
RESEARCH ARTICLE Open Access

Speeding up tandem mass spectrometry-based
database searching by longest common prefix
Chen Zhou1,2,3, Hao Chi1,2,3, Le-Heng Wang1,2, You Li1,2, Yan-Jie Wu1,2,3, Yan Fu1,2, Rui-Xiang Sun1,2, Si-Min He1,2*

Abstract

Background: Tandem mass spectrometry-based database searching has become an important technology for
peptide and protein identification. One of the key challenges in database searching is the remarkable increase in
computational demand, brought about by the expansion of protein databases, semi- or non-specific enzymatic
digestion, post-translational modifications and other factors. Some software tools choose peptide indexing to
accelerate processing. However, peptide indexing requires a large amount of time and space for construction,
especially for the non-specific digestion. Additionally, it is not flexible to use.

Results: We developed an algorithm based on the longest common prefix (ABLCP) to efficiently organize a protein
sequence database. The longest common prefix is a data structure that is always coupled to the suffix array. It
eliminates redundant candidate peptides in databases and reduces the corresponding peptide-spectrum matching
times, thereby decreasing the identification time. This algorithm is based on the property of the longest common
prefix. Even enzymatic digestion poses a challenge to this property, but some adjustments can be made to this
algorithm to ensure that no candidate peptides are omitted. Compared with peptide indexing, ABLCP requires
much less time and space for construction and is subject to fewer restrictions.

Conclusions: The ABLCP algorithm can help to improve data analysis efficiency. A software tool implementing this
algorithm is available at http://pfind.ict.ac.cn/pfind2dot5/index.htm

Background
Database searching has become the key technology for
shotgun proteomics. Many algorithms and software
tools exist for such searches, including SEQUEST [1],
MASCOT [2], X!Tandem [3], OMSSA [4], Phenyx [5],
PepSplice [6], Crux [7] and pFind [8-10]. However, the
existing tools are not quick enough, for the following
reasons:
First, the size of protein databases is increasing signifi-

cantly, resulting in many peptides. In addition, semi- or
non-specific digestion generates 10 to 100 times more
peptides than full-specific digestion. For example, the
size of the all-species NCBInr protein sequence database
was 3.7 GB in December 2008 and increased to 5.7 GB
in June 2010. The number of non-redundant peptides
generated by full-specific digestion with up to two
missed cleavage sites in the IPI-Human V3.65 database

[11] is 3549956, and it increases 170-fold to 626871441
for non-specific digestion.
Second, identification of peptides with chemical and

post translational modifications requires much more
time. The number of peptides in the IPI-Human data-
base generated by full-specific digestion with up to two
missed cleavage sites increases 37.9-fold from 3549956
to 134613491 in the case of up to three variable post
translational modifications of oxidation (methionine)
and phosphorylation (serine, threonine and tyrosine).
Third, with the great progress of liquid chromatogra-

phy and mass spectrometry, the generation rate of tan-
dem mass spectra is increasing remarkably. A mass
spectrometer such as Thermo Electron (Waltham, MA)
LTQ generates about five tandem mass spectra per sec-
ond and Velos generates more than ten tandem mass
spectra per second. Although the performance of com-
puting hardware is improving steadily, it cannot catch
up with the progress in the generation rate of tandem
mass spectra.

* Correspondence: smhe@ict.ac.cn
1Key Lab of Intelligent Information Processing, Chinese Academy of Sciences,
Beijing 100190, China
Full list of author information is available at the end of the article

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

© 2010 Zhou et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://pfind.ict.ac.cn/pfind2dot5/index.htm
mailto:smhe@ict.ac.cn
http://creativecommons.org/licenses/by/2.0

To address these problems, some software tools accel-
erate processing by efficiently organizing the protein
sequence database. SEQUEST [1], Crux [7] and pFind
[10] use peptide indexing to accelerate tandem mass
spectra identification. Tang [12] uses a peptide and b/y
ions index. Lu and Chen use a suffix tree for fast tag-
based searching[13]. Inspect uses a fast trie-based search
for scanning of the database with sequence tags [14].
Edwards and Lippert proposed that elimination of redun-
dant candidate peptides can decrease the identification
time because it decreases the corresponding peptide-
spectrum matching times. In 2004, Edwards applied a
compressed sequencing-by-hybridization graph for
sequence database compression for peptide identification
[15] and used it for expressed sequence tag searching
[16]. This approach compresses the sequence and elimi-
nates most but not all of the peptide redundancy. In
2002, Edwards and Lippert implemented the Simulta-
neous Linear Scan and Suffix Tree Traversal algorithm
for peptide candidate generation[17]. They also proposed
the use of the suffix array as a compact representation of
a sequence database that can eliminate candidate redun-
dancy. However, there are no details in their paper about
how the suffix array is used and how well it performs,
and they did not implement it in any search engines.
Based on our daily experience of research and use of

search engines, we propose that four aspects are impor-
tant for choosing a data structure. First, it should
improve the identification time efficiency, because that
is the aim of using it. Second, it should not require
much time and space for construction. Third, it should
not affect accuracy. Fourth, it should be flexible to use,
as flexibility is important for a search engine. For exam-
ple, Mascot creates binary formats for ease of input, but
it does not perform formal indexing, because a new
index would be required for each combination of search
parameters [2].
Two approaches to data structure organization should

be mentioned. The first is to not use any special data
structure. When identification starts, proteins in the
database are digested online individually to generate all
peptides. Then every peptide is matched with the spec-
tra within the mass tolerance window and a peptide-
spectrum matching score is given. This method does
not require time and space to construct a data structure
beforehand, but it cannot speed up the identification.
The second approach is to use a peptide index [18].
Proteins are digested offline and the generated peptides
are stored on a disk. For every peptide, its mass, posi-
tion, length, corresponding proteins and other useful
information are recorded. All peptides are sorted and
the redundant peptides are eliminated. Any search
engine will only need to read the peptide index from
the disk to obtain the non-redundant peptides and

match them with the spectra. Many search engines
implement this data structure to speed up identification,
such as SEQUEST [1], Crux [7] and pFind [10]. These
search engines use peptide indexing to eliminate redun-
dant peptides and accelerating query response time. The
approach of peptide indexing can speed up the identifi-
cation but it requires much time and space for con-
struction. Furthermore, the time and space requirement
can be 100-fold greater for non-specific digestion. In
addition, when the search parameters, such as the maxi-
mum number of missed cleavage sites, the maximum
length or the maximum mass of putative peptides are
changed, a new index must be constructed.
The advantages and the disadvantages of these two

approaches are obvious. In this study, we propose ABLCP,
an algorithm based on the longest common prefix, to
organize the database efficiently to retain the advantages
and avoid the drawbacks of these approaches.
First, ABLCP sharply improves the identification time.

Many peptides appear in more than one protein because
there are many homologous proteins in a protein sequence
database. The peptide redundancy ratios of some databases
are very high. Removal of the redundant peptides can
reduce the corresponding peptide-spectrum matching times
and thereby decrease the identification time. Compared to
an approach that does not use a special data structure, the
experiments presented in Results section show that ABLCP
can decrease the identification time by about 50%.
Second, compared to the approach using peptide

indexing, ABLCP requires less time and space for con-
struction. The construction time for ABLCP is very
short: it only needs tens of seconds for normal databases
such as IPI-Human and several minutes for large data-
bases such as Uniprot/SwissProt. The additional space
needed for ABLCP is equivalent the original database
space, which is only half the space needed for full-speci-
fic digestion peptide indexing with pFind. The additional
time and space for peptide indexing increases remark-
ably for semi or non-specific digestion, sometimes up to
100-fold over that required for full-specific digestion.
However, with ABLCP, the non-specific and full-specific
digestions require the same time and space.
Third, ABLCP does not cause any accuracy loss.

ABLCP eliminates the redundant candidate peptides by
the property of longest common prefix. For database
searching, the enzymatic digestion poses a challenge to
this algorithm because if the property of longest com-
mon prefix is used directly, then some candidate pep-
tides may be omitted. However, some adjustments can
be made to this algorithm to ensure no candidate pep-
tides are omitted, thus this algorithm can increase the
speed without a loss of accuracy.
Finally, ABLCP is flexible to use. ABLCP uses online

digestion, thus it is subject to fewer restrictions. When

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 2 of 11

the digestion parameters are changed, such as the maxi-
mum number of missed cleavage sites or the maximum
length or mass of putative peptides, the peptide indexing
needs to be constructed again, but this is not necessary
for ABLCP. ABLCP is more flexible and is only depen-
dent on the database and enzyme.

Results
In this study, all of the experiments were performed on
a Windows XP machine with 4 GB RAM and 2 Intel(R)
Xeon(R) CPUs, each of which had 2 1.60 GHz cores. All
of the programs were implemented in C/C++ language.
Unless otherwise specified, tryptic digestion was
assumed, and for site-specific digestion, up to two
missed cleavage sites were assumed.
In the METHODS section, we will show how this

algorithm ensures that no candidate peptides are
omitted and how it performs online digestion. In this
section, we evaluate this algorithm through two sets of
tests. In the first test, we compare the peptide and pro-
tein identification time among the following three work-
flows: workflow-1, with no special data structure;
workflow-2, with peptide indexing; workflow-3, with
ABLCP. In the second test, we compare the time and
space cost between ABLCP and peptide indexing.
Workflow-1 and workflow-2, implemented in pFind,

were compared with workflow-3, using ABLCP. In our
previous studies [18], the efficiency of peptide indexing
in pFind was compared with SEQUEST, Mascot and X!
tandem. pFind requires much less time and space than
SEQUEST for construction of the peptide indexing and
requires less time than Mascot and X!Tandem for pep-
tide and protein identification. The identification accu-
racy of pFind, Mascot and SEQUEST was investigated
in one of our previous studies [10].

Identification time
Two experiments were performed that tested two data
sets, the ISB data set [19] and mouse liver data set [20],
from cited publications. In the ISB data set, all of the
ten raw files of the LTQ Data on Mix 1 were chosen to
be searched against the 18 proteins merged with the
Uniprot/SwissProt V57.9 protein sequence database. In
the mouse liver data set, two raw files of pTyr peptides
were chosen to be searched against the IPI-Mouse
V3.72 protein sequence database [11].
Experiment 1 on the ISB data set used full-specific

enzymatic digestion and Experiment 2 on the mouse
liver data set used non-specific digestion. The searching
parameters are shown in Table 1 and search time is
shown in Table 2. The three workflows are used in each
group. These experiments show the comparison of the
peptide and protein identification time cost.
From Table 2, in Exp 1, use of peptide index or

ABLCP can save around 40% of the identification time
versus not use a special data structure, with the time
decreasing from 2.5 days to 1.5 days. In Exp 2, the
workflow with ABLCP saves around 50% of the identifi-
cation time, and the workflow with peptide indexing
saves around 46% of the identification time. The time is
reduced from 5.7 days to 2.9 days with ABLCP and to
3.1 days with peptide indexing. The workflow with pep-
tide indexing is not as efficient as workflow with
ABLCP, because peptide indexing spends much time on
reading the indexing files.
These two approaches eliminate redundant candidate

peptides in protein sequence databases and reduce the
corresponding peptide-spectrum matching times,
thereby decreasing the identification time. The redun-
dancy ratio of the two databases is shown in Table 3.
For these two large databases, one has a redundancy

Table 1 The parameters of database searching experiments

Instrument LTQ

Spectra 107666 spectra extracted from ten raw files

Exp1 Database 18 purified proteins with the Uniprot/SwissProt protein sequence database(1020188 protein sequences, target + reversed), total
around 460 MB

Digestion
way

Site-specific digestion

Tolerance Precursor: +/- 3Da; Fragment: +/- 0.5 Da

Modifications Fixed: Carbamidomethylation (C) Variable: Oxidation (M)

Instrument LTQ-FT or LTQ-Orbitrap

Spectra 13816 spectra extracted from two raw files

Database IPI-Mouse protein sequence database(113914 protein sequences, target + reversed), total around 66 MB

Exp2 Digestion
way

Non-specific digestion

Tolerance Precursor: +/- 12 ppm; Fragment: +/- 0.5 Da

Modifications Fixed: Carbamidomethylation (C) Variable: Phosphorylation (S, T, Y) Oxidation (M),

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 3 of 11

ratio around 55% and the other around 33%. Removal of
the redundant candidate peptides can decrease the iden-
tification time in these large databases.
Workflow-1 is slow but without additional storage

space or time cost for construction. Both workflow-2
and workflow-3 can speed up the identification, but
have some additional storage space and time cost.
Because reduction of the cost is important for identifica-
tion efficiency, we should compare the storage space
and time cost to choose a better data structure for
identification.

Storage space and time cost for construction
Three aspects are evaluated to compare the cost
between ABLCP and peptide indexing. The first is the
additional storage space needed for the data structure.
The second is the time needed to construct the ABLCP
or peptide indexing. The third is the time needed for
identification using the ABLCP or peptide indexing.
These aspects were tested in the IPI-Human V3.65 and
Uniprot/SwissProt V56.2 protein sequence databases for
full-, semi- and non-specific digestion. The peptide
length range is from 6 to 60 amino acids.
The first aspect that we compared is the additional sto-

rage space for the data structure. Table 4 shows the sto-
rage space needed for ABLCP and peptide indexing in
two databases for full-, semi- and non-specific digestion.
For peptide indexing, it is necessary to record informa-
tion such as the mass, the position, the length and other
information of every candidate peptide. For ABLCP,
because the length of a peptide is limited and each

peptide usually contains no more than 100 amino acids,
implying the length of a string representing a peptide
sequence is not longer than 100, only one byte is needed
for each LCP. Table 4 shows that peptide indexing needs
more storage space than ABLCP, particularly with non-
specific digestion. For full-specific digestion, ABLCP
requires only half of the additional storage space of pep-
tide indexing. For non-specific digestion, ABLCP requires
the same additional storage space as site-specific diges-
tion, but this additional storage space increases signifi-
cantly (up to 100-fold) for peptide indexing. In the
Uniprot/SwissProt V56.2 database, peptide indexing
requires 424 MB for site-specific digestion and 65122
MB for non-specific digestion. Table 4 shows that the
additional storage space required for ABLCP is only
about 1/320 of that of peptide indexing for the IPI-
Human database and about 1/470 of that of peptide
indexing for the Uniprot/SwissProt database. Non-speci-
fic digestion could be used to match peptides when the
enzyme specificity is unknown, such as with endogenous
peptides.
The second aspect that we compared is the time

needed to construct ABLCP or peptide indexing. Table
5 shows the time needed to construct ABLCP and pep-
tide indexing for two databases for full-, semi- and non-
specific digestion. In the large database, the non-specific
digestion costs several hours for peptide indexing, but
the time spent for ABLCP is no more than several min-
utes, and the data show that ABLCP is 100 times
quicker than the peptide indexing.
The third aspect that we compared is the time

required to use ABLCP or peptide indexing for

Table 2 Peptide and protein identification time for the
three workflows

Workflow Experiment 1 Experiment 2

Workflow-1 3679 8278

Workflow-2 2236 4430

Workflow-3 2228 4111

Workflow-1, with no special data structure; workflow-2, with peptide indexing;

workflow-3, with ABLCP. The unit of time is minutes.

Table 3 The peptide redundancy ratio of two protein
sequence databases

Database Peptide
Number

Full-
specific

Semi-
specific

Non-
specific

Non-redundant 3549956 55908454 626871441

Human Redundant 8022636 128308391 1401160777

Redundancy 55.7% 56.4% 55.2%

Non-redundant 24915278 395305609 4525189544

SwissProt Redundant 37646081 601652577 6554527058

Redundancy 33.8% 34.2% 31.0%

The peptide redundancy ratio of the IPI-Human V3.65 and Uniprot/SwissProt
V56.2 protein sequence databases. The length of the peptides is limited from
6 to 60 amino acids.

Table 4 The additional storage space needed for ABLCP
and peptide indexing

Database Workflow Full-specific Semi-specific Non-specific

Human ABLCP 30 60 30

Peptide Index 67 939 9799

SwissProt ABLCP 137 274 137

Peptide Index 424 6081 65122

The experiments were performed on the IPI-Human V3.65 and Uniprot/
SwissProt V56.2 protein sequence databases for full-, semi- and non-specific
digestion. The unit of storage space is MB.

Table 5 The time needed to construct ABLCP and peptide
indexing

Database Workflow Full-specific Semi-specific Non-specific

Human ABLCP 41 41 41

Peptide Index 50 603 6475

SwissProt ABLCP 196 196 196

Peptide Index 242 2919 24828

The experiments were performed on the IPI-Human V3.65 and Uniprot/
SwissProt V56.2 protein sequence databases for full-, semi- and non-specific
digestion. The unit of time is seconds.

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 4 of 11

identification. For peptide indexing, this time is spent on
reading the index and sequence files from a disk. For
ABLCP, the time is spent on reading files from a disk
and online digestion. Reduction of this time can reduce
the identification time and improve the analysis effi-
ciency. Sometimes, especially for high-accuracy instru-
ments, peptide indexing can skip some peptides with
various meta-data, sequence, or mass properties, so this
time may be short for peptide index. For most other
situations, this time is proportional to the peptide num-
ber. Table 6 shows the time required to use ABLCP and
peptide indexing for identification in two databases for
full-, semi- and non-specific digestion. The data show
that ABLCP is much quicker than the peptide indexing
and that the time required is less than 20% of peptide
indexing on average.
These tables show that the construction time and

query time required to use special data structures is
low, especially for ABLCP, which requires no more than
several minutes. The additional storage space needed for
ABLCP is small. However, these data structures can
decrease the identification time remarkably, as shown in
Table 2. Thus, it is worthwhile to use these data struc-
tures. In terms of storage space, construction time and
query time, ABLCP is much more efficient than peptide
indexing, especially for large databases and non-specific
digestion. The cost for peptide indexing in a large data-
base with non-specific digestion is barely acceptable for
a normal personal computer, because this cost can even
be tens of GB and several hours. But this cost is not a
problem for ABLCP, as the storage space and time cost
for ABLCP is much less than that of peptide indexing.

Discussion
ABLCP is lossless and independent of scoring model, so
it can also be designed to be used in other search
engines. In the future, we intend to transplant our algo-
rithm to a parallel environment for searching. Searching
in parallel is another way to speed up identification. For
ABLCP, because every character and LCP position is
independent after construction, it is only necessary to
divide the protein coupled with LCP into several parts
for searching in parallel.

Conclusions
This paper explores an algorithm called ABLCP that
organizes protein databases efficiently. This algorithm
eliminates redundant candidate peptides in protein
sequence databases and reduces the time of peptide-
spectrum matching, thereby decreasing the identification
time. We compare ABLCP with two other workflows:
workflow-1, with no special data structure, and work-
flow-2, with peptide indexing. Compared to workflow-1,
ABLCP can decrease identification time by about 50%.
Compared to workflow-2, ABLCP is proved to be more
efficient in terms of time and storage space required.
This algorithm is based on the property of LCP with
some adjustments made for site-specific digestion. In
addition, ABLCP is more flexible. ABLCP uses online
digestion, and thus, it is subject to fewer restrictions.

Methods
Basic Notion
Basic notions
A string T = T [0...n) =t0t1...tn-1 is the input to the suffix
array
construction algorithm. In this paper, the input string

T is the connection of all of the protein sequences
represented by strings in FASTA database files, and a
character ‘$’ is appended to each protein sequence string
to separate them.
For i Î[0, n), Suffix[i] denotes T [i, n) = titi+1...tn-1. An

array SA[0...n) denotes the ranked suffixes, SA[j] = i if
and only if Suffix[i] is the jth suffix of T in the ascending
lexicographical order. Another array Rank [0...n) is used
for the inverse SA. Rank[i] = j if and only if SA[j] = i, and
it means that Suffix[i] is ranked jth in the ascending
lexicographical order of all suffixes.
LCP denotes the longest common prefix of two adja-

cent suffixes, which are in the ascending lexicographical
order. For i Î[0, n), LCP [i] denotes the length of the
longest common prefix of adjacent suffixes Suffix[SA
[Rank[i]-1]] and Suffix[i]. Define lcp (y, z) as the length
of longest common prefix of strings y and z, LCP[i] =
lcp(T[SA[Rank[i]-1]...n), T[i...n)). Define LCP[SA 0] to be
zero. An example of the corresponding suffix array and
LCP for an input text string is shown in Figure 1.
Suffix array
As surveyed by Puglisi et al in 2007 [21], the suffix array
was proposed in 1990 [22]. This algorithm is used as an
alternative to the suffix tree [23] but with higher mem-
ory space efficiency. When the suffix array was first pro-
posed, the prefix-doubling construction algorithm was
used with time complexity O(nlogn), where n is the size
of the text, such as in the algorithms by Manber and
Myers(MM) [22] and by Larsson and Sadakane(LS) [24].
Since then, many other types of algorithms have been

Table 6 The time needed to read peptides from the disk

Database Workflow Full-specific Semi-specific Non-specific

Human ABLCP 3 108 144

Peptide Index 20 317 3588

SwissProt ABLCP 16 441 1032

Peptide Index 144 2301 25283

The time needed to read peptides from the disk for peptide indexing or
online digestion for ABLCP. The experiments were performed on the IPI-
Human V3.65 and Uniprot/SwissProt V56.2 protein sequence databases for
full-, semi- and non-specific digestion. The unit of time is seconds.

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 5 of 11

proposed, such as recursive algorithms, induced algo-
rithms and hybrid algorithms. Some of them have O(n)
time complexity, such as the algorithm DC3 [25]. Other
algorithms have higher time complexity in the worst
case but they perform well in practice, such as the
induced algorithms by Manzini and Ferragina(MF) [26]
and by Maniscalco and Puglisi(MP) [27]. Furthermore,
these algorithms require less memory. For suffix array
construction algorithms, minimal asymptotic time com-
plexity is preferable, and low practical time cost and
high memory space efficiency are crucial. In this paper,
we chose four different types of suffix array construction
algorithms, i.e., LS [24], DC3 [25], MF [26] and MP [27]
to test their performance in protein sequence databases.
Because the alphabet of protein databases is small (just
twenty characters), we needed to determine which algo-
rithm was most suitable. The program of LS was imple-
mented by our group and the other programs were
downloaded from the respective papers or from the
websites listed in the papers. Table 7 shows the con-
struction time of the four construction algorithms. We
choose the MP [27] algorithm for implementation in the
search engine pFind for further experiments because it

was the quickest among the four algorithms in protein
sequence databases and its memory space efficiency is
sufficient. The main idea of the MP algorithm is to
break the suffixes into groups, assigning ranks to the
suffixes in each group in lexicographical order and then
using these ranks to subsequently speed up the assign-
ment of ranks to other suffixes. When the algorithm
completes, every suffix has been assigned a unique lexi-
cographic rank, enabling the suffix array to be
computed.
LCP
The most important concept used in this paper is the
LCP. The LCP guarantees that there are no redundant
candidate peptides at the time of online generation. The
LCP is induced from the suffix array. The first O(n)
time complexity LCP construction algorithm was pro-
posed by Kasai et al in 2001 [28]. This algorithm is sim-
ple and efficient. Many other algorithms with higher
memory space efficiency were subsequently proposed.
For example, Puglisi proposed a space-time tradeoff
algorithm in 2008 [29]. In this paper, we implement
Kasai’s algorithm to induce the LCP.
The LCP guarantees that there are no redundant can-

didate peptides. However, for database searching, the
enzymatic digestion poses a challenge to this algorithm.
If the LCP is used directly, then some candidate pep-
tides may be omitted. Thus, we make some adjustments
to the LCP after it is constructed to accommodate the
enzymatic digestion.

Identification Workflow
In this study, we choose two approaches to compare to
ABLCP, resulting in the following three workflows: work-
flow-1, with no special data structure; workflow-2, with
peptide indexing; and workflow-3, with ABLCP. We
implement these three workflows in pFind to compare
their efficiency. Most processes of the three workflows
are the same. These processes are shown in Figure 2.
The difference among the three workflows is in the

step that converts protein sequences to peptides. In
workflow-1, with no special data structure, protein
sequences in the database are digested online one by one

Figure 1 An example of the corresponding suffix array and
LCP for an input text string. The first row is the input text string
T = T [0...n) = MSQVQVQV$. n is 8 and the index begins with 0. The
second and third rows are the corresponding LCP and suffix array.
Take the value at index 2 to explain the meaning. SA[2] is 6, which
means that the third suffix in the ascending lexicographical order is
the Suffix[6] and this suffix is “QV$”. LCP[2] is 4, which means that
the longest common prefix between the Suffix[2] “QVQVQV$” and
its previous suffix (in the lexicographical order, Suffix[4]"QVQV$”) is 4.

Table 7 The construction time of the four algorithms for
the two databases

IPI-Human Uniprot/SwissProt

Prefix-doubling algorithm LS 290.7 –

Recursive algorithm DC3 109.6 –

Induced algorithm MF 24.3 111.5

Induced algorithm MP 17.9 92.0

The table does not have the time of algorithms LS and DC3 for the Uniprot/
SwissProt V56.2 database, because the two algorithms required too much
memory space and could not be constructed in memory. The unit of time is
seconds.

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 6 of 11

to generate all peptides. In workflow-2, with peptide
indexing, proteins are digested offline and the generated
peptides are stored on disk. For every peptide, its mass,
position, length, corresponding proteins and other useful
information are recorded. All peptides are sorted and the
redundant peptides are eliminated. For any search
engine, it is only necessary to read the peptide index
from the disk to obtain the non-redundant peptides and
match them with spectra. In workflow-3, with ABLCP, in
the process of preprocessing, the suffix array is con-
structed by the MP algorithm [27], and the associated
array LCP is constructed by Kasai’s algorithm [28]. After
that, some adjustments are made to allow LCP to accom-
modate the enzyme. Then the LCP is restored on disk
and the suffix array is discarded. In the process of identi-
fication, the protein sequence database and the LCP are
loaded from disk to memory then digested online. All
three workflows transform the protein sequence database
into a binary form for quick block reading before the step
that converts protein sequences to peptides.
In the following section, we will demonstrate how to

digest the proteins online with ABLCP and prove that
this online protein digestion with ABLCP can comple-
tely eliminate redundant candidate peptides without any
loss of accuracy. The non- and site-specific digestions
are discussed separately. Finally, we will show how to
speed up the online protein digestion and how to per-
form protein inference.

ABLCP workflow
Non-specific digestion
The protein sequences in the databases are expressed as
strings, so the problem of non-specific digestion can be
considered as the problem of obtaining all substrings
from the original string. The pseudo code of generating
all non-redundant substrings from an original string with
ABLCP is illustrated in Algorithm 1: GetAllSubStrings.

Algorithm 1: GetAllSubStrings–generating all sub-
strings from the original string

Input: The original string T , the length of T is n,
the array of LCP

Output: all the substrings subStrings
For i = 0: (n - 1)
For length = (LCP[i] + 1): (n - i)

subSrings.push_back(T[i, i + length))
End

End
One example (the string in Figure 1) of the algo-

rithm GetAllSubStrings is shown in Figure 3.
In the algorithm GetAllSubStrings, for every i Î[0, n),

Suffix[i] generates all of its prefixes from the length of
(LCP[i]+ 1) to the length of this suffix, so Property 1
and Property 2 can be concluded:
Property 1. In the algorithm GetAllSubStrings, if and

only if substring S is prefix of Suffix[i] and the length of
S is larger than LCP[i], S can be generated by Suffix[i].
Property 2
If substring S can be generated by Suffix[i], which

means that LCP[i] is smaller than the length of S, then
Suffix[SA[Rank[i] - 1]] will not contain S as prefix.
All non-redundant substrings have two meanings. The

first is that all of the substrings can be obtained, and
the second is that no two obtained substrings are the
same. We need to prove the following two theorems to
prove that the algorithm GetAllSubStrings can obtain all
non-redundant substrings:
Theorem 1. All of the substrings can be obtained.
Theorem 2. No two obtained substrings are the same.
With Property 1 and Property 2, these two theorems

can be proved. The proofs are shown in Additional file
1. With these two theorems, it is proven that the algo-
rithm GetAllSubStrings generates all non-redundant
substrings.
In practice, some details should be added to the algo-

rithm GetAllSubStrings. For example, the length and the
mass of the peptides are bounded within a small range
due to the limited detection capability of mass spectrome-
try. In addition, in search engines, it is not realistically

Figure 2 Shared processes of the three workflows. Spectra are sorted by their precursor masses and the candidate peptides are obtained
from a protein sequence database. Then all of the spectra within the specified mass tolerance window are found for the candidate peptide, and
each peptide-spectrum match is scored. Evaluation and protein inference occur at the end of the matching and scoring stage.

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 7 of 11

possible to obtain all of the substrings at one time in the
For loop, so the program needs to hold the temporary
variables and obtain substrings one by one.
Site-specific digestion
For site-specific enzymatic digestion, it is slightly more
complex to generate all non-redundant peptides using
the algorithm GetAllSubStrings, because there are some
restrictions at both ends of a peptide. Take C-terminal
full-specific tryptic digestion as an example, and the N-
terminal digestion is the reverse situation of the C-term-
inal. A substring is a legal peptide only if its previous
character is ‘R’ or ‘K’, or if it is at the N-terminal of a
protein. We define the type of suffixes that can generate
legal peptides as SS (Specific Suffixes, the suffix whose
previous character is ‘R’ or ‘K’ or is at the N-terminal of
a protein). Because a substring is a legal peptide only if
it is the prefix of a suffix in SS, so Property 1 does not
comply with the site-specific digestion and the algorithm
GetAllSubStrings cannot generate all non-redundant
site-specific digestion peptides. One example is shown
in the Additional file 2.
With Property 1 and Property 2, the algorithm GetAll-

SubStrings can generate all non-redundant substrings for
non-specific digestion. If Property 1 and Property 2 com-
ply with the site-specific digestion, then the algorithm
GetAllSubStrings can also generate all non-redundant
substrings for site-specific digestion. However, for site-spe-
cific digestion, two problems arise. First, only the suffixes
in SS can generate legal peptides, whereas others cannot
(under the site-specific digestion rule), indicating that not
every substring S, which is the prefix of one suffix Suffix[i]
and whose length is larger than LCP[i], is a legal peptide.
Second, if the first occurrence of a peptide is in a suffix
which is not in SS, the algorithm GetAllSubStrings will
never consider this peptide again in a suffix which is in SS.
However, it actually needs to. This indicates that even the
length of substring S is not larger than LCP[i], substring S
may need to be generated by Suffix[i].
However, two strategies can be proposed to deal with

these problems separately. First, we only consider the
suffixes in SS and discard others. Then, a substring S,
which is a prefix of one suffix Suffix[i] and whose length
is larger than LCP[i], is a legal peptide. Second, we
adjust the LCP to the value between adjacent suffixes in
SS. Then, the suffixes not in SS will not affect the suf-
fixes in SS. Thus, the algorithm GetAllSubStrings will
consider the peptide whose first occurrence is in a suffix
which is not in SS, and Suffix[i] only needs to generate
substrings whose length is larger than LCP[i].
After application of the two strategies, if and only if

substring S is the prefix of Suffix[i] and the length of S
is greater than LCP[i], Suffix[i] needs to generate sub-
string S. Thus, Property 1 complies with the site-specific

digestion. If only the suffixes in SS are considered, then
Property 2 can also be induced by adjusting the LCP.
The implementation of sole considering the suffixes in

SS with discarding of the others is straightforward.
When scanning a suffix, if the suffix’s previous character
is not ‘R’ or ‘K’, then discard this suffix. This means that
in the first For loop of the algorithm GetAllSubStrings,
if T[i -1] is not ‘R’ or ‘K’, then the first For loop can
skip to the next suffix immediately.
The LCP of two suffixes is the minimum of the LCP

of all pairs of adjacent suffixes between them, which
was proven in a previous paper [22]. With the variable
in the section of Basic notions, that is,

lcp Suffix SA x Suffix SA z lcp Suffix SA y
x y z

[] , [] min ([][] []() = −
< ≤

1[[] []{ }, []Suffix SA y (1)

so that steps of the adjustment of LCP can be illu-
strated in Algorithm 2: AdjustLCP.

Algorithm 2: AdjustLCP -The adjustment of LCP for
site-specific digestion

Input: The original string T , the length of T is n,
the array of LCP, SA

Output: The adjusted array LCP
For (i = 0; i <n ; ++i)
{
If Suffix[SA[i]] is in SS
{

For(k = i -1; k > 0; – k)
{
If Suffix[SA[k]] is in SS
break

Else
{

If LCP[SA[k]] <LCP[SA[i]]
LCP[SA[i]] = LCP[SA[k]]

}
}

}
}

After the two strategies are implemented, the algo-
rithm GetAllSubStrings can generate all non-redundant
site-specific digestion. But some other situations exist.
Take trypsin/p (C-terminus of ‘K/R’, unless followed by
‘P’) as an example there are some other restrictions for
digestion besides the restrictions for trypsin cleavage: a
character ‘KR’ followed by ‘P’ cannot be a cleavage site.
Even after the adjustment of LCP by algorithm
AdjustLCP, some peptides may be ignored. The adjust-
ment of LCP for trypsin/p digestion and its proof is
shown in the Additional file 3.
After the adjustment of LCP, retain a substring in the

second For loop of the algorithm GetAllSubStrings if the
character T[i + length - 1] is ‘R’ or ‘K’ and discard it if

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 8 of 11

Figure 3 An example of the algorithm GetAllSubStrings. The original string T is {MSQVQVQV$}, and the LCP is {0, 0, 4, 3, 2, 1, 0, 0, 0}.
Because the ‘$’ does not belong to the protein sequence database, so the ‘$’ is omitted from in the For loop. Take the suffix “VQVQV” as an
example. The corresponding LCP is 3 and this suffix generates substrings at length from 4 (LCP plus one), so this suffix generates two substrings
“VQVQ” and “VQVQV”.

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 9 of 11

not. Additionally, the missed cleavage sites for site-specific
digestion should also be considered. The pseudo code
for generation of all non-redundant substrings for site-
specific digestion is illustrated in Algorithm 3:
GetAllSpecificSubStrings.

Algorithm 3: GetAllSpecificSubStrings–generating all
site-specific substrings from the original string

Input: The original string T , the length of T is n,
the array of LCP adjusted by the algorithm AdjustLCP

Output: all the site-specific substrings subStrings
For i = 0: (n - 1)
{
If T[i - 1] is not ‘R’ or ‘K’
continue

For length = (LCP[i] + 1): (n - i)
{
If T[i + length - 1] is not ‘R’ or ‘K’

continue
Else
{

++MissCleavageSitesNum
If MissCleavageSitesNum >

MaxMissCleavageSitesNum
break

subSrings.push_back(T[i, i + length))
}

}
}

Semi-specific digestion
For semi-specific digestion, all of the non-redundant semi-
specific digestion peptides can be obtained by two parts:
The first part consists of generation of peptides by the
algorithm GetAllSubStrings with LCP not adjusted, but a
peptide is retained only when its first right amino acid is a
cleavage site. The second part consists of generation of
peptides by the algorithm GetAllSpecificSubStrings with
LCP adjusted, but a peptide is retained only when its first
right amino acid is not a cleavage site. The proof that
ABLCP can obtain all non-redundant semi-specific diges-
tion peptides is shown in the Additional file 4.
Speeding up online digestion
To speed up the online protein digestion, we optimized
the implementation. Data are read from the disk by
blocks. The mass value of every amino acid is multiplied
by 10000 for storage and computation in integer form
but still with sufficient accuracy retained. Additionally,
duplicate calculations are removed. The peptides always
have some overlap because there are some missed clea-
vage sites. We record the mass from the beginning of a
protein up to each amino acid and obtain every peptide
mass by deducting the mass from the end position of
the peptide to the beginning. For site-specific digestion,
we record every potential cleavage sites and how many
missed cleavage sites there are from the beginning of

the protein, so that we can quickly locate the potential
cleavage sites. With these optimizations, the online
digestion is very quick. Experiments show that the time
required to read files from the disk and perform online
full-specific enzymatic digestion is only 3 seconds for
the IPI-Human V3.65 protein sequence database and 16
seconds for the Uniprot/SwissProt V56.2 database.
Protein inference
At the end of peptide identification of tandem mass
spectra, the protein sequence, accession number and
description corresponding to each peptide should be
determined. The Aho-Corasick algorithm [30], which
has been mentioned and implemented for scanning a
database with sequence tags in the search engine
InsPecT [14], is chosen to solve this problem. With a
linear pre-processing time, the Aho-Corasick algorithm
can construct all the identified peptides to a trie-
automaton. Then a single pass through the database can
handle all of the identified peptides. The protein
sequence is scanned against the trie-automaton one by
one, and the identified peptides that are contained by
this protein are recorded. The accession number and
description corresponding to the protein sequence can
also be recorded for the identified peptides in this step.
This step is very fast. An experiment tested on 40000
identified spectra with the IPI-Human database (target +
reversed) took less than 20 seconds.

Availability and Requirements
Project name: ABLCP project;
Project home page: http://pfind.ict.ac.cn/pfind2dot5/

index.htm;
Operating system(s): Platform independent;
Programming language: GCC 3.4.5 or higher;
Licence: Please read our licence at http://pfind.ict.ac.

cn/files/License.pdf;
Any restrictions to use by non-academics: Licence

needed.

Additional material

Additional file 1: The proof of Theorem 1 and Theorem 2.

Additional file 2: The example that Property 1 does not comply
with site-specific digestion.

Additional file 3: The adjustment of LCP for trypsin/p cleavage and
its proof.

Additional file 4: The proof that ABLCP can obtain all non-
redundant semi-specific digestion peptides.

Acknowledgements
This work was supported by the National High Technology Research and
Development Program (863) of China under Grant Nos. 2007AA02Z315,
2008AA02Z309, the National Key Basic Research & Development Program

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 10 of 11

http://pfind.ict.ac.cn/pfind2dot5/index.htm
http://pfind.ict.ac.cn/pfind2dot5/index.htm
http://pfind.ict.ac.cn/files/License.pdf
http://pfind.ict.ac.cn/files/License.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-11-577-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-577-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-577-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-577-S4.PDF

(973) of China under Grant Nos. 2002CB713807, 2010CB912701, and the CAS
Knowledge Innovation Program under Grant No. KGGX1-YW,-13.

Author details
1Key Lab of Intelligent Information Processing, Chinese Academy of Sciences,
Beijing 100190, China. 2Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100190, China. 3Graduate University of Chinese
Academy of Sciences, Beijing 100049, China.

Authors’ contributions
CZ, HC and SH designed this study. CZ implemented this algorithm and
performed the experiment. CZ, LW, YL and YW implemented this algorithm
in software. CZ, YF and RS analyzed the data. All authors have read and
approved the final manuscript.

Received: 10 July 2010 Accepted: 25 November 2010
Published: 25 November 2010

References
1. Eng JK, McCormack AL, Yates Iii JR: An approach to correlate tandem

mass spectral data of peptides with amino acid sequences in a protein
database. Journal of the American Society for Mass Spectrometry 1994,
5:976-989.

2. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS: Probability-based protein
identification by searching sequence databases using mass
spectrometry data. Electrophoresis 1999, 20:3551-3567.

3. Craig R, Beavis RC: TANDEM: matching proteins with tandem mass
spectra. BIOINFORMATICS 2004, 20:1466-1467.

4. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X,
Shi W, Bryant SH: Open mass spectrometry search algorithm. Journal of
proteome research 2004, 3:958-964.

5. Colinge J, Masselot A, Giron M, Dessingy T, Magnin J: OLAV: towards high-
throughput tandem mass spectrometry data identification. Proteomics
2003, 3:1454-1463.

6. Roos FF, Jacob R, Grossmann J, Fischer B, Buhmann JM, Gruissem W,
Baginsky S, Widmayer P: PepSplice: cache-efficient search algorithms for
comprehensive identification of tandem mass spectra. Bioinformatics
2007, 23:3016-3023.

7. Park CY, K ll L, Klammer AA, MacCoss MJ, Noble WS: Rapid and accurate
peptide identification from tandem mass spectra. Journal of proteome
research 2008, 7:3022.

8. Fu Y, Yang Q, Sun R, Li D, Zeng R, Ling CX, Gao W: Exploiting the kernel
trick to correlate fragment ions for peptide identification via tandem
mass spectrometry. Bioinformatics 2004, 20:1948-1954.

9. Li D, Fu Y, Sun R, Ling CX, Wei Y, Zhou H, Zeng R, Yang Q, He S, Gao W:
pFind: a novel database-searching software system for automated
peptide and protein identification via tandem mass spectrometry.
Bioinformatics 2005, 21:3049-3050.

10. Wang L, Li DQ, Fu Y, Wang HP, Zhang JF, Yuan ZF, Sun RX, Zeng R, He SM,
Gao W: pFind 2.0: a software package for peptide and protein
identification via tandem mass spectrometry. Rapid Communications in
Mass Spectrometry 2007, 21:2985-2991.

11. Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R:
Technical Brief The International Protein Index: An integrated database
for proteomics experiments. Proteomics 2004, 4:1985-1988.

12. Wilfred H, Tang BRH, Ignat VShilov, Sean LSeymour, Sean PKeating,
Alex Loboda, Alpesh APatel, Daniel ASchaeffer, Lydia MNuwaysir:
Discovering Known and Unanticipated Protein Modifications Using MS/
MS Database Searching. Analytical Chemistry 2005, 77:3931-3946.

13. Lu B, Chen T: A suffix tree approach to the interpretation of tandem
mass spectra: applications to peptides of non-specific digestion and
post-translational modifications. Bioinformatics 2003, 19.

14. Tanner S, Shu H, Frank A, Wang LC, Zandi E, Mumby M, Pevzner PA,
Bafna V: InsPecT: identification of posttranslationally modified peptides
from tandem mass spectra. Anal Chem 2005, 77:4626-4639.

15. Edwards N, Lippert R: Sequence database compression for peptide
identification from tandem mass spectra. Algorithms in Bioinformatics
2004, 230-241.

16. Edwards NJ: Novel peptide identification from tandem mass spectra
using ESTs and sequence database compression. Molecular Systems
Biology 2007, 3.

17. Edwards N, Lippert R: Generating peptide candidates from amino-acid
sequence databases for protein identification via mass spectrometry.
Lecture Notes in Computer Science 2002, 68-81.

18. Li Y, Chi H, Wang LH, Wang HP, Fu Y, Yuan ZF, Li SJ, Liu YS, Sun RX,
Zeng R, He SM: Speeding up tandem mass spectrometry based database
searching by peptide and spectrum indexing. Rapid Commun Mass
Spectrom 24:807-814.

19. Klimek J, Eddes JS, Hohmann L, Jackson J, Peterson A, Letarte S, Gafken PR,
Katz JE, Mallick P, Lee H: The Standard Protein Mix Database: A Diverse
Dataset to Assist in the Production of Improved Peptide and Protein
Identification Software Tools. Journal of proteome research 2008, 7:96.

20. Villén J, Beausoleil SA, Gerber SA, Gygi SP: Large-scale phosphorylation
analysis of mouse liver. Proceedings of the National Academy of Sciences
2007, 104:1488.

21. Simon J, Puglisi WFS, Anderw H, Turpin Simon J: A Taxonomy of Suffix
Array Construction Algorithms. ACM Computing Surveys 2007, 39:31.

22. Manber U, Myers G: Suffix arrays: A new method for on-line string
searches. Society for Industrial and Applied Mathematics Philadelphia, PA,
USA 1990, 319-327.

23. Gusfield D: Algorithms on strings, trees, and sequences: computer
science and computational biology. Cambridge Univ Pr 1997.

24. Larsson NJ, Sadakane K: Faster suffix sorting. Theoretical Computer Science
2007, 387:258-272.

25. Kärkkäinen J, Sanders P, Burkhardt S: Linear work suffix array construction.
Journal of the ACM (JACM) 2006, 53:936.

26. Manzini G, Ferragina P: Engineering a lightweight suffix array
construction algorithm. Algorithmica 2004, 40:33-50.

27. Maniscalco MA, Puglisi SJ: An efficient, versatile approach to suffix
sorting. Journal of Experimental Algorithmics (JEA) 2008, 12:1-2.

28. Kasai T, Lee G, Arimura H, Arikawa S, Park K: Linear-time longest-common-
prefix computation in suffix arrays and its applications. Lecture Notes in
Computer Science 2001, 2089:181-192.

29. Puglisi SJ, Turpin A: Space-time tradeoffs for Longest-Common-Prefix
array computation. Springer 2008, 124-135.

30. Aho AV, Corasick MJ: Efficient string matching: an aid to bibliographic
search. Communications of the ACM 1975, 18:340.

doi:10.1186/1471-2105-11-577
Cite this article as: Zhou et al.: Speeding up tandem mass
spectrometry-based database searching by longest common prefix.
BMC Bioinformatics 2010 11:577.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Zhou et al. BMC Bioinformatics 2010, 11:577
http://www.biomedcentral.com/1471-2105/11/577

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14976030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14976030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15473683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12923771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12923771?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17768164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17768164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18505281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18505281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15044235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15044235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15044235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15817687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15817687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17702057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17702057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15221759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15221759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15987094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15987094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14534180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16013882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16013882?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17437027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17437027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20187083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20187083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17711323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17711323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17711323?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Identification time
	Storage space and time cost for construction

	Discussion
	Conclusions
	Methods
	Basic Notion
	Basic notions
	Suffix array
	LCP

	Identification Workflow
	ABLCP workflow
	Non-specific digestion
	Site-specific digestion
	Semi-specific digestion
	Speeding up online digestion
	Protein inference

	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 255
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.76471
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 255
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.76471
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

