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Abstract

Background: Chronic inflammation and immune activation are reported to play a key role in the etiology of non-Hodgkin
lymphoma (NHL). We conducted a meta-analysis on the associations between prediagnosis circulating levels of immune
stimulatory markers, interleukin 6 (IL-6), IL-10, tumor necrosis factor a (TNF-a), CXCL13, soluble CD23 (sCD23), sCD27, sCD30,
and the risk of NHL.
Methods: Relevant studies were identified from PubMed, EMBASE, and Web of Science up to January 1, 2017. We calculated
summary odds ratio (OR) estimates for the association between one natural log increase in concentration of each biomarker
and NHL using random-effects models for NHL as a composite outcome and for several histological subtypes of NHL.
Results: Seventeen nested case control studies were included. Elevated levels of several biomarkers were more strongly
associated with increased odds of NHL: TNF-a, OR¼1.18 (95% confidence interval [CI] ¼ 1.04 to 1.34); CXCL13, OR¼1.47 (95%
CI ¼ 1.03 to 2.08); sCD23, OR¼1.57 (95% CI ¼ 1.21 to 2.05); sCD27, OR¼2.18 (95% CI ¼ 1.20 to 3.98); sCD30, OR¼1.65 (95% CI ¼
1.22 to 2.22). In stratified analyses, IL-6, TNF-a, sCD27, and sCD30 were more strongly associated with NHL in HIV-infected
individuals compared to HIV-uninfected individuals. Between-study heterogeneity was observed across multiple biomarkers
for overall NHL and by subtypes.
Conclusion: This meta-analysis provides evidence that elevated circulating levels of TNF-a, CXCL13, sCD23, sCD27, and sCD30
are consistently associated with an increased risk of NHL, suggesting the potential utility of these biomarkers in population
risk stratification and prediction.

Profound immune dysregulation, particularly in the setting of
HIV infection or solid organ transplantation, is among the
strongest risk factors for non-Hodgkin lymphoma (NHL) (1).
Among HIV-infected individuals, two pathogenic mechanisms
have been hypothesized to contribute to AIDS-NHL (2–4). The
first is the dysregulated proliferation of Epstein-Barr virus
(EBV)-transformed B-cells, resulting from impairment of T-cell-
mediated immunity (4). The other is chronic B-cell activation
and resultant downstream processes that promote oncogenic

mutations and translocations (3). In the setting of solid organ
transplantation, a large fraction of NHL is attributed to EBV;
however, NHL occurrence in long-term transplant survivors
appears to be caused by factors other than EBV (5–7).

Less severe immune dysregulation, in the form of autoim-
mune conditions and subclinical immune deficiency, has been
associated with increased NHL risk (1). Importantly, observa-
tional studies assessing associations between NHL and sero-
logic measurements of immune markers, such as cytokines,
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chemokines, and soluble receptors, have provided evidence im-
plicating alteration in these biomarkers in lymphomagenesis
(8–11).

Two narrative reviews have been published that descrip-
tively summarize much of the relevant literature regarding bio-
markers for NHL development (3,12), but neither quantified the
associations of immunological markers and NHL. A recent
meta-analysis of associations between NHL and both soluble
CD27 (sCD27) and sCD30 has been published (13). In this study,
we aim to synthesize evidence that has accumulated in the lit-
erature (3,12,13) to quantify associations of prediagnosis bio-
markers of inflammation and immune activation with
subsequent NHL for a select set of biomarkers. We selected im-
mune biomarkers included in prior reviews (3,12,13), which we
hypothesize are biologically relevant to NHL etiology (interleu-
kin [IL]-6, IL-10, CXCL13, sCD23, sCD27, sCD30, tumor necrosis
factor [TNF]-a). Our synthesis of results through meta-analysis
may contribute toward developing biomarkers for risk predic-
tion in high-risk populations.

Materials and Methods

We conducted this meta-analysis according to the guidelines
stated in the Meta-Analysis of Observational Studies in
Epidemiology (MOOSE) statement (14). We provide a completed
MOOSE checklist as supplementary material (Supplementary
Table 1, available online).

Literature Search Strategy

We executed a literature search in MEDLINE, EMBASE, and Web
of Science to comprehensively capture publications with dates
starting from inception (1966, 1946, and 1900, respectively) of
the databases to January 1, 2017. We searched the databases to
identify observational studies with prospectively collected data
on serological immune markers and incident NHL. Our article
search strategy used controlled database vocabulary where ap-
plicable, key words, and boolean logic to apply the following
search terms and logic: “‘non-hodgkin lymphoma’ AND (‘inter-
leukin 6’ OR ‘interleukin 10’ OR ‘tumor necrosis factor alpha’ OR
‘cxcl13’ OR ‘cd23 antigen’ OR ‘cd27 antigen’ OR ‘cd30 antigen’).”
No other restrictions were imposed on the search. We sought
additional articles from the reference lists of articles identified
through the database search and of recent review articles
(3,12,13), as well as from unpublished studies presented at na-
tional meetings with permission from willing investigators. A li-
brary information science specialist was consulted regarding
database coverage and implementing controlled search
vocabulary.

Inclusion and Exclusion Criteria

Studies were included in this meta-analysis if they met the fol-
lowing criteria: (1) studies with prospective collection of plasma
or serum for measurement of immunological biomarkers; (2)
original articles reporting odds ratios (OR), hazard ratios, rate ra-
tios, or relative-risks as measures of association, or data from
which an estimate of the OR could be approximated; (3) studies
that reported the association between any subset of prediagno-
sis serum biomarkers of interest and NHL risk or the risk of sub-
types of NHL as outcomes; and (4) studies that reported
estimates adjusted or controlled for a minimum of age and sex,
but not other biomarkers. For studies of HIV-infected

participants, adjustment criteria included receipt of highly ac-
tive antiretroviral therapy (HAART) and at least one marker of
immunological function (e.g. CD4þ cell counts or duration of in-
fection). We excluded case reports, conference abstracts, and re-
view articles.

Data Items and Data Extraction Strategy

The following data were extracted from each publication: the
biomarker(s) being assessed, NHL outcome including subtypes,
timing of blood draw prior to NHL diagnosis (prediagnosis time
lag), HIV serostatus, HAART exposure, adjustment variables,
sample size (counts of cases and controls), country where the
study was conducted, the first author’s name, publication year,
and estimates of measures of association with their corre-
sponding 95% confidence intervals (CIs) or standard errors for
each comparison evaluated, and the document identification
number for the publication. We also extracted the boundaries of
predictor categories when biomarkers were analyzed as cate-
gorical predictors. Two of the co-authors (RSB and SBM)
extracted results and information from the manuscripts of eligi-
ble studies onto spreadsheets, but without double entry. These
authors (RSB and SBM) verified the accuracy of the collected
data through cross-inspection of entered data. Discordant find-
ings were resolved by discussion and consensus between the
authors.

Data Analysis

Data Harmonization of Published Results. Since all studies
reported ORs, we natural log-transformed the ORs and esti-
mated the standard errors of the log-ORs by taking the natural
logarithm of the upper and lower bound of the 95% confidence
intervals, then dividing the difference by 3.92 (twice the 97.5th
percentile of the standard normal distribution) (15). Many publi-
cations (16–22) had analyzed their predictor biomarkers on a
continuous natural logarithm unit scale, or on a continuous
scale that could be rescaled to be commensurate with natural
logarithm units. For publications (8–11,13,23–27) presenting ORs
estimated with categorized predictor biomarkers, we first ap-
plied a log-transformation to the category boundaries and cal-
culated the intracategory midpoints. Using a published SAS
macro (28), we applied a multistep procedure (29,30) that in-
cluded fitting an inverse-variance weighted regression on the
log-OR over the midpoints of biomarker categories. This allowed
us to obtain an estimate of the change in log-odds of NHL for
each logarithm-unit change in each biomarker, and its corre-
sponding standard error, had the predictor not been categorized
in the published analysis. For publications (9,26) that did not
present the category boundaries for biomarkers categorized by
percentiles, we first estimated the predictor biomarker percen-
tiles assuming a normally distributed natural log-transformed
biomarker with the mean and the standard deviation estimated
from available statistics of the distribution using methods pre-
viously described (31,32).

Considering studies that estimated associations within
strata defined by prediagnosis time lag, we collapsed the strata
by calculating the inverse-variance weighted average of log-
odds ratios over the time intervals to produce estimates of
biomarker-NHL associations for the composite overall NHL out-
come averaged over the maximum range of prediagnosis lag
time, as well as within broader categories of early prediagnosis
time lag (defined as 6 to 10 or more years prior to diagnosis),
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and late prediagnosis time lag (0–5 years prior to diagnosis, 0 be-
ing within the year of diagnosis). We also averaged results for
NHL subtype outcomes by groups of subtypes, including diffuse
large B-cell lymphoma (DLBCL), chronic lymphocytic leukemia/
small lymphocytic lymphoma/prolymphocytic leukemia (CLL/
SLL/PLL), and follicular lymphoma (FL), all aggregated according
to Surveillance, Epidemiology, and End Results Program (SEER)
International Classification of Diseases for Oncology third edi-
tion (ICD-O-3) morphology codes (33).

Estimation of Meta-Analytic Summary ORs. Anticipating between-
study heterogeneity a priori, we fit a restricted maximum likeli-
hood random-effects model (34) to calculate summary ORs
across studies for each biomarker. We also stratified the analy-
ses by subgroups of HIV-serostatus and contrasted the OR esti-
mates across serostatus subgroups by estimating a ratio-of-
odds-ratios (RORs) and corresponding 95% confidence intervals
and P values. Similarly, we calculated pairwise RORs and their
corresponding 95% confidence intervals with P values from z-
tests to compare the OR estimates between pairs of histological
subtypes of NHL. In addition, to the extent possible, we carried
out stratified analyses within strata defined by HAART exposure
and prediagnosis time lag ranges (0–5 years and 6–10 years prior
to NHL diagnosis).

Estimation of Between-Study Heterogeneity. We assessed the pres-
ence of statistical heterogeneity between studies by conducting
Cochran’s Q test for statistical heterogeneity. Cochran’s Q test
statistic is computed as the sum, over all studies, of the squared
deviation of each log-OR from the overall summary estimate
weighted by the variance for the given log-OR (35). The Q test
statistic follows a v2 distribution with k-1 degrees of freedom
(where k is the number of studies). We chose a statistical signifi-
cance threshold of a two-sided P value less than .1 to indicate
the presence of heterogeneity (35). We also calculated Higgins’
I2, a measure of statistical heterogeneity, as the proportion of
between-study variance relative to overall variance (overall var-
iance being the sum of between-study and within-study vari-
ance) across the observed study log-ORs (36). I2 ranges from 0%
for no heterogeneity to 100%, with I2 less than 25% indicating
low heterogeneity, I2 between 25% and 75% inclusive indicating
moderate heterogeneity, and I2 greater than 75% signifying high
heterogeneity (37).

Assessment of Publication Bias and Influential Data. We assessed
publication bias by visual inspection of funnel plots (38) of the
meta-analytic summary estimates of ORs plotted against their
respective standard errors for each biomarker included in our
study. An asymmetric distribution of the plotted points exceed-
ing the 90% pseudo-confidence interval of the funnel plot indi-
cate potential presence of publication bias. We also ran Egger’s
regression tests for each funnel plot with P value less than .1,
signaling the presence of potential publication bias (39).
Furthermore, we quantified the potential effect of publication
bias on our results using trim-and-fill analyses described by
Duval and Tweedie (40,41). Trim-and-fill analyses first estimate
the results of hypothetically unreported studies using the ob-
served set of study results, such that the asymmetric part of the
funnel plot is filled. Then, outlying study estimates are excluded
(“trimmed”) from outside of the funnel plot pseudo-confidence

intervals. Finally, meta-analytic summaries are re-estimated in-
cluding the estimated hypothetically unpublished results to see
if they substantially alter final summary estimates.

Lastly, we do not include formal assessments of publication
quality in our analyses because, after applying our inclusion cri-
teria, we expect limited variation in the quality of prospective
studies retrieved and such assessments of quality have been
shown to have limited utility in mitigating bias in estimation of
associations (42).

We constructed the final analytic datasets in SAS version 9.4
(Cary, NC). Statistical analyses were implemented in R version
3.2.2 (43) with the meta and metafor packages (44,45).

Results

Study Selection

The flow diagram of our literature search is shown in Figure 1,
with details of the included set of 17 English language papers
(no foreign language papers were captured by our search) pro-
vided in Table 1. We further excluded one study (21) from the
analyses of IL-6 and IL-10, but retained it for other analyses, be-
cause the cases and controls completely overlapped with those
of another study (17). Other included studies nested within the
same parent cohorts had at most only partial, but not complete,
overlap of study subjects and, therefore, were included here
without modification. For IL-10 analyses, we further excluded
another study (17) because it categorized biomarker levels as
detectable versus undetectable. Our included studies comprised
a total of 8684 participants (4047 cases, ignoring sample overlap,
of which 11% were HIV-infected, and 4637 control subjects, of
which 13% were HIV-infected), and considered biomarkers sam-
pled over a long range of time intervals from within the year of
diagnosis to up to 23 years prior to NHL diagnoses (Table 1).

Meta-Analyses

Interleukin-6. Ten studies assessed associations between IL-6
levels and NHL. Each natural log-unit increase in circulating IL-
6 was associated, though not statistically significantly, with a
22% increase in odds of NHL (OR¼ 1.22, 95% CI ¼ 0.97 to 1.54)
(Table 2, Figure 2). In serostatus subgroup analyses, the sum-
mary OR estimate was higher among HIV-infected subjects
(OR¼ 2.07, 95% CI ¼ 1.19 to 3.60) compared to HIV-uninfected
subjects (OR¼ 1.01, 95% CI ¼ 0.97, 1.06), with evidence of a dif-
ference between the two estimates (P< .001) (Table 2, Figure 2).
When considering NHL subtypes (Table 3, Supplementary
Figure 1, available online), we find that levels of circulating IL-6
had a modest association with DLBCL, and pairwise compari-
sons of follicular lymphoma versus DLBCL showed a modest dif-
ference (Table 3).

Interleukin-10. A total of eight nested case-control studies
assessed associations between circulating IL-10 levels and NHL.
Our summary estimate (OR¼ 1.24, 95% CI ¼ 0.93 to 1.63) sug-
gests that each natural log-unit increase in circulating IL-10 is
associated with a nonstatistically significant increase of 24% in
the odds of NHL (Table 2, Figure 2). Among HIV-infected sub-
jects, we found a moderate association with a wide confidence
interval (OR¼ 1.20, 95% CI ¼ 0.64 to 2.24), as well as among HIV-
uninfected subjects (OR¼ 1.25, 95% CI ¼ 0.91 to 1.72), with no
meaningful difference between the two estimates (P¼ .943)
(Table 2, Figure 2). DLBCL and follicular lymphoma showed
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associations with elevated IL-10 levels, and we observed no sub-
stantial differences in estimates when conducting pairwise
comparisons by subtype (Table 3, Supplementary Figure 1, avail-
able online).

Tumor Necrosis Factor-a. A set of nine studies assessed associa-
tions between TNF-a levels and NHL. The overall summary esti-
mate of OR¼ 1.18 (95% CI ¼ 1.04 to 1.34) (Table 2, Figure 2)
illustrates that elevated serum levels of TNF-a are associated
with increased risk of NHL overall, increasing the odds by 18%
per natural log unit. When comparing estimates between HIV-
infected (OR¼ 1.79, 95% CI ¼ 1.35 to 2.37) and HIV-uninfected
(OR¼ 1.12, 95% CI ¼ 1.02 to 1.23), we found evidence of a differ-
ence in ORs between HIV serostatus groups (P¼ .005) (Table 2,
Figure 2). Analyses within NHL subtypes showed evidence of
associations between TNF-a and CLL/SLL/PLL only, with no dif-
ferences found in pairwise comparisons between subtypes
(Table 3, Supplementary Figure 1, available online).

CXCL13. Five studies in total assessed associations between
CXCL13 levels and NHL. A summary estimate of OR¼ 1.47 (95%
CI ¼ 1.03 to 2.08) (Table 2, Figure 2) shows that each natural log-
unit increase in circulating CXCL13 is associated with a 47% in-
crease in odds of NHL. When assessed by serostatus subgroups,
the summary OR estimate among HIV-infected subjects
was OR¼ 2.56 (95% CI ¼ 1.32 to 4.96) compared to OR¼ 1.35 (95%

CI ¼ 0.95 to 1.92) among HIV-uninfected subjects with no evi-
dence of a difference by serostatus (Table 2, Figure 2). DLBCL
was the only subtype to show an association with NHL with
some statistical confidence, and pairwise comparisons by sub-
type showed no meaningful differences (Table 3,
Supplementary Figure 1, available online).

Soluble CD23, CD27, and CD30. Soluble CD23, CD27, and CD30
had four, seven, and nine studies assessing its relationship
with NHL, respectively. Overall, the meta-analytic estimates
showed increased risk of NHL associated with sCD23 (OR¼ 1.57,
95% CI ¼ 1.21 to 2.05), sCD27 (OR¼ 2.18, 95% CI ¼ 1.20 to 3.98),
and sCD30 (OR¼ 1.65, 95% CI ¼ 1.22 to 2.22) (Table 2, Figure 3).
When we compared HIV-infected versus uninfected sub-
groups, we observed differences in biomarker associations be-
tween NHL and both sCD27 and sCD30 (Table 2, Figure 3).
Elevated levels of sCD23 were associated with DLBCL and fol-
licular lymphoma, whereas all subtypes showed an associa-
tion with elevated levels of sCD30 (Table 3, Supplementary
Figure 1, available online). Pairwise comparisons of sCD23
associations with follicular lymphoma versus DLBCL showed
evidence of differences; similarly, for sCD30, the comparison
of its association with follicular lymphoma versus its associa-
tion with CLL/SLL/PLL showed evidence of a meaningful differ-
ence. No other pairwise subtype differences were notable
(Table 3).

Records identified through 
database searching 

(MEDLINE/EMBASE/WoS)
(n = 3,161)

17 articles 
included in meta-

analysis 

107 Records excluded due to 
duplication

36 articles 
reviewed in full

2 Additional records identified 
through references or 
unpublished studies 3,054 Potentially relevant 

articles identified
for further review

Records excluded based on 
review of titles and abstracts

(n = 3,020)

19 Full-text articles excluded

5 specimen sampled 
at/post NHL diagnosis

5 unadjusted means only
1 genetic study only
2 review articles
1 cerebrospinal fluid 

samples
1 study among children
1 cell line study
1 familial NHL
1 biomarkers at diagnosis 
1 adjusted for biomarkers

Figure 1. Flowchart for systematic literature search and selection of studies of circulating biomarkers and NHL risk. NHL ¼ non-Hodgkin lymphoma.
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Prediagnosis Time Lag and HAART Exposure. We conducted analy-
ses stratified by early (6–10 years prior to NHL diagnosis) versus
late collection of biomarkers (0–5 years prior to NHL diagnosis)
(Table 4). In the early period, elevated levels of IL-10 (OR¼ 1.10,
95% CI ¼ 1.03 to 1.17), TNF-a (OR¼ 1.19, 95% CI ¼ 1.05 to 1.34),

and sCD30 (OR¼ 1.34, 95% CI ¼ 1.00 to 1.80) were associated
with NHL, whereas ORs and confidence intervals for other bio-
markers indicated some positive but uncertain associations
with NHL. In contrast, we observed comparatively higher OR in
the late period for IL-6, TNF-a, CXCL13, sCD23, sCD27, and

Table 2. Meta-analysis results for B cell NHL overall and by HIV serostatus

All subgroups HIV serostatus subgroups

Q Test†
HIVþ HIV-

Meta-regression
ROR‡ (95% CI) for

HIVþ / HIV- P‡Biomarker No. OR (95% CI) I2* (95% CI) Q-statistic P OR (95% CI) I2 (95% CI) OR (95% CI) I2 (95% CI)

IL-6 10 1.22 (0.97 to 1.54) 80 (65 to 89) 45.61 <.001 2.07 (1.19 to 3.60) 82 (44 to 94) 1.01 (0.97 to 1.06) 0 (0 to 69) 1.96 (1.53 to 2.50) <.001
IL-10 8 1.24 (0.93 to 1.63) 82 (65 to 90) 38.43 <.001 1.20 (0.64 to 2.24) —§ 1.25 (0.91 to 1.72) 84 (69 to 92) 0.96 (0.33 to 2.83) .943
TNF-a 9 1.18 (1.04 to 1.34) 63 (23 to 82) 21.46 .035 1.79 (1.35 to 2.37) 0 (– to –) 1.12 (1.02 to 1.23) 44 (0 to 76) 1.58 (1.15 to 2.18) .005
CXCL13 5 1.47 (1.03 to 2.08) 89 (78 to 95) 37.00 <.001 2.56 (1.32 to 4.96) — 1.35 (0.95 to 1.92) 91 (79 to 96) 1.89 (0.69 to 5.23) .218
sCD23 4 1.57 (1.21 to 2.05) 90 (77 to 96) 29.24 <.001 1.59 (1.23 to 2.06) 0 (– to –) 1.58 (0.93 to 2.66) 0 (0 to 69) 1.00 (0.54 to 1.87) .996
sCD27 7 2.18 (1.20 to 3.98) 92 (87 to 96) 79.67 <.001 4.93 (3.00 to 8.08) 0 (– to –) 1.61 (0.89 to 2.93) 84 (69 to 92) 3.35 (1.05 to 10.71) .041
sCD30 9 1.65 (1.22 to 2.22) 90 (84 to 94) 83.01 <.001 3.69 (2.40 to 5.69) 11 (– to –) 1.40 (1.11 to 1.76) 44 (0 to 76) 2.55 (1.38 to 4.73) .003

*Higgins’ I2 statistic measuring the proportion of the observed variance between studies relative to the total variance of a set of studies. CI ¼ confidence interval; OR ¼
odds ratio; ROR¼ ratio of odds ratios.

†Q test assessing the degree to which study effect sizes are concordant.

‡The ratio of odd-ratios compares the odds-ratio for the HIVþ subgroup with that of the HIV- subgroup (HIVþ/HIV-). The corresponding P values are computed from a

test of the null hypothesis of no difference between the serostatus groups.

§“—” and “–” denote Higgins’ I2 statistics and confidence intervals that were not calculated because of inadequate sample size, n ¼ 1 and n ¼ 2, respectively.

Figure 2. Forest plots for cytokines and chemokine. Odds ratio (OR) point estimates represented by gray squares with error bars indicating 95% confidence intervals

(CIs); the size of the squares is proportional to the precision weight of each study in the random-effects meta-analysis. Diamonds indicate the summary ORs calculated

from a random-effects model, with the width denoting the 95% CIs.
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sCD30. Formal comparisons of ORs between the two prediagno-
sis time strata yielded no important differences. We were able to
carry out analyses stratified by HAART exposure only for IL-6,
sCD23, sCD27, and sCD30, with only one study (20) providing an
estimate for HAART-exposed individuals (Supplementary
Table 3, available online). Summary estimates were generally
higher among HAART-unexposed individuals (estimates ranging
from OR¼ 1.75, 95% CI ¼ 1.30 to 2.36 to OR¼ 4.72, 95% CI ¼ 2.81
to 7.93), whereas the OR estimates for the HAART-exposed group
were generally lower, except for sCD27 for which the sample
size was limited (n¼ 9 HAART exposed cases, n¼ 37 control sub-
jects) resulting in potential sparse data bias. We also did not ob-
serve any evidence of meaningful differences in the OR
estimates across HAART exposure strata.

Heterogeneity. We found substantial heterogeneity in overall and
subgroup (HIV serostatus, NHL subtypes) analyses. For analyses
of the overall composite NHL outcome, all Cochran’s Q tests in-
dicated the presence of heterogeneity (i.e. all two-sided P values
<.1), while Higgins’ I2 values indicated moderate to large magni-
tudes of heterogeneity ranging from I2 ¼ 63% (95% CI ¼ 23% to
82%) to I2 ¼ 91% (95% CI ¼ 85% to 95%) (Table 2). When we con-
ducted subgroup analyses within HIV-serostatus strata, hetero-
geneity measures decreased only modestly where calculable,
with most Q tests indicating the presence of heterogeneity
(Figures 2 and 3), and I2 proportions ranging from I2 ¼ 44% (95%
CI ¼ 0% to 76%) to I2 ¼ 96% (95% CI ¼ 90% to 99%) within the HIV-

uninfected subgroup. Within the HIV-infected group, sample
sizes were small (at most n¼ 3) rendering heterogeneity statistics
unreliable. When we assessed associations by NHL histological
subtypes, we found statistically detectable heterogeneity in two-
thirds of comparisons (Cochran’s Q tests <0.1), but with ranges of
I2 statistics that were reduced compared to those of the compos-
ite NHL outcome (Table 3). We interpret these statistics with cau-
tion since the numbers of studies included in the analyses,
particularly by subgroups, were limited relative to recommended
sample sizes for these measures (46).

Publication Bias and Influential Data. We provide a set of funnel
plots for each analysis for our composite overall NHL outcome
(Supplementary Figure 2, available online). Because of small
sample sizes, evidence of symmetry in the distribution of meta-
analytic summary ORs is inconclusive. Egger’s regression tests
suggest the presence of potential publication bias for the OR
estimates of NHL for IL-6, IL-10, CXCL13, sCD27, and sCD30
(P< .1), although small samples limit the validity of this test.
Trim-and-fill analyses indicated that studies predicted to be
excluded from our analyses because of potential publication
bias would have attenuated our estimates for all biomarkers,
while maintaining the same direction of association
(Supplementary Table 2, available online). Influence diagnos-
tics show a few potentially influential studies: one study each
for in the analyses for IL-6 (17), IL-10 (10), and CXCL13 (19)
(Supplementary Figure S3, available online).

Table 3. Meta-analysis results for B cell NHL subtypes

Comparison of summary ORs‡

Q test†
Summary OR

DLBCL Follicular lymphoma

Biomarker Outcome No. I2* (95% CI) Statistic P OR (95% CI) ROR (95% CI) P ROR (95% CI) P

IL-6 CLL/SLL/PLL 4 0 (0 to 0) 0.19 .996 0.98 (0.92 to 1.06) 1.15 (0.99 to 1.34) .074 0.97 (0.87 to 1.09) .652
DLBCL 6 0 (0 to 74) 4.80 .570 1.13 (0.99 to 1.30) 1.00 (reference) 0.85 (0.72 to 1.00) .044
Follicular lymphoma 5 9 (0 to 81) 4.41 .492 0.96 (0.88 to 1.05) – 1.00 (reference)

IL-10 CLL/SLL/PLL 4 78 (41 to 92) 13.76 .008 1.09 (0.88 to 1.34) 1.04 (0.83 to 1.29) .747 1.01 (0.81 to 1.26) .955
DLBCL 5 45 (0 to 80) 7.28 .201 1.13 (1.06 to 1.21) 1.00 (reference) 0.97 (0.87 to 1.07) .485
Follicular lymphoma 5 66 (13 to 87) 11.93 .036 1.09 (1.02 to 1.18) – 1.00 (reference)

TNF-a CLL/SLL/PLL 4 0 (0 to 66) 1.34 .854 1.15 (1.04 to 1.27) 0.91 (0.73 to 1.14) .410 1.21 (0.89 to 1.65) .214
DLBCL 5 62 (0 to 86) 10.41 .064 1.04 (0.85 to 1.28) 1.00 (reference) 1.34 (0.94 to 1.90) .107
Follicular lymphoma 5 66 (12 to 87) 11.82 .037 1.39 (1.04 to 1.86) – 1.00 (reference)

CXCL13 CLL/SLL/PLL 4 77 (36 to 91) 12.81 .012 1.43 (0.97 to 2.11) 1.18 (0.65 to 2.12) .584 1.20 (0.61 to 2.37) .604
DLBCL 4 85 (61 to 94) 19.43 .001 1.69 (1.08 to 2.62) 1.00 (reference) 1.02 (0.50 to 2.08) .964
Follicular lymphoma 3 86 (60 to 95) 14.38 .002 1.71 (0.98 to 3.00) – 1.00 (reference)

sCD23 CLL/SLL/PLL 2 99 (97 to 99) 69.59 .000 2.62 (0.74 to 9.19) 0.48 (0.14 to 1.69) .253 0.75 (0.21 to 2.71) .664
DLBCL 3 49 (0 to 85) 3.90 .272 1.25 (1.11 to 1.41) 1.00 (reference) 1.57 (1.19 to 2.08) .001
Follicular lymphoma 1 —§ 0.00 1.000 1.97 (1.53 to 2.53) – 1.00 (reference)

sCD27 CLL/SLL/PLL 3 95 (89 to 98) 39.81 <.001 2.03 (0.73 to 5.64) 1.06 (0.29 to 3.83) .927 1.08 (0.22 to 5.16) .927
DLBCL 4 89 (74 to 95) 26.90 <.001 2.15 (0.99 to 4.67) 1.00 (reference) 1.01 (0.25 to 4.18) .985
Follicular lymphoma 2 94 (81 to 98) 16.56 <.001 2.18 (0.67 to 7.16) – 1.00 (reference)

sCD30 CLL/SLL/PLL 4 76 (35 to 91) 12.70 .013 1.23 (1.05 to 1.44) 1.38 (0.84 to 2.26) .205 1.89 (1.07 to 3.35) .028
DLBCL 5 88 (74 to 94) 32.94 <.001 1.69 (1.06 to 2.71) 1.00 (reference) 1.37 (0.67 to 2.82) .387
Follicular lymphoma 3 87 (64 to 96) 15.66 .001 2.33 (1.35 to 4.01) – 1.00 (reference)

*Higgins’ I2 statistic measuring the proportion of the observed variance between studies relative to the total variance of a set of studies. CI ¼ confidence interval; CLL/

SLL/PLL ¼ chronic lymphocytic leukemia/small lymphocytic lymphoma/prolymphocytic leukemia; DLBCL ¼ diffuse large B-cell lymphoma.

†Q test assessing the degree to which study effect sizes are concordant.

‡ORs and P values for comparisons of estimates between outcomes for each biomarker. Each ROR compares the odds ratio for the column biomarker to that of the row

biomarker as reference, for example for IL-6 ORDLBCL/ORCLL/SLL/PLL¼1.15, with corresponding Wald-type confidence interval computed using the square root of the sum

of the OR variances.

§Em dash “—” denotes statistics that were not calculated because of inadequate sample size. En dash “–” indicates omitted results comparing DLBCL to Follicular

lymphoma which are exact inverses of results comparing Follicular lymphoma to DLBCL in the subsequent colum.
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Discussion

Two patterns become discernible from our analyses: (1)
Elevated expression of immune stimulatory molecules,

including cytokines, chemokines, and soluble receptors, pre-
cedes an NHL diagnosis, and (2) the associated increase in risk
is generally higher among HIV-infected relative to HIV-
uninfected individuals. These two inferences largely

Figure 3. Forest plots for soluble receptors. Odds ratio (OR) point estimates represented by gray squares with error bars indicating 95% confidence intervals (CIs); the

size of the squares is proportional to the precision weight of each study in the random-effects meta-analysis. Diamonds indicate the summary ORs calculated from a

random-effects model, with the width denoting the 95% CIs. WoS ¼Web of Science.

Table 4. Results for all B-cell non-Hodgkin lyphoma (NHL) by prediagnosis time interval: comparing early versus late biomarker sample
collection

Pre-diagnosis time interval

Meta-regression
Early (6–�10 y)* Late (0–5 y)* comparison of

Analyte No. OR (95% CI) P I2 (95% CI) N OR (95% CI) P I2 (95% CI) early vs late ROR (95% CI) P

IL-6† 2 1.04 (0.89 to 1.21) .645 0 (– to –) 6 1.44 (1.00 to 2.08) .052 87 (74 to 93) 0.74 (0.39 to 1.40) .352
IL-10 3 1.10 (1.03 to 1.17) .003 0 (0 to 34) 6 1.12 (0.98 to 1.28) .087 44 (0 to 78) 0.98 (0.84 to 1.15) .817
TNF-a 2 1.19 (1.05 to 1.34) .005 0 (– to –) 6 1.25 (1.01 to 1.54) .038 85 (70 to 93) 0.96 (0.67 to 1.36) .813
CXCL13 2 1.33 (0.67 to 2.62) .411 96 (88 to 99) 2 2.69 (2.20 to 3.28) <.001 0 (– to –) 0.50 (0.24 to 1.06) .070
sCD23 2 1.41 (0.98 to 2.01) .061 92 (74 to 98) 4 1.62 (1.21 to 2.15) .001 89 (75 to 95) 0.87 (0.54 to 1.39) .559
sCD27 4 1.50 (0.96 to 2.35) .077 88 (71 to 95) 6 2.64 (1.34 to 5.21) .005 96 (93 to 97) 0.58 (0.24 to 1.45) .247
sCD30 4 1.34 (1.00 to 1.80) .047 87 (69 to 95) 7 1.89 (1.28 to 2.79) .001 94 (90 to 96) 0.73 (0.42 to 1.27) .262

*The early category included studies that had categories with upper bounds of the time intervals that were greater than 10 years (e.g. intervals such as >7, 5–13, 9–13,

8–15, 15–23 years prior to diagnosis), whereas the late (0–5 year) category included studies with intervals that exceeded the upper bound of 5 years (e.g. 2–6, <7 years

prior to diagnosis). For these analyses, estimates of associations covering both intervals completely, or nearly completely, were excluded. CI to confidence interval; OR

to odds ratio.

†The IL-6 analyses included Vendrame, 2014 (21) and Breen, 2011 (17) which contain completely overlapping study subjects, but different assay technologies. We in-

clude them here but not in the manuscript because the results are not substantially different with or without exclusion, and given the small sample size, the additional

information dominates the small bias because of the lack of independence for our assessment of associations by prediagnosis time periods and their differences.
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corroborate what has previously been reported in prior indepen-
dent reports. These results also suggest that HIV itself, because
of the immune dysregulation resulting from HIV, or the sub-
types that primarily emerge in the presence of HIV, are key fac-
tors in the association between immune stimulatory molecules
and NHL. Further, our study findings support the use of these
molecules as biomarkers for an immune environment that pro-
motes NHL.

IL-6 is a pluripotent cytokine that can stimulate B-cell prolif-
eration and differentiation, foster cell survival, and promote tu-
mor growth (47,48). IL-6 has also been linked to pro-
inflammatory and Th17 immune responses, which are related
to autoimmunity (49,50) and closely related to risks for NHL (51).
We found that the positive association between IL-6 and NHL
was stronger among HIV-infected compared to HIV-uninfected
subjects, suggesting a modifying effect of HIV infection. The
stronger associations between IL-6 and NHL among HIV-
infected subjects could also be influenced by the higher propor-
tion of the DLBCL histological subtype in the presence of HIV
(2,52–54), a subtype that displayed the highest OR in our histo-
logical subtype-specific analyses for IL-6, particularly when
compared to follicular lymphoma. Although these findings pre-
sent with a high level of heterogeneity, they are nonetheless
qualitatively consistent with the hypothesized etiologic role of
IL-6 in the development of NHL.

IL-10 is a pleiotropic cytokine with stimulatory effects on
B-cells and is suspected of inducing lymphomagenesis by pro-
moting chronic B-cell activation (55–57). In a mouse model, IL-
10 was required for the progression of B-cell lymphoma (58),
and in humans, malignant NHL cells produce IL-10 (59,60). A
growing body of literature, as described in a recent meta-
analysis, showed that IL-10 gene polymorphisms, especially
3575 T/A and 1082 A/G, were associated with increased NHL
risk or its subtypes, including DLBCL and follicular lymphoma
(61–64). Our analyses of NHL subtypes corroborate results
from studies of genetic polymorphisms because our study
also found an association between IL-10 and DLBCL, as well as
follicular lymphoma, lending credence to the hypothetical
function of IL-10 in lymphomagenesis.

TNF-a is a potent pro-inflammatory cytokine that can induce
B-cell activation, growth, differentiation, apoptosis, and chemo-
taxis (65–67). Knockout mouse models of TNF (68), as well as ge-
netic association studies in humans (56,69,70), provide evidence
of the involvement of TNF-a in lymphomagenesis. A potential
mechanism through which TNF-a is involved in lymphomagen-
esis is enhancement of B-cell survival, differentiation, and pro-
liferation mediated by the nuclear transcription factor (NF)-jB
pathway (56,66). We found a higher summary OR estimate for
NHL among the HIV-infected subgroup compared to the HIV-
uninfected group, indicating that elevated levels of TNF-a confer
higher risk of NHL in the context of HIV infection. In addition,
we found evidence of associations between elevated levels of
TNF-a and DLBCL and follicular lymphoma subtypes. These
results are consistent with a hypothesized etiologic function of
elevated TNF-a levels prior to the onset of NHL.

CXCL13 and its receptor, CXCR5, are required for B-cell hom-
ing to follicles in lymph nodes (71), suggesting that aberrant
CXCL13 expression may be involved in the pathogenesis of B-
cell lymphoma through abnormal chemotaxis of B-cells to tis-
sues or abnormal B-cell activation (72). In addition, overexpres-
sion of the receptor-ligand pair CXCR5/CXCL13 has been
observed in B-cell chronic lymphocytic leukemia (73), and follic-
ular lymphoma cells have been seen to secrete CXCL13 (74). We
found an association between NHL and elevated levels of

CXCL13, and although our data were insufficient to reliably
compare the CXCL13 and NHL associations across serostatus
groups, we observed a markedly stronger association among
HIV-positive versus HIV-negative individuals. In addition,
DLBCL, a subtype more prevalent among HIV-infected popula-
tions, showed an association with elevated CXCL13 in our study.
These results indicate a possible role for CXCL13 in lymphoma-
genesis, particularly in the context of HIV infection.

CD23, a cell-surface receptor for the Fc portion of IgE, can be
proteolytically cleaved from the B-cell surface to produce its sol-
uble form (sCD23) (75). Through the stimulatory action of IL-4,
IL-13, and infectious agents (76), activated B-cells upregulate
their expression and cleavage of CD23, subsequently increasing
concentrations of sCD23 in serum. Serum sCD23 affects further
B-cell stimulation including increases in IL-4-mediated IgH
class switch recombination (75,77), potentially leading to aber-
rant recombination, which is implicated in lymphomagenesis.
Additionally, sCD23 may also upregulate monocyte production
of IL-6 (78), thereby increasing the likelihood of the develop-
ment of various NHL subtypes in the context of autoimmune
conditions (51). Contrasting the OR estimate for NHL among the
HIV-infected group versus the HIV-uninfected group, we find no
substantial differences, suggesting sCD23 may be a biomarker
of NHL regardless of the presence or absence of HIV. Elevated
levels of sCD23 were associated with DLBCL and follicular lym-
phoma, with a higher OR estimate for follicular lymphoma rela-
tive to DLBCL (P¼ .001) (Table 3), potentially suggesting a greater
etiologic role for follicular lymphoma versus DLBCL.

CD27 and CD30 are members of the TNF-receptor superfam-
ily (79,80). CD27 is involved in the activation of both T cells and
B-cells, stimulating proliferation of T-cell proliferation (81) and
inducing production of immunoglobulins by B-cells (82). CD30
was first discovered, and is frequently expressed, on Hodgkin
lymphoma Reed-Sternberg cells. It is also found expressed on
NHL cells, particularly in anaplastic large-cell lymphoma, but is
less frequently expressed in cells of other NHL subtypes (83).
CD30 is also expressed by activated T cells, which secrete cyto-
kines that induce B-cell activation, differentiation, and prolifer-
ation (84,85). Cell membrane-associated CD27 and CD30 are
proteolytically cleaved to produce the soluble forms of these
molecules (sCD27 and sCD30) found in serum. Serum concen-
trations of both sCD27 and sCD30 have been elevated among
those with viral infections and autoimmune diseases (86,87).
The potential role of sCD27 in B-cell immunoglobulin produc-
tion, and that of sCD30 in B-cell activation, implicates these
molecules in lymphomagenesis. Similarly, our study found ele-
vated levels of both sCD27 and sCD30 to be associated with NHL
overall. Broken down by HIV serostatus groups, we found larger
magnitudes of ORs among HIV-positive individuals relative to
those who were HIV-negative, and although the estimates were
imprecise because of limited sample sizes, this result aligns
with prior findings that heightened concentrations of these bio-
markers precede NHL, particularly during HIV infection (88,89).
In our analyses by subtype, we found that sCD27 was associated
with DLBCL and follicular lymphoma, and sCD30 showed an as-
sociation with all NHL subtypes. Evidence of differences in OR
estimates for follicular lymphoma versus DLBCL, and follicular
lymphoma versus CLL/SLL/PLL, for sCD23 and sCD30, respec-
tively, suggest that higher concentrations of these biomarkers
may play a greater role in the development of follicular lym-
phoma relative to the other markers.

Temporal variations in the association between serum bio-
markers and NHL may be due to etiologic factors or prodromal
effects acting at different time intervals (17,20,89,90). We
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included exploratory analyses stratified by the early versus late
collection of biomarkers. In the early period, we observed evi-
dence of associations with NHL among several biomarkers (IL-
10, TNF-a, sCD30) and notably stronger associations of several
biomarkers (IL-6, TNF-a, CXCL13, sCD23, sCD27, sCD30) mea-
sured nearer in time to NHL diagnosis, although there were no
meaningful differences between the two time intervals
(Table 4). These findings are consistent with the inference that
these biomarkers are elevated several years prior to NHL and
that further increases in concentrations of these biomarkers
may occur in the tumor microenvironment as clinical detect-
ability of malignancy approaches.

Among the studies based in HIV-infected populations, the
vast majority of cases and matched control subjects were
HAART-naı̈ve. Recently, serum levels of several immune
markers, including IL-6, were shown to be elevated in HAART
naı̈ve individuals compared to those who were HIV-negative but
normalized following HAART therapy (91). With the advent of
HAART, the etiologic effect of HIV on NHL risk appears to have
been attenuated, but not eliminated (3). In supplementary analy-
ses, we assessed biomarker-NHL associations stratified by
HAART exposure, and observed increased odds of NHL associ-
ated with higher elevations of biomarkers among the HAART
unexposed relative to exposed groups for most biomarkers in-
cluded in these analyses: IL-6, sCD23, sCD30 (Supplementary
Table 3, available online). We note that these analyses are ex-
ploratory in nature because of limited sample sizes within
each stratum (N¼ 1 for all HAART exposed; maximum N¼ 3 for
HAART unexposed).

Major strengths of our study include the comprehensive cov-
erage of literature and biomarkers with quantitative syntheses
of results and the inclusion of studies with prospective collec-
tion of immune markers. Prior reports either included a limited
set of biomarkers (13) or were descriptive in nature, thereby
lacking quantitative summaries of published estimates (3,12).
An additional strength of our study is that we included only
studies that utilized a prospective-specimen collection,
retrospective-blinded-evaluation (PRoBE) design with highly
comparable control groups, thereby increasing our confidence
in the validity of the reports. Furthermore, the use of multiplex
assays in many of the included studies allowed several bio-
markers to be analyzed and reported simultaneously, without
regard to statistical significance, minimizing the “file-drawer”
problem of studies hidden from publication because of results
that were not statistically significant.

A weakness in our analyses is the modest number of studies
for some biomarkers, which produced several limitations. First,
sparse study counts limited our ability to adequately explore
modifying factors across studies including prediagnosis time in-
terval of biomarker collection, age, sex, and HAART exposure as
potential modifiers of biomarker-NHL associations. We provide
some exploratory analyses of associations by early versus late
collection of biomarkers prior to NHL and stratified analyses by
HAART exposure, but we note the substantial limitations of
these analyses. For example, in the lag-time stratified analyses,
there were overlapping time intervals over which biomarkers
were collected such that the definitions of early versus late col-
lection were not strictly mutually exclusive. Secondly, estimates
of heterogeneity statistics, I2 and Q, have been documented to
be biased in small samples (46), and outliers tend to have higher
influence in small samples. In addition, we did not find con-
vincing evidence of potential publication bias partly because of
the limited sample sizes that render funnel plots and Egger’s re-
gression P values unreliable (92), but also because simultaneous

analyses of biomarkers from multiplex assays reduce the
chance of nonsignificant associations going unpublished.

Another limitation of our study is the intrinsic variability in
the biomarker quantitation among the studies in our analyses.
We included studies that use various assay technologies, with
biomarkers quantitated in different laboratories following
different protocols and standards. Breen et al. (93) found consid-
erable variability between multiple laboratory sites using high-
sensitivity multiplex cytokine assays in their quantitation of 13
cytokines, across both study sites and multiplex assay technol-
ogy, despite standardization of samples and laboratory proto-
cols. Noble et al. (94) found significant variation in the
quantitation of a standard cytokine provided to 11 laboratories,
with the mean concentrations ranging between 67% and 136%
of the grand mean. An additional contributing factor to hetero-
geneity in results is that we were unable to differentiate be-
tween germinal cell versus nongerminal cell lymphomas.
Because these subtypes differ in etiologic mechanisms and in
their interactions with the immune system (95–97), we expect
these issues to contribute to the observed heterogeneity be-
tween studies, even within our subtype analyses because we
were unable to further stratify by germinal cell origin.

Lastly, we acknowledge that our study is susceptible to bias
because of multiple statistical testing of summary estimates
and that multiple comparison adjustments to P values and con-
fidence intervals widen our estimated confidence interval
widths (98,99) and attenuate the magnitudes of the P values.
However, these adjustments do not invalidate the overall quali-
tative message that, in general, levels of circulating markers are
elevated prior to NHL diagnosis (Supplementary Table 4, avail-
able online).

In conclusion, our summaries concur with the general trends
in published estimates and provide a systematic description of
the variation in estimates of associations between NHL and ex-
pression of immune stimulatory molecules. Future research may
further strengthen the inferences possible from a review such as
ours by including larger sets of publications as the literature
grows, particularly among HIV-infected populations, and pooled
individual level data studies could allow for more robust control
of confounding. Our findings provide support for the hypothesis
that chronic immune activation is a crucial mechanism in
lymphomagenesis; hence, its biomarkers could, in the future,
have utility in developing models for early detection.
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