting the prognosis of PGI-DLBCL patients. Furthermore, 
immunohistochemistry showed that ALDH1B1 was highly expressed in PGI-DLBCL and patients with high ALDH1B1 
expression displayed worse prognosis. Moreover, cell proliferation assay revealed that the treatment with IGUANA-1, 
ALDH1B1 inhibitor, suppressed cell proliferation in DLBCL and IGUANA-1 exerted synergistic anti-tumor effects with 
PI3K inhibitor duvelisib. Additionally, we found that immune scores, ESTIMATE scores, and stromal scores were higher 
and the immune checkpoints (CTLA-4, PD-1, PD-L1) were down-regulated in patients with high ALDH1B1 expres-
sion. Collectively, our study constructed a novel metabolism-related prognostic model and highlighted the potential of 
metabolism-related gene ALDH1B1 as prognostic biomarker and drug target in PGI-DLBCL, providing new insights for 
the development of precision therapies in PGI-DLBCL patients.
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CTRP	� Cancer Therapeutics Response Portal
DCA	� Decision curve analysis
DEGs	� Differentially expressed genes
DLBCL	� Diffuse large B-cell lymphoma
EDTA	� Ethylenediamine tetraacetic acid
FA	� Fatty acid
GA	� Glycated albumin
GDSC	� Genomics of Drug Sensitivity in Cancer
GLO	� Globulin
GLU	� Glucose
GO	� Gene Ontology
GSEA	� Gene Set Enrichment Analysis
Hb	� Hemoglobin
HDL-C	� High-density lipoprotein cholesterol
HR	� Hazard ratio
IDO	� Indoleamine 2,3-dioxyge-nase
IHC	� Immunohistochemistry
KEGG	� Kyoto Encyclopedia of Genes and 

Genomes
LASSO	� Least Absolute Shrinkage and Selection 

Operator
LDH	� Lactate dehydrogenase
LDL-C	� Low-density lipoprotein cholesterol
LMRGs	� Lipid metabolism-related genes
LPa	� Lipoprotein a
MRGs	� Metabolism-related genes
NCCN-IPI	� National Comprehensive Cancer Network 

International Prognostic Index
NUSAP1	� Nucleolar and spindle associated protein 1
OS	� Overall survival
PA	� Prealbumin
PFS	� Progression-free survival
PGI-DLBCL	� Primary gastrointestinal diffuse large 

B-cell lymphoma
PLT	� Platelets
ROC	� Receiver operating characteristic
SE	� Standard error
TG	� Triglycerides

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon histologic subtype of lymphoma, as well as a highly 
heterogeneous and aggressive disease that seriously jeopar-
dizes patients’ health and lives [1]. Primary gastrointestinal 
diffuse large B-cell lymphoma (PGI-DLBCL) is the most 
common extra-nodal lymphoma, accounting for 40–50% 
of gastrointestinal lymphomas [2, 3]. PGI-DLBCL origi-
nates from the lymphoid tissue of the submucosal layer of 
the gastrointestinal track, and the most commonly involved 
site is the stomach, followed by the small intestine and the 

ileum [4]. The clinical manifestations of most patients in the 
early stage of disease are mostly similar to other diseases of 
the digestive system, and it may be difficult to differentiate 
from other gastrointestinal malignant tumors only imaging 
or endoscopic diagnosis, which makes early diagnosis dif-
ficult and easy to misdiagnose [5].

Due to the special anatomical structure of the gastroin-
testinal tract, PGI-DLBCL is prone to complications such 
as gastrointestinal obstruction, perforation, bleeding, and so 
on, which seriously affects the life quality of patients, and 
even endangers their lives [6]. Therefore, there is an urgent 
need for early risk and prognostic assessment of patients 
with PGI-DLBCL, and then early intervention to improve 
their prognosis. Currently, the National Comprehensive 
Cancer Network International Prognostic Index (NCCN-
IPI) score is widely used for DLBCL in the rituximab-based 
era and demonstrates a favorable stratification [7]. However, 
it is less effective for risk stratification of PGI-DLBCL, 
and some patients with low NCCN-IPI scores exhibit poor 
prognosis. In addition, previous study showed that staged-
modified IPI was a good predictor for patients with primary 
gastric DLBCL (PG-DLBCL) [8], but it was mainly based 
on clinical parameters (such as age, stage, LDH level and 
so on), and did not adequately take into account molecular 
biological features, tumor microenvironment and other fac-
tors. Besides, PG-DLBCL is highly heterogeneous, and the 
existing scoring system cannot fully reflect individualized 
differences [9]. Additionally, gastrointestinal dyspepsia and 
serious complications may occur in PGI-DLBCL patients 
undergoing radiotherapy, which may have an impact on 
the nutritional status and quality of life of the patients [10]. 
Although the overall survival of PGI-DLBCL treated with 
chemotherapy has improved, some patients still experience 
relapse or develop resistance to treatment, resulting in a 
continued increase in the recurrence, morbidity, and mortal-
ity rates of PGI-DLBCL [11].Therefore, there is an urgent 
need to develop new and accurate risk stratification systems 
for PGI-DLBCL.

The gastrointestinal tract is the site of direct absorption of 
various nutrients, such as glucose, amino acids, fatty acids. 
Thus, PGI-DLBCL may alter the structure and function of 
the gut, thereby affecting the energy supply and metabolic 
status of the body [12]. Metabolism-related indicators are 
important prognostic factors for several cancers such as 
small intestine cancers, colorectal, and pancreatic cancer 
[13–15]. Additionally, previous study on cholangiocarci-
noma found that HBV infection altered metabolic pathways 
in hepatocytes, leading to abnormalities in glycogen and 
lipid metabolism, which might promote tumorigenesis and 
progression [16]. Reprogramming of glucose metabolism is 
manifested as an increase in aerobic glycolysis [17], which 
has been closely related to the activation of proto-oncogenes 
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like MYC and the inactivation of tumor suppressor genes 
such as p53 [18, 19]. In DLBCL cells, Akt promoted GLUT1 
localization at the plasma membrane through the activation 
of NF-κ B-dependent transcription, leading to an increase in 
its glycolytic flux [20], which promoted DLBCL prolifera-
tion, suggesting that NF-κB signaling had a potential role in 
regulating glucose metabolism to stimulate tumor cell sur-
vival and proliferation. Furthermore, enhanced glycolysis 
and lipid biosynthesis in non-Hodgkin’s lymphoma might 
be associated with aberrant activation of the PI3K/AKT/
mTOR signaling pathway, which promoted lymphoma cell 
growth, proliferation and migration [21, 22]. However, the 
relationship between abnormal metabolism and the progno-
sis of PGI-DLBCL and its mechanisms need to be further 
explored.

In this study, we used multiple bioinformatics methods 
to explore the prognostic role and regulatory mechanisms 
of metabolism-related genes in DLBCL, constructed prog-
nostic features and clustered subtypes based on metabolism-
related genes, and investigated the relationships between 
metabolism-related genes and the immune microenviron-
ment. In addition, since metabolism-related indicators have 
been found to be strongly associated with multiple gas-
trointestinal solid tumors, we investigated the prognostic 
significance of metabolism-related factors in patients with 
PGI-DLBCL and comprehensively analyzed clinicopatho-
logical features of patients to establish a prognostic model 
for PGI-DLBCL. The predictive performance of the new 
model was validated in multiple dimensions, and its superi-
ority was revealed by comparing it with existing prognostic 
scoring systems. More importantly, the high expression of 
acetaldehyde dehydrogenase 1B1 (ALDH1B1), a metabo-
lism-related molecule, was associated with worse progno-
sis in PGI-DLBCL, and targeting ALDH1B1 inhibited cell 
growth and showed synergistic anti-tumor effects with PI3K 
inhibitor duvelisib.

Materials and methods

Patients and cell lines

We recruited PGI-DLBCL patients according to the criteria 
defined by Lewin et al. [23, 24]. Only those patients pre-
senting with gastrointestinal symptoms (such as abdominal 
pain, ulcerative symptoms, intestinal obstruction, and intes-
tinal hemorrhage) were included in this study [23, 24]. Our 
study included 159 PGI-DLBCL patients (102 patients with 
gastric DLBCL and 57 patients with intestinal DLBCL) 
who were newly diagnosed in Shandong Provincial Hospi-
tal from January 2010 to February 2024. Patients were ran-
domly divided into training cohort (n = 87) and validation 

cohort (n = 72) based on “randomizr” R package. Pathologic 
specimens were obtained by endoscopic biopsy and surgical 
resection, re-examined by experienced histopathologists, 
and the diagnosis was confirmed according to the WHO 
hematological malignant tumor classification system. The 
following patients were included in the study: (1) pathologi-
cally diagnosed with gastrointestinal DLBCL, (2) no prior 
chemotherapy, radiotherapy, surgery, or immunotherapy, (3) 
no prior history of malignancy or immunosuppression, and 
(4) with complete clinical information and follow-up data. 
Exclusion criteria were (1) prior history of malignancy, (2) 
prior chemotherapy, radiotherapy, surgery, or immunother-
apy3], (3) incomplete clinical and follow-up data, and (4) 
death from other causes. Two cohorts followed the same 
inclusion and exclusion criteria. Progression-free survival 
(PFS) referred to the time from diagnosis to disease recur-
rence or disease progression. Overall survival (OS) was 
measured from the date of diagnosis to the date of death 
from any cause or last follow-up. The study was conducted 
in accordance with the Declaration of Helsinki. The study 
was approved by the Research Ethics Committee in Shan-
dong Provincial Hospital. OCI-LY1 (RRID: CVCL_1879) 
and OCI-LY3 (RRID: CVCL_8800) cells were purchased 
from ATCC, cultured in IMDM (Gibco, CA, USA) supple-
mented with 10% fetal bovine serum (HyClone, UT, USA), 
1% penicillin/streptomycin mixture, and 2 mM glutamine, 
and incubated at 37 °C in humidified air containing 5% 
CO2. All human cell lines were examined for short tandem 
repeat (STR) and mycoplasma infection periodically.

Data sources

We systematically explored publicly available datasets and 
corresponding clinical information of DLBCL and PGI-
DLBCL patients from the GEO database (​h​t​t​p​​s​:​/​​/​w​w​w​​.​n​​c​b​i​​.​
n​l​m​​.​n​i​​h​.​g​​o​v​/​g​e​o​/). In our study, five datasets were included, 
GSE23647 (DLBCL, n = 19; control, n = 42), GSE32018 
(DLBCL, n = 22; control, n = 13), GSE181063 (DLBCL, 
n = 1037), GSE10846 (DLBCL, n = 514) and GSE66770 
(PGI-DLBCL, n = 15; non-PGI-DLBCL, n = 57, non-PGI-
DLBCL referred to lymph node tissue from DLBCL). We 
obtained 355 carbohydrate metabolism-related genes, 471 
lipid metabolism-related genes, and 358 amino acid metab-
olism-related genes from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway database (​h​t​t​p​​s​:​/​​/​w​w​w​​.​g​​e​n​
o​​m​e​.​j​​p​/​k​​e​g​g​​/​p​a​​t​h​w​​a​y​.​h​​t​m​​l​#​g​l​o​b​a​l), the Molecular ​C​h​a​r​a​c​t​
e​r​i​z​a​t​i​o​n Database (MsigDB, v7.5.1, ​h​t​t​p​s​:​/​/​w​w​w​.​g​s​e​a​-​m​s​
i​g​d​b​.​o​r​g​/​​​​​) and previous studies works [25–27], and a total 
of 1049 metabolism-related genes (MRGs) were eventually 
obtained.
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expression and 4–12 as positive expression. Primary anti-
body was ALDH1B1 (15560-1-AP, Proteintech Group).

Statistical analyses

IBM SPSS software version 26 and R software version 4.3.1 
were used to analyze the data. Data were tested for homo-
geneity of variances and normality. Quantitative variables 
were analyzed using Student’s t-test and non-parametric 
tests. Survival analysis of patients was realized by Kaplan-
Meier method and log-rank test using the “survival” R 
package. Independent prognostic factors were determined 
by univariate Cox regression analysis and multivariate Cox 
regression analysis, which were assigned values based on 
regression coefficients (B). Forest plots were constructed 
using R package for univariate and multivariate analysis. 
The optimal cutoff value for new model was determined 
based on the maximum correlation J statistic (Youden’s 
index) of the receiver operating characteristic (ROC) 
curves. Time-dependent ROC curve analysis and decision 
curve analysis (DCA) were conducted to determine the opti-
mal model. Statistical significance was defined as p < 0.05 
for all statistical tests (*p < 0.05, **p< 0.01, ***p< 0.001).

Results

Metabolism-related genes were closely associated 
with the survival and immune microenvironment of 
DLBCL

The flow chart (Supplemental Fig. 1) illustrated the pro-
cess of research, including the exploration of potential 
molecular mechanisms and the construction and evaluation 
of new models. Firstly, we downloaded the DLBCL mRNA 
expression data of GSE23647 and GSE32018 datasets from 
the GEO database and homogenized the data. 3756 differen-
tially expressed genes (DEGs) were obtained in 41 DLBCL 
versus 36 reactive hyperplastic tissues (Supplemental Fig.2 
A). In addition, 1049 metabolism-related genes were col-
lected, and 90 differentially expressed metabolism-related 
genes in DLBCL were finally identified. Based on uni-
variate survival analysis, 5448 prognosis-related genes in 
DLBCL were obtained in GSE181063. Moreover, analysis 
of mRNA expression data in the GSE66770 dataset yielded 
3579 DEGs in PGI-DLBCL versus non-PGI-DLBCL (Sup-
plemental Fig. 2B-C). Based on the above results, 14 dif-
ferentially expressed metabolism-related prognostic genes 
were finally obtained (Fig. 1A, Supplemental Table1).

Based on the expression of 14 metabolism-related 
prognostic genes, we clustered the 1037 patients in the 
GSE181063 dataset into different metabolism-related 

In silico analyses

The “limma” R package of the R software was applied to 
analyze the differential expression of mRNAs (P < 0.05). 
The “ConsensusClusterPlus” R package categorized 
patients into subgroups with different expression patterns. 
Least Absolute Shrinkage and Selection Operator (LASSO) 
regression was used to construct the metabolism-related 
genes prognostic signature. Furthermore, we utilized the 
“clusterProfiler” package for Gene Ontology (GO) enrich-
ment analysis, KEGG pathways analysis, and Gene Set 
Enrichment Analysis (GSEA) of genes. The criteria for 
pathways considered to be remarkably enriched were as fol-
lows: P value < 0.05, and false discovery rate (FDR) q value 
< 0.05. The “CIBERSORT” R package was applied to ana-
lyze the samples for immune infiltration. The box plot was 
implemented by the R software package ggplot2 and the 
heatmap was displayed by the R software package heatmap. 
Based on Cancer Therapeutics Response Portal (CTRP) (​
h​t​t​p​​s​:​/​​/​p​o​r​​t​a​​l​s​.​​b​r​o​a​​d​i​n​​s​t​i​​t​u​t​e​.​o​r​g​/​c​t​r​p​/) and Genomics of 
Drug Sensitivity in Cancer (GDSC) database ​(​​​h​t​t​p​s​:​/​/​w​w​w​
.​c​a​n​c​e​r​r​x​g​e​n​e​.​o​r​g​/​​​​​)​, oncoPredict was used to assess ​d​i​f​f​e​r​e​
n​c​e​s in drug sensitivity in patients of different groups with 
ALDH1B1 expression.

Cell proliferation assay

Cell proliferation was assessed using the Cell Counting 
Kit-8 (CCK-8) assay kit (CK04, DOJINDO, Japan) and 
Multiskan GO Microplate Reader (Thermo Scientific, 
IL, USA). IGUANA-1 (HY-148466) was purchased from 
MedChemExpress.

Immunohistochemistry (IHC)

Antigen retrieval was performed using ethylenediamine 
tetraacetic acid (EDTA) under high pressure. Slides were 
then incubated at 37 °C in 3% hydrogen peroxide for 30 
min, followed by incubation with goat serum for 30 min to 
block nonspecific binding. The slides were then incubated 
with primary antibody overnight at 4 °C. DAB with hema-
toxylin staining was applied after incubation with biotin-
labeled secondary antibody and SABC, respectively, for 
30 min at 37 °C on the following day. IHC staining was 
assessed by two independent observers, who were unaware 
of group assignment during the experiment. IHC score was 
calculated by the accumulation of multiplying proportion 
score (0, < 5%; 1, 5–25%; 2, 26–50%; 3, 51–75%; and 4, 
76–100%) and intensity score (0, negative; 1, weak; 2, mod-
erate; and 3, strong). Scores of 0–3 were defined as negative 
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Supplemental Fig.3 A). Survival analysis showed that 
there was a difference in OS between the two groups, with 
patients in cluster 1 having a significantly worse prognosis 

molecular subgroups by consensus clustering. By increasing 
the clustering variable (k) from 2 to 9, we found that con-
sensus clustering was most appropriate when k = 2 (Fig. 1B, 
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Construction of metabolism-related genes 
prognostic signature

Among 14 metabolism-related prognostic genes, 12 genes 
were selected by LASSO regression, and finally 5 genes 
were identified by multivariate Cox regression analysis (P < 
0.01, FDR < 0.05) (Fig. 3A-C). A metabolism-related genes 
prognostic signature was constructed based on the risk coef-
ficients from the multivariate Cox regression analysis, and 
the risk score for each patient was calculated according to 
the following formula: Risk score = APOA × (− 0.18016) 
+ ALDH6A1 × 0.278961 + PLOD2 × (− 0.1356) + IKBKB × 
(− 0.24923) + ALDH1B1 × 0.225072 (Supplemental Table 
2). Patients were divided into high-risk and low-risk groups 
based on the median risk score, and the box plot showed that 
the survival of the high-risk group was significantly shorter 
than that of the low-risk group (P < 0.0001) (Fig. 3D, Sup-
plemental Fig. 3 C). The Kaplan-Meier curve showed that 
patients in the high-risk group had significantly worse OS 
than those in the low-risk group (Fig. 3E). In addition, the 
risk score was also predictive in GSE10846 dataset, as dem-
onstrated by a worse OS in the high-risk group than in the 
low-risk group (Fig. 3F).

The heatmap showed the differential gene expression 
of patients in the high- and low-risk groups (Fig. 4A). In 
addition, we found that the differentially expressed genes 
were mainly enriched in the biological processes of DNA 
replication by GSEA analysis (Fig. 4B), suggesting a differ-
ence in cell proliferation between the two risk groups. Fur-
thermore, we tried to analyze the immune cell infiltration in 
the two risk groups, and found that there was higher infil-
tration of B cells, plasma cells, monocytes, activated mast 
cells, and less infiltration of T cells, NK cells, macrophages, 
and dormant mast cells in the high-risk group (Fig.  4C). 
Moreover, immune scores, ESTIMATE scores, and stromal 
scores were lower in the high-risk group than in the low-risk 
group (Fig.  4D-F). Furthermore, the immune checkpoints 
such as CTLA-4, PD-1, PD-L1 were down-regulated in 
the high-risk group than in the low-risk group (Fig. 4G-I). 
These results suggested that a prognostic signature based on 
five differentially expressed metabolism-related genes was 
associated with immunosuppressive microenvironment, and 
abnormalities in immune cell infiltration and differential 
expression of immune checkpoints were clinically relevant 
for early identification of patients at high risk, which might 
provide guidance for clinical medications.

Construction of novel prognostic model, A-IPI score, 
for PGI-DLBCL patients in training cohort

As previous studies have shown that metabolism-related fac-
tors are intimately associated with multiple gastrointestinal 

than those in cluster 2 (P < 0.0001) (Fig. 1C). The top 50 
DEGs were selected for heatmap visualization, and signifi-
cant differences in gene expression were found between the 
two groups of patients (Fig.  1D). Subsequently, we per-
formed GO and KEGG analysis of the DEGs between cluster 
1 and cluster 2. The results showed that the DEGs between 
both clusters were significantly enriched in the biological 
processes of inflammatory response, immune response and 
cell adhesion (P < 0.05, FDR < 0.05) (Fig. 1E-F). The above 
results indicated that immune regulation might play a cru-
cial role in the survival of both clusters of patients.

In addition, differences in immune cell infiltration 
between the two clusters were assessed using the CIBER-
SORT algorithm. Cluster 1 had a higher level of infiltration 
of B cells, T cells and plasma cells, whereas cluster 2 was 
dominated by infiltration of NK cells, macrophages, mast 
cells, and neutrophils (Fig. 2A). The correlation of infiltra-
tion between immune cells is demonstrated in Supplemen-
tal Fig.3B. Furthermore, there were significant differences 
in immune scores, stromal scores, and ESTIMATE scores 
between the two clusters of patients (P < 0.001) (Fig. 2B-
D). We also found that there were significant differences 
in the expression of immune checkpoints such as CTLA-
4, PD-L1 and LAG-3 between the two clusters, and there 
was a higher expression of immune checkpoints in cluster 
2 (Fig.  2E-G), which also implied that there was a better 
effect of immunotherapy in cluster 2. Taken together, these 
results suggested that the expression of metabolism-related 
genes were closely associated with the survival of DLBCL, 
and the potential mechanism might act by altering the tumor 
microenvironment and immune cell function.

Fig. 1  Metabolism-related genes were associated with the survival of 
DLBCL. (A) Venn plot showed 14 differentially expressed metabo-
lism-related prognostic genes in PGI-DLBCL. DEGs between DLBCL 
and control were obtained from GSE23647 (DLBCL, n = 19; control, 
n = 42) and GSE32018 (DLBCL, n = 22; control, n = 13) datasets. 
Prognostic-related genes were obtained from GSE181063 (DLBCL, 
n = 1037) dataset. DEGs between PGI-DLBCL and non-PGI-DLBCL 
were obtained from GSE66770 (PGI-DLBCL, n = 15; non-PGI-
DLBCL, n = 57) dataset. (B) Consensus matrix heatmap based on 
metabolism-related genes found that the optimal value for consensus 
clustering was K = 2. (C) Survival curve showed the significant differ-
ence of OS between the two clusters. (D) Heatmap of the top 50 dif-
ferentially expressed genes between the two clusters. (E) Bubble plot 
of GO enrichment of differentially expressed genes between the two 
clusters. Larger bubbles indicated more enriched genes, and darker red 
color indicated more pronounced differences. (F) Enrichment of bio-
logical functions of differential genes between two clusters by KEGG 
enrichment analysis. Deeper red depth indicated more obvious differ-
ences, and longer bars indicated more enriched genes
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Fig. 2  Metabolism-related genes were associated with the immune 
microenvironment in DLBCL. (A) CIBERSORT analysis in the two 
clusters showed that cluster 1 had a higher level of infiltration of 
B cells, T cells and plasma cells, whereas cluster 2 was dominated 
by infiltration of NK cells, macrophages, mast cells, and neutro-

phils. (B-D) ESTIMATE algorithm showed significant differences in 
immune scores, stromal scores and ESTIMATE scores of patients in 
two clusters. (E-G) Expression differences of the immune checkpoints, 
including CTLA-4, PD-L1 and LAG-3 between the two clusters (*p < 
0.05, **p < 0.01, ***p < 0.001)
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Multivariate Cox regression analysis showed that APOA 
had a regression coefficient (B) of − 1.808 (< 0) and a haz-
ard ratio (HR) of 0.161 (< 1), suggesting that APOA was 
a protective factor for PGI-DLBCL patients. Based on the 
regression coefficients (B) of the multivariate Cox regres-
sion analysis, patients with APOA < 1 g/L were allocated 
1.5 points as a risk factor and combined it with the NCCN-
IPI score, classical prognostic score systems in DLBCL, to 
construct a new prognostic model, A-IPI score.

A-IPI score exhibited favorable prognosis predictive 
efficacy in PGI-DLBCL

Using the ROC curve, we obtained the optimal cut-off value 
for A-IPI score, which had the best stratification with A-IPI 
score equal to 3. Subsequently, patients were categorized 
into high and low score groups based on A-IPI score, where 
OS and PFS were found to be significantly worse in the high 
score group than low score group (P = 0.021, P = 0.017) 
(Fig. 6A-B).

To clarify the predictive power of the A-IPI score, we 
assessed the score by comparing with the NCCN-IPI. The 
DCA and ROC curve showed better predictive ability of 
A-IPI score with an AUC of 0.7829 for OS and 0.7022 for 
PFS compared with NCCN-IPI, with an AUC of 0.6503 
for OS and 0.5886 for PFS (Fig. 6C-D, Supplemental Fig. 
5D-E). In addition, time-dependent ROC curves demon-
strated that A-IPI scores had better 1-, 3-, and 5-year AUCs 
of 0.950, 0.805, and 0.674, respectively, compared with 
the NCCN-IPI scores, which had 1-, 3-, and 5-year AUCs 
of 0.917, 0.698, and 0.656 (Fig. 6E, Supplemental Fig. 6 
A-B). The above results demonstrated that the A-IPI score 
had excellent predictive efficacy for OS and PFS of PGI-
DLBCL patients in training cohort.

Based on the cutoff value of 3 obtained in training cohort, 
we divided the patients into high and low score groups in 
validation cohort. We found that the OS and PFS of the high 
score group were significantly worse than those of the low 
score group (P = 0.012, P = 0.0097) (Fig. 6F-G). In addition, 
ROC curve showed better predictive ability of A-IPI score 
with an AUC of 0.7424 in OS for validation cohort com-
pared with NCCN-IPI, with an AUC of 0.6218 (Fig. 6H). 
Furthermore, time-dependent ROC curves revealed better 
1-, 3-, and 5-year AUC of 0.758, 0.846, 0.826 in OS and 
0.803, 0.857, 0.827 in PFS for the A-IPI score compared 
with the NCCN-IPI score, which had a 1-, 3-, and 5-year 
AUC of 0.681, 0.710, 0.693 in OS and 0.663, 0.743, 0.643 
in PFS for validation cohort, respectively (Fig. 6I-J, Sup-
plemental Fig. 6 C-F). The above results suggested that 
the A-IPI score had great prognostic efficacy for prognostic 
assessment in validation cohort.

solid tumors [13–15], and PGI-DLBCL is the most com-
mon extra-nodal lymphoma, our clinical study focused on 
the association between metabolism-related factors and the 
prognosis of PGI-DLBCL patients. A total of 159 patients 
were included in the study, of which 102 originated in the 
stomach and 57 in the intestine. The clinical characteristics 
of patients were shown in Supplemental Table 3. At first, 
we analyzed the survival of patients with PG-DLBCL and 
Primary intestinal DLBCL (PI-DLBCL), and found that 
there was no statistically significant difference in survival 
between the two group (P > 0.05) (Fig.  5A, Supplemen-
tal Fig. 4 A). Therefore, we studied PG-DLBCL and PI-
DLBCL as the same whole. Subsequently, we performed 
survival analysis of PGI-DLBCL patients who received 
different treatment regimens (including radiotherapy and/or 
chemotherapy, surgery, and surgery combined with radio-
therapy and/or chemotherapy), and found that there was no 
significant difference (P > 0.05) in OS and PFS (Fig.  5B, 
Supplemental Fig. 4B).

We randomized patients into training cohort (n = 87) and 
validation cohort (n = 72) based on “randomizr” R package, 
and Supplemental Table4 showed that there was no statis-
tically significant difference in the baseline levels of the two 
cohorts (P > 0.05). In univariate analysis, age (P = 0.027), 
prealbumin (PA, P = 0.034), apolipoprotein A (APOA, 
P = 0.006) were significantly associated with OS of PGI-
DLBCL patients in training cohort (Fig. 5C). Multivariate 
Cox regression analysis was then performed for prognos-
tic factors in the univariate analysis, and showed that ApoA 
(P = 0.03) was independent factor for prognosis prediction 
of PGI-DLBCL patients in training cohort (Fig. 5D). The 
Cox proportion hazard model for PGI-DLBCL patients in 
training cohort was shown in Table  1. Moreover, the for-
est plot showed that metabolism-related indicators were 
also associated with PFS of PGI-DLBCL in training cohort 
(Supplemental Fig.5 A). Meanwhile, we performed univar-
iate Cox regression analyses in PG-DLBCL and PI-DLBCL, 
and found that APOA was correlated with the prognosis of 
both PG-DLBCL and PI-DLBCL patients (Supplemental 
Fig.5B-C). These results suggested that metabolism-related 
indicators were strongly related to survival time in PGI-
DLBCL patients.

Fig. 3  Construction and validation of the metabolism-related gene 
signature, and related immune characterization analyses. (A-B) 
LASSO Cox regression analysis of 14 metabolism-related genes with 
prognostic significance in GSE181063 dataset. (C) Multivariate for-
est plot of 12 metabolism-related prognostic genes showed APOE, 
ALDH6A1, PLOD2, IKBKB and ALDH1B1 were independent prog-
nostic factors in GSE181063 dataset. (D) Box plots showed the dif-
ference in survival between patients with high and low risk scores. 
(E-F) Survival curve of GSE181063 and GSE10846 datasets verified 
differences in survival between high and low risk groups. (*p < 0.05, 
**p < 0.01, ***p < 0.001)
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expression had worse survival (Supplemental Fig.8D-E). 
Drug sensitivity analysis found that the group with high 
ALDH1B1 expression had higher sensitivity to BI-2536 
and correlation analysis found that the sensitivity of patients 
to BI-2536 was negatively correlated with ALDH1B1 
(Supplemental Fig.8 F-G). Furthermore, to clarify the 
relationship between ALDH1B1 and the immune microen-
vironment, we compared the immune scores and the expres-
sion levels of immune checkpoints of patients with high 
and low ALDH1B1 expression in GSE181063 dataset. We 
found that immune scores, ESTIMATE scores, and stromal 
scores were higher and the immune checkpoints (CTLA-
4, PD-1, PD-L1) were down-regulated in ALDH1B1 high 
expression (Supplemental Fig. 9 A-F). Also, we performed 
KEGG enrichment analysis of DEGs in the high and low 
ALDH1B1 expression patients. We found that ALDH1B1 
may regulate tumor development in PGI-DLBCL patients 
by regulating PI3K-Akt signaling pathway, Wnt signaling 
pathway, TGF-beta signaling pathway, Notch signaling 
pathway and so on (Supplemental Fig.9G).

In addition, to further explore the role of ALDH1B1, we 
examined the effect of IGUANA-1, a selective inhibitor of 
ALDH1B1, in DLBCL cells. Cell proliferation was reduced 
by the incubation with IGUANA-1 in time- and concentra-
tion-dependent manner, with the LY1 cell line showing an 
IC50 of 2.76 µM at 48 h (Fig. 8A-B, Supplemental Fig.9H). 
ALDH1B1 might promote lung adenocarcinoma and colon 
cancer progression by regulating the PI3K/AKT signaling 
pathway [28, 29]. Bioinformatics analysis revealed that 
patients with high and low ALDH1B1 expression were 
enriched for differential genes into the PI3K/AKT signal-
ing pathway (Supplemental Fig. 9G), which suggested 
that ALDH1B1 may promote the progression of DLBCL 
through the PI3K/AKT signaling pathway. Duvelisib, a 
PI3K inhibitor, suppresses the growth and viability of B-cell 
lineage tumors by inhibiting the activity of the key enzymes 
PI3K-δ and PI3K-γ [30]. Hence, we investigated the syner-
gistic effect of IGUANA-1 with PI3K inhibitor duvelisib, 
and found that they had a high synergistic index of 24.668, 
which indicated an intense and stable synergistic antitu-
mor effect of IGUANA-1 and duvelisib in DLBCL cells 
[31] (Fig.  8C-D). These results indicated that ALDH1B1 
might be potential prognostic biomarker and drug target in 
PGI-DLBCL.

Discussion

Our study explored the potential role and molecular mecha-
nisms of metabolism-related prognostic genes in DLBCL 
and revealed the importance of metabolism-related prognos-
tic factors in the prognosis of PGI-DLBCL. In recent years, 

In order to further validate the predictive efficacy of 
A-IPI score, we compared A-IPI score with staged-modified 
IPI score by ROC curves in PG-DLBCL. It was found that 
A-IPI score (OS, AUC = 0.6744; PFS, AUC = 0.6537) had 
better prognostic predictive efficacy than staged-modified 
IPI score (OS, AUC = 0.6266; PFS, AUC = 0.5553) (Sup-
plemental Fig.7 A-B). Meanwhile, A-IPI score was com-
pared with IPI score and Lugano stage for PI-DLBCL, and 
showed that the predictive efficacy of A-IPI score (OS, AUC 
= 0.8261; PFS, AUC = 0.7103) was superior to that of IPI 
score (OS, AUC = 0.7119; PFS, AUC = 0.631) and Lugano 
stage (OS, AUC = 0.5403; PFS, AUC = 0.5705) (Supple-
mental Fig.7 C-F). These results suggested that A-IPI score 
had an excellent prognostic predictive efficacy in both PG-
DLBCL and PI-DLBCL.

ALDH1B1 was identified as potential prognostic 
biomarker and drug target in PGI-DLBCL

To further search for metabolism-related prognostic bio-
markers for PGI-DLBCL, bioinformatics analysis revealed 
that ALDH1B1 was an independent prognostic factor 
in DLBCL patients. Therefore, we performed immuno-
histochemical analysis and drug sensitivity analysis of 
ALDH1B1. Immunohistochemical analysis showed that 
ALDH1B1 was highly expressed in PGI-DLBCL compared 
with reactive hyperplastic lymph node tissues (Fig. 7A). We 
individually analyzed the expression levels of ALDH1B1 
in DLBCL and reactive hyperplastic lymph nodes in the 
GSE32018 dataset and found that ALDH1B1 was highly 
expressed in DLBCL (P = 0.004) (Supplemental Fig.8 A). 
In the GSE66770 dataset, we analyzed the expression lev-
els of ALDH1B1 in PGI-DLBCL and systemic DLBCL and 
found that ALDH1B1 expression was upregulated in PGI-
DLBCL (P < 0.001) (Supplemental Fig.8B). Subsequently, 
we included ALDH1B1 in a univariate analysis and found 
that it was associated with the OS and PFS of PGI-DLBCL 
(Fig. 7B, Supplemental Fig. 8 C). Additionally, Survival 
analysis showed that the high expression of ALDH1B1 was 
associated with worse prognosis in PGI-DLBCL (Fig. 7C-
D). We analyzed the survival of patients with high and 
low ALDH1B1 expression in GSE181063 and GSE10846 
datasets, and found that the patients with high ALDH1B1 

Fig. 4  Metabolism-related genes signature was associated with bio-
logical characteristics and immune cells infiltration in DLBCL. (A) 
Heatmap of the top 50 differentially expressed genes between the high 
and low risk groups. (B) GSEA analysis of differentially expressed 
genes between high and low risk groups. (C) CIBERSORT analysis in 
the two risk groups. (D-F) ESTIMATE algorithm showed significant 
differences in immune scores, ESTIMATE scores and stromal scores 
between two risk groups. (G-I) Expression differences of the immune 
checkpoints, including CTLA-4, PD-1, and PD-L1 between the two 
risk groups (*p < 0.05, **p < 0.01, ***p < 0.001)
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33]. Nucleolar and spindle associated protein 1 (NUSAP1) 
could activate LDHA expression and promote glycolytic 
metabolic reprogramming by directly binding to c-Myc and 
HIF-1α to form a transcriptional regulatory complex, con-
sequently promoting invasion and metastasis of pancreatic 

metabolic reprogramming has become a focus of research 
in tumors, which has contributed to more interest in the 
metabolic status of tumor patients. For example, metabolic 
reprogramming of glucose, lipids and various amino acids 
promoted tumor progression in thyroid cancer cells [32, 

Fig. 5  Construction of A-IPI score 
for predicting prognosis of PGI-
DLBCL patients in the training 
cohort. (A) Survival curves showed 
no difference in OS between gastric 
DLBCL and intestinal DLBCL in 
the total cohort (n = 159). (B) Sur-
vival curves demonstrated that OS 
of PGI-DLBCL patients received 
different treatment regimens 
showed no statistically significant 
difference (n = 159). (C) Forest 
plot based on univariate analysis 
showed that age, PA, APOA were 
significantly associated with OS of 
PGI-DLBCL patients in training 
cohort (n = 87). (D) Multivariate 
analysis of forest plot showed that 
APOA was independent prognostic 
factors of OS for PGI-DLBCL 
patients in training cohort. Abbre-
viations: AGR, albumin to globulin 
ratio; Alb, albumin; APOA, apoli-
poprotein A; APOB, apolipoprotein 
B; APOABR, apolipoprotein A 
to apolipoprotein B ratio; CRP, 
C-reactive protein; GA, glycated 
albumin; GLO, globulin; GLU, 
glucose; Hb, hemoglobin; HDL-C, 
high-density lipoprotein choles-
terol; LDH, lactate dehydrogenase; 
LDL-C, low-density lipoprotein 
cholesterol; LPa, lipoprotein a; OS, 
overall survival; PA, prealbumin; 
PFS, progression-free survival; 
PLT, platelets; TG, triglycerides
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Recent studies have found that metabolism-related genes 
could be used as prognostic markers in a variety of tumors 
[40, 41]. In a study of gliomas, glucose metabolism-related 
genes were found to promote tumor progression [42], indi-
rectly confirming reprogramming of glucose metabolism as 
a promising strategy for the treatment of gliomas [43]. In 
addition, prognostic models of head and neck squamous cell 
carcinoma based on glucose metabolism-related genes and 
lipid metabolism-related genes have been developed [44, 
45]. Moreover, amino acid metabolism-related genes have 
been found to be associated with the immune microenviron-
ment in AML patients, which could predict the prognosis 
and response to immunotherapy in AML patients [46]. The 
above studies indicated the prognostic role of metabolism-
related genes in a variety of tumors. In this study, we analyzed 
the relationship between metabolism-related prognostic 
genes and the prognosis of DLBCL patients, established a 
prognostic signature based on five metabolism-related prog-
nostic genes, and found that the score was closely related 
to the immunosuppressive microenvironment. The findings 
demonstrated the role and potential mechanisms of metabo-
lism-related genes in the prognostic assessment of DLBCL, 
but the specific mechanisms involved need to be explored in 
further studies.

ductal adenocarcinoma [34]. A study on adrenocortical car-
cinoma found that metabolic heterogeneity of nutrients such 
as carbohydrates, lipids, and proteins affected patient prog-
nosis [35]. The altered metabolism of amino acids and lipids 
in the tumor resulted in dysregulation of anti-tumor immune 
response and the development of resistance to anti-PD-1/
PD-L1 therapy [36]. In addition, a large number of studies 
have shown that the poor prognosis of tumor patients was 
closely related to the metabolic status of patients [37–39]. 
Our study analyzed the relationship between metabolism-
related factors and survival of PGI-DLBCL patients, and 
innovatively revealed the independent predictive value of 
metabolism-related factors for PGI-DLBCL. In addition, a 
novel model (A-IPI score) combining APOA and NCCN-
IPI was developed, which was confirmed to be more effec-
tive than NCCN-IPI in PGI-DLBCL patients. These results 
provided powerful scientific evidence for the risk assess-
ment and prognostic stratification of initially diagnosed 
PGI-DLBCL. However, since our study was conducted 
with a small sample in a single center, the limited number 
of patients and lack of ethnic diversity may lead to biased 
results and weaken credibility. Therefore, multi-center, 
large sample and long-term follow-up studies are needed for 
model validation and optimization in the future.

Table 1  Univariate and multivariate analysis of OS in training cohort of primary Gastrointestinal diffuse large B-cell lymphoma patients
Parameters Univariate analysis Multivariate analysis

B SE HR (95% CI) P-value B SE HR (95% CI) P-value
Sex Female vs. Male 0.569 0.508 0.565 (0.209, 1.530) 0.261
Age, years ≥ 60 vs. < 60 1.088 0.493 2.982 (1.134, 7.884) 0.027 0.331 0.587 1.414 (0.448, 4.465) 0.555
Primary site Gastric vs. Intestinal 0.177 0.297 1.197 (0.669, 2.145) 0.545
Lugano stage IE, IIE vs. IIIE, IV 0.719 0.493 2.047 (0.779, 5.382) 0.146
Hb, g/L ≥ 115 vs. < 115 − 0.010 0.508 0.992 (0.367, 2.683) 0.987
PLT, 109/L > 125 vs. ≤ 125 − 0.648 1.036 0.526 (0.069, 4.006) 0.535
PA, mg/L ≥ 180 vs. < 180 − 1.353 0.641 0.256 (0.073, 0.899) 0.034 − 1.011 0.847 0.364 (0.069, 1.892) 0.228
Alb, g/L ≥ 40 vs. < 40 − 0.245 0.585 0.780 (0.248, 2.452) 0.671
GLO, g/L ≥ 20 vs. < 20 − 0.499 1.034 0.610 (0.080, 4.627) 0.632
AGR ≥ 1.2 vs. < 1.2 − 0.001 0.766 0.995 (0.222, 4.440) 0.994
HDL-C, mmol/L ≥ 1.04 vs. < 1.04 − 1.118 0.572 0.327 (0.107, 1.003) 0.051
LDL-C, mmol/L > 3.37 vs. ≤ 3.37 − 0.723 0.761 0.485 (0.109, 2.156) 0.342
TG, mmol/L > 1.7 vs. ≤ 1.7 0.089 0.761 1.095 (0.246, 4.861) 0.905
APOA, g/L ≥ 1 vs. < 1 − 1.808 0.659 0.161 (0.044, 0.587) 0.006 − 1.496 0.696 0.224 (0.056, 0.860) 0.030
APOB, g/L > 1.1 vs. ≤ 1.1 0.118 0.764 1.131 (0.253, 5.058) 0.872
APOABR ≥ 1 vs. < 1 0.326 0.597 1.024 (0.269, 3.908) 0.972
LPa, g/L > 0.3 vs. ≤ 0.3 0.452 0.613 1.712 (0.515, 5.690) 0.380
GA% > 16 vs. ≤ 16 − 0.098 1.039 1.002 (0.131, 7.667) 0.998
GLU, mmol/L > 6.1 vs. ≤ 6.1 − 0.901 1.033 0.404 (0.053, 3.062) 0.381
CRP, mg/L > 10 vs. ≤ 10 0.735 0.579 2.088 (0.671, 6.499) 0.204
LDH, U/L > 250 vs. ≤ 250 0.159 0.549 1.173 (0.400, 3.437) 0.771
Abbreviations: AGR, albumin to globulin ratio; Alb, albumin; APOA, apolipoprotein A; APOB, apolipoprotein B; APOABR, apolipoprotein 
A to apolipoprotein B ratio; CRP, C-reactive protein; GA, glycated albumin; GLO, globulin; GLU, glucose; Hb, hemoglobin; HDL-C, high-
density lipoprotein cholesterol; HR, hazard ratio; LDH, lactate dehydrogenase; LDL-C, low-density lipoprotein cholesterol; LPa, lipoprotein a; 
PA, prealbumin; PLT, platelets; SE, standard error; TG, triglycerides
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Several studies have shown that amino acid metabolism pro-
moted the expression of immune checkpoints and enhanced 
the immunosuppressive effects of Tregs, thereby facilitat-
ing immune escape of tumors. For example, limiting glu-
tamine intake in the body led to upregulation of PD-L1 in 
lung cancer and colon cancer, which inhibited T cell activ-
ity [52]. Conversely, restoring glutamine intake upregulated 
PD-L1 expression and restored it to normal levels in renal 
cancer [53]. In addition, indoleamine 2, 3-dioxyge-nase 

Metabolic reprogramming has been identified as an 
important feature of immune cell activation, and immune 
cells have different metabolic properties that affect their 
immune function [47–49]. As CD8+ T cells have been con-
sidered to be important immune cells for killing tumor cells 
[50], glucose deprivation in gastric cancer cells caused 
CD8+ T cells to exhibit functional exhaustion with impaired 
proliferation, cytokine production and metabolism [51], 
leading to the inhibition of killing ability of CD8+ T cells. 

Fig. 6  A-IPI score exhibited 
favorable efficacy for predicting 
prognosis of PGI-DLBCL patients 
in training and validation cohorts. 
(A-B) Kaplan-Meier curves of OS 
and PFS showed that PGI-DLBCL 
patients in high score group had 
worse survival in training cohort 
(n = 87). (C) Decision curve 
analysis showed that A-IPI score 
was more useful than NCCN-IPI 
score for clinical decision making 
in training cohort due to higher 
net benefit. (D) ROC curves 
showed that the A-IPI score had 
better prognostic ability than the 
NCCN-IPI score for predicting OS 
in training cohort. (E) The 1-, 3-, 
and 5-year time-dependent ROC 
showed that the A-IPI score had 
higher discriminatory power than 
the NCCN-IPI score for predict-
ing OS in training cohort. (F-G) 
Kaplan-Meier curves of OS and 
PFS showed that PGI-DLBCL 
patients in high score group had 
worse survival in validation cohort. 
(H) ROC curves showed that the 
A-IPI score model had better 
prognostic ability than the NCCN-
IPI score for predicting OS in 
validation cohort. (I-J) The 1-, 3-, 
and 5-year time-dependent ROC 
revealed that the A-IPI score had 
higher discriminatory power than 
the NCCN-IPI for predicting OS 
and PFS in validation cohort
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Fig. 7  High expression of 
ALDH1B1 was associated with 
worse prognosis in PGI-DLBCL. 
(A) Immunohistochemistry 
showed that ALDH1B1 was highly 
expressed in PGI-DLBCL (n = 57) 
compared with reactive hyper-
plastic tissues (n = 30). (B) Forest 
plot based on univariate analysis 
showed that ALDH1B1 was associ-
ated with the OS of PGI-DLBCL 
(n = 57). (C-D) Survival analysis 
showed that PGI-DLBCL patients 
in high ALDH1B1 expression 
group had worse prognosis (n = 57)
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that metabolic reprogramming affected immune status in 
the tumor microenvironment and differential sensitivity to 
immunotherapy in DLBCL patients. The above results pro-
vided guidance for the immunotherapy of tumor patients in 
the clinic, but a large number of studies are still needed to 
explore the specific mechanisms in the future.

The gastrointestinal tract is the site of direct absorp-
tion of many substances such as glucose, amino acids, 
and fatty acids, and the development of PGI-DLBCL may 
interfere with the absorption and subsequent metabolism 
of nutrients in tumor patients. Currently, the treatment of 
PGI-DLBCL tends to be the combination of chemotherapy, 

(IDO), a key enzyme in the tryptophan metabolic pathway, 
upregulated the expression of PD-L1 through activation 
of Tregs and enhanced the immunosuppressive effects of 
Tregs through PD-1/PD-L1 interaction [54, 55]. A study of 
gliomas found that patients with high expression of fatty 
acid metabolism-related genes also had high expression 
of CTLA-4 and PD-1, and were sensitive to anti-CTLA-4 
and anti-PD-1/PD-L1 immunotherapy [56]. In our study, 
we found that there were significant differences in immune 
cell infiltration, immune scores, and expression levels of 
immune checkpoints between the two groups classified by 
metabolism-related gene prognostic signature, suggesting 

Fig. 8  ALDH1B1 inhibitor IGUANA-1 inhibited cell proliferation and 
exerted synergistic effect with PI3K inhibitor duvelisib in DLBCL. 
(A-B) IGUANA-1 decreased cell proliferation in DLBCL in time- and 

concentration-dependent manner. (C-D) IGUANA-1 exerted synergis-
tic anti-tumor effect with PI3K inhibitor duvelisib in DLBCL
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survival, suggesting that ALDH1B1 was closely associated 
with the development of PGI-DLBCL. Cell proliferation 
assays showed that ALDH1B1 inhibitor IGUANA-1 sup-
pressed the growth of DLBCL cells, indicating the poten-
tial of ALDH1B1 as drug target in DLBCL treatment. Drug 
sensitivity analysis revealed that the expression level of 
ALDH1B1 was closely associated with drug sensitivity in 
PGI-DLBCL patients, and ALDH1B1 inhibitor IGUANA-1 
exerted synergistic anti-tumor effects with PI3K inhibi-
tor duvelisib. Also, we performed enrichment analysis of 
DEGs in patients with high and low ALDH1B1 expression. 
It was found that ALDH1B1 may promote tumor progres-
sion in PGI-DLBCL patients by regulating PI3K-Akt, Wnt, 
and other signaling pathways. These results suggested that 
ALDH1B1 might serve as a potential prognostic marker and 
drug target for PGI-DLBCL. Moreover, the expression level 
of ALDH1B1 might provide medication guidance for the 
pharmacological treatment of PGI-DLBCL patients, which 
needs to be explored in further studies.

In addition, our study has some limitations. Firstly, our 
analysis based on the GEO database lacked information on 
survival in PGI-DLBCL, which may lead to bias in our con-
structed metabolism-related genes prognostic signature in 
assessing the prognosis of PGI-DLBCL. Secondly, the sam-
ple of this study was derived from a single center and the 
sample size was limiting, which may lead to biased results. 
Thirdly, our study lacked an external validation cohort for 
the model. Therefore, we need to conduct multicenter and 
large-sample studies to validate the model and deeply inves-
tigate the mechanism of metabolism-related genes, provid-
ing more effective strategies for precise risk stratification 
and targeted therapy in PGI-DLBCL patients.

In conclusion, bioinformatic analysis explored the poten-
tial mechanisms by which metabolism-related genes affect 
the prognosis of DLBCL, and established prognostic risk 
stratification based on metabolism-related genes, which 
provided a theoretical basis for future research. Addition-
ally, A-IPI score was found to be an accessible and effec-
tive prognostic model for PGI-DLBCL patients. Compared 
with the NCCN-IPI, A-IPI score showed better assessment 
results, providing a strong basis for risk stratification and 
prognostic assessment of patients with initial diagnosis of 
PGI-DLBCL, and guiding the early treatment of patients. 
Metabolism-related ALDH1B1 was identified as poten-
tial prognostic biomarker and drug target in PGI-DLBCL, 
which provided reference value for clinical treatment of 
PGI-DLBCL. Collectively, our findings revealed the cor-
relation between metabolism-related factors and prognosis 
in PGI-DLBCL and emphasized the significance of metab-
olism-related genes, especially ALDH1B1, in the clinical 
management of PGI-DLBCL.

supplemented by radiotherapy or surgery. Although the 
majority of PGI-DLBCL patients are sensitive to chemo-
therapy, some patients still exhibit disease recurrence and 
drug resistance. Furthermore, the lack of specific clinical 
manifestations and the complexity of pathological features 
of PGI-DLBCL make it difficult to diagnose and treat early 
[57, 58]. Therefore, identifying effective prognostic factors 
can help to recognize high-risk patients early, develop indi-
vidualized treatment strategies and improve the prognosis 
of PGI-DLBCL patients. In this study, we identified metab-
olism-related prognostic factors, constructed a metabolism-
related prognostic model A-IPI score, and demonstrated its 
advantages in risk stratification and prognostic assessment 
of PGI-DLBCL by ROC curves, DCA and time-dependent 
ROC curves. Furthermore, we demonstrated that ALDH1B1 
was a promising biomarker guiding prognostic prediction 
and drug sensitivity in PGI-DLBCL. In summary, these 
results showed that the novel prognostic model was effec-
tive in the prognostic assessment of PGI-DLBCL patients. 
The exploration of the potential prognostic biomarkers and 
molecular mechanisms of metabolism-related prognostic 
genes in PGI-DLBCL could provide a guideline for future 
multicenter large-sample studies.

Acetaldehyde dehydrogenase (ALDH) is a family of 
NAD(P)+-dependent enzymes that oxidizes endogenous 
and exogenous aldehydes to the corresponding carboxylic 
acids. Increased ALDH activity has been found in mul-
tiple myeloma, myeloid leukemia, and many solid cancers 
[59, 60]. ALDH1B1, a member of the ALDH superfamily, 
has been identified as an important mitochondrial enzyme 
for ethanol degradation in vivo [61]. Current studies have 
found that ALDH1B1 is closely associated with the devel-
opment of diabetes and different kinds of tumors [62–65]. 
For example, ALDH1B1 was found to be overexpressed in 
pancreatic cancer cells and associated with tumor-initiating 
cells in pancreatic ductal adenocarcinoma [64]. Moreover, 
ALDH1B1 affected the progression of colorectal tumors 
and could be used as a potential prognostic biomarker for 
patients [63, 66]. In addition, ALDH1B1 positively regu-
lated Wnt/β-catenin, Notch and PI3K/Akt signaling path-
ways to promote colon tumor progression [29]. Updated 
research found that colorectal tumor could be targeted 
by small molecule inhibitors of ALDH1B1 [67]. A study 
on lung adenocarcinoma found that ALDH1B1 pro-
moted EMT by increasing the levels of SNAI1/2, ZEB2, 
and TWIST1, consequently decreasing the expression of 
CDH1 (E-calmodulin), which promoted the progression 
of lung adenocarcinoma cells [28]. In our study, bioinfor-
matics analysis and immunohistochemistry revealed that 
ALDH1B1 was highly expressed in PGI-DLBCL compared 
to reactive hyperplastic lymph node tissues, and the high 
ALDH1B1 expression group of PGI-DLBCL had worse 
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