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Birdsong classification based 
on ensemble multi‑scale 
convolutional neural network
Jiang Liu1, Yan Zhang2*, Danjv Lv1, Jing Lu1, Shanshan Xie1, Jiali Zi1, Yue Yin1 & Haifeng Xu3

With the intensification of ecosystem damage, birds have become the symbolic species of the 
ecosystem. Ornithology with interdisciplinary technical research plays a great significance for 
protecting birds and evaluating ecosystem quality. Deep learning shows great progress for birdsongs 
recognition. However, as the number of network layers increases in traditional CNN, semantic 
information gradually becomes richer and detailed information disappears. Secondly, the global 
information carried by the entire input may be lost in convolution, pooling, or other operations, and 
these problems will weaken the performance of classification. In order to solve such problems, based 
on the feature spectrogram from the wavelet transform for the birdsongs, this paper explored the 
multi-scale convolution neural network (MSCNN) and proposed an ensemble multi-scale convolution 
neural network (EMSCNN) classification framework. The experiments compared the MSCNN and 
EMSCNN models with other CNN models including LeNet, VGG16, ResNet101, MobileNetV2, 
EfficientNetB7, Darknet53 and SPP-net. The results showed that the MSCNN model achieved 
an accuracy of 89.61%, and EMSCNN achieved an accuracy of 91.49%. In the experiments on the 
recognition of 30 species of birds, our models effectively improved the classification effect with high 
stability and efficiency, indicating that the models have better generalization ability and are suitable 
for birdsongs species recognition. It provides methodological and technical scheme reference for bird 
classification research.

As the construction of ecological civilization advances, methods for efficient and quick assessment of the quality 
of the environment need to be further studied. Birds play an essential role in the ecosystem, and their communi-
ties are a crucial indicator of environmental quality1,2. The study of birds is of great significance for protecting 
birds, understanding wetland ecosystems and evaluating the quality of ecosystems. The International Union for 
Conservation of Nature (IUCN 2014)3 listed that there are 1373 bird species in the world and more than 13% 
of species are vulnerable and even face immediate danger of extinction. Due to the characteristics of birds with 
high flexibility of movement, extensive moving range, and strong environmental adaptability, birdsong, a sign 
of activities of birds, is often used to detect, monitor, and quantify species. Birdsong contains rapid time modu-
lation, and has stability in the same species and discrimination between species. Automatic bird classification 
model, established with birdsong audio data, has many potential applications in protection, ecology and archives4.

Research on birdsongs has demonstrated that human language and birdsongs have striking analogies in 
vocal articulation and neural functionality5. Therefore, many researchers in bird song recognition often use 
MFCC as extracted audio features. In addition, to better analyze bird song, audio data is usually converted into 
a spectrogram with methods such as short-time Fourier transform (STFT)6,7 and wavelet8,9. Many researchers 
have carried out a lot of research based on traditional machine learning methods for birdsong classification. For 
limited data, an automated birdsong phrase classification algorithm, dynamic time warping (DTW), is developed 
to reduce the need for manual annotation10. Ladislav Ptacek11 and Chang-Hsing Lee12 using Gaussian Mixture 
Model (GMM) to classify birds on different feature data sets, have achieved good results. Douwe Gelling13 used 
HMM and GMM models to study the importance of using time information in recognizing bird vocalizations. 
Diego Rafael Lucio14 built a support vector machines (SVM) classification model based on the acoustic and visual 
features extracted from birdsong, and obtained an accuracy rate of 91.08%.

In recent years, deep learning15, which learns feature representation via a hierarchical structure, has achieved 
remarkable success in various fields. Inspired by this, Ahmad Salman16 used the deep learning method in the 
LifeCLEF14 and LifeCLEF15 fish data sets to achieve a classification rate of more than 90%. Le-Qing Zhu17 
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proposed a cascade structure combined deep convolutional neural networks (DCNNs) and SVM to identify 
lepidopteran insects by images. In addition, deep learning is also widely used in birdsong research. Piczak18 and 
Tóth19 in the BirdCLEF 2016 competition, used deep learning to identify birdsong with good results. Gaurav 
Gupta20 presented a deep learning approach targeting large-scale prediction and analyzed bird acoustics from 100 
different species. Xie21 used selectively fuse model on classifying 43 bird species and increased the classification 
performance effectively. Although, semantic information becomes richer, detailed information disappears as the 
number of layers in the network increases33. In addition, the global information carried by the entire input may 
be lost in convolution, pooling, or other operations, which may affect the performance of the classification34. 
To mitigate this problem, Di Wang22 proposed a multi-scale information compensation module on CNN. By 
integrating the original input with more abstract hierarchical learning feature maps, this module maintained 
detailed semantic information. Research has demonstrated multi-scale is suitable for computing hierarchical 
features and successful in a range of pixel-level prediction tasks23–26. It can be seen that deep learning models and 
Multi-scale CNN models have powerful classification capabilities and can be used in a variety of research fields.

Ensemble learning is well known effective method for combining multiple learning methods to yield better 
performance27. Ensemble methods have been applied in many research fields such as computational intelligence, 
statistics, and machine learning28. Zhao29 reported the application of ensemble neural networks. Compared with 
a single neural network model, an ensemble neural network can effectively improve the generalization ability 
of the classifier. Antipov30 proposed a convolutional neural network ensemble model to improve the state-of-
the-art accuracy of gender recognition from face images on one of the most challenging face image datasets. 
In summary, ensemble learning has carried out a lot of research in different fields, which provides theoretical 
support for the follow-up research of this paper.

Therefore, classify birds through bird songs based on modern computer technology greatly promote eco-
logical, environmental protection, and biodiversity research. To improve the performance and the knowledge 
gained from it, we adopted deep learning, transfer learning and ensemble technology on spectrogram in this 
paper. Our work proposed a multi-scale deep learning model and an ensembled multi-scale deep learning model, 
characterized by constructing classification models using wavelet spectrogram of birdsong. The contributions 
of the current work are: (1) The wavelet spectrograms of 30 kinds of bird songs indicate good separability; (2) 
We propose a multi-scale convolution kernel decomposition method, which can effectively generate multiple 
convolution kernels from a fixed scale; (3) A multi-scale CNN(MSCNN) model and an ensembled multi-scale 
CNN(EMSCNN) model are constructed for the different convolution kernels. Our models achieve a better 
performance than LeNet, VGG16, MobileNetV2, ResNet101, EfficientNetB7, Darknet53 and SPP-net models.

This paper is organized as follows: Firstly, we describe the proposed approach for birdsong recognition, which 
mainly includes wavelet spectrogram generation, multi-scale CNN model and ensemble multi-scale CNN model 
construction. Secondly, describe the experiment design. Thirdly, discuss and analyze the experimental results. 
Finally, present conclusions and directions for future work.

Materials and methods
Wavelet spectrogram.  The wavelet transform (WT) is the typical time–frequency analysis method31. It 
combines the characteristics of time-domain and frequency-domain. The features on the wavelet scale can also 
analyze the changes of frequency components over time. Wavelet transform uses a finite-length or fast-decaying 
"mother wavelet" oscillating waveform to represent a signal; the "mother wavelet"  is multi-scaled and translated 
to match the input signal. The WT provides a time–frequency window that can be modulated, and the width of 
the window changes with frequency, which make it more suitable for non-stationary signal analysis.

The wavelet transforms, Wf (α,β) , of a time signal s(t) is given by:

where ψ∗
α,β(t) is the complex conjugate of ψα,β(t) shown in formula (2).

where ψα,β(t) scans and translates the signal s(t) to wavelet domain, where α is the dilation parameter for chang-
ing the oscillating frequency and β is the translation parameter. The basis function for the wavelet transform 
is given in terms of translation parameter β and dilation parameter α with the mother wavelet represented as:

Morlet wavelets have been found to be the most responsive wavelets to birdsongs35. The complex morlet 
wavelet is defined by formula (3) in the time domain:

where fc is the center frequency and fb is the bandwidth.
Based on the good characteristics of the wavelet transform, this paper chooses wavelet transform to generate 

birdsong spectrograms. The process of the wavelet spectrogram is shown in Fig. 1. Firstly, pre-emphasis and add 
window for birdsongs audio. Then the input audio signal wavelet coefficients are extracted, and the wavelet scale 
is mapped to the frequency domain. Finally, the extracted signal is mapped to the spectrogram.

(1)Wf (α,β) =

+∞
∫

−∞

s(t)ψ∗
α,β(t)dt =

1
√
α

+∞
∫

−∞

s(t)f ∗
(

t − β

α

)

dt

(2)ψα,β(t) = 1√
α
f
(

t−β
α

)

(3)ψMorlet(t) = 1√
π fb

· ej2π fc t−(t
2/fb)



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8636  | https://doi.org/10.1038/s41598-022-12121-8

www.nature.com/scientificreports/

Multi‑scale CNN classification model construction.  Convolutional Neural Network (CNN) is a feed-
forward neural network, a representative algorithm of deep learning, with convolution calculation and deep 
structure32. CNN comprises input, convolution, pooling, fully connected and output layers. Generally speak-
ing, CNN uses convolution to simulate feature extracted, reduces network parameters through weight sharing, 
reduces network dimensions through pooling, and finally completes the classification task through a fully con-
nected network. The traditional convolution process can be defined as follows:

where i, j are the abscissa and ordinate of the image input, n is the number of convolution operations, X is the 
input image feature matrix, Wk is the weight matrix of the convolution kernel k , bk is the bias, and S is the result 
of feature matrix, ∗ represents the convolution operation.

Feature extraction is affected by the scale of the convolution kernel. Sometimes a single convolution kernel 
cannot fully extract the key features in a complex image, resulting in the loss of some key features. So, a new 
multi-scale method is proposed, which uses multiple convolution kernels to obtain features at multiple scales. 
In this paper, the multiple different scale convolution kernels are derived from the decomposition of large-scale. 
Taking the 5 × 5 convolution kernel as an example, its decomposed process is shown in Fig. 2, and the multi-scale 
convolution kernel is shown in formula 5.

In the constructed CNN model, each convolutional layer uses a different convolution kernel to form a multi-
scale convolutional neural network (MSCNN). The operation is defined as:

where qm is the set of the multiple scales, such as [Scale2∗2, Scale2∗3, Scale3∗2, Scale3∗3] , Wqm is the weight matrix 
of the convolution kernel qm and bqm is bias, p represents the number of layers in the network.

(4)S = Conv
n
∑

k=1

X(i,j) ∗Wk + bk

(5)Scale5∗5
decomposition

−→ [Scale2∗2, Scale2∗3, Scale3∗2, Scale3∗3]

(6)MSCNN = Conv
p
∑

m=1

X(i,j) ∗Wqm + bqm

Figure 1.   The process of wavelet spectrogram generation.

Figure 2.   The 5*5 convolution kernel decomposition diagram.
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The MSCNN for birdsong classification model is established as shown in Fig. 3 based on the set of the multiple 
scales kernel in Fig. 2.

In CNN, the size of the convolution kernel determines the final learned features. The spectral image has the 
nature of high-dimensional features, which makes it challenging to apply a single convolution kernel. Using a 
deep CNN network can obtain more information by extracting deeper features, but many useful features will 
lose as the number of model layers increases. Eventually, the recognition of complex small samples of high-
dimensional images becomes difficult. To increase the richness and diversity of model, this work ensembles 
different scale CNN to achieve better performance. The ensemble multi-scale convolutional neural network 
(EMSCNN) is defined as:

Here, we use the fusion method to ensemble the calculation results under different convolution kernel scales. 
In formula (7) ai represents data vector and convolutes with the muti-scale convolution kernel. The pooling 
intermediate results of different scale CNN models are connected through the concatenate method, and then 
the classification results are output through SoftMax. The structure of birdsong classification model based on 
EMSCNN is shown in Fig. 4. How to train the EMSCNN model is described in Procedure 1. After the model is 
trained, we can use it to classify birdsong.
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Figure 3.   MSCNN model structure.

Figure 4.   EMSCNN model structure.
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Model evaluation.  The performance of our proposed birdsong classification model was evaluated using 
accuracy, precision, recall, F1-score, Top-1, and Top-5. Among them, TP is genuinely positive, indicating the 
number of samples that have been correctly classified as actual samples. TN is a true negative, which means 
that the number is correctly classified as not accurate. FP is false positive, which means the number of falsely 
classified samples as actual samples. FN is a false negative representing the number of actual labels that the clas-
sification model did not predict.

Accuracy: Represents the percentage of correct predictions.

Precision: Indicates the proportion of samples with correct predictions among samples whose actual values 
are positive.

Recall: Indicates the proportion of samples whose actual values are positive and predicted to be positive.

F1-score: Takes into account the precision and recall of the classification model.

Top-1: It means that the largest probability vector among the predicted results is taken as the expected result. 
If the classification with the most considerable probability in your predicted effect is correct, the prediction is 
accurate. Otherwise, the prediction is wrong.

Top-5: Among the results of the classification model prediction, the top five with the largest probability vec-
tor are selected. As long as the correct probability appears in the top five, the prediction is accurate. Otherwise, 
the prediction is wrong.

Experimental platform.  The hardware platform used in this experiment is a desktop computer with 128G 
memory, Ryzen 9 5950X with 16 core and 32 thread CPU, 3.40 GHz frequency and 3090 24G GPU. The operat-
ing system is Windows 10 64-bit professional operating system. Annaconda3, PyCharm 2020.1, Python 3.7, 
TensorFlow 2.6.0 as deep learning platform and MATLAB 2018 as data processing platform are exploited.

Ethics declarations.  In this paper, the experiments did not use live birds.

(8)Accuracy = TP+TN
TP+TN+FP+FN

(9)Precision = TP
TP+FP

(10)Recall = TP
TP+FN

(11)F1 − score = 2∗precision∗recall
precision+recall
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Experimental designs
The experiments contain three modules: wavelet spectrogram generation, classification model construction 
and evaluation. Firstly, wavelet spectrograms are generated for collecting bird song data. Then, the MSCNN 
and EMSCNN models are built on WT spectrograms, and finally, the classification results are obtained through 
SoftMax. The detail of the experimental design process is shown in Fig. 5.

Module 1: Wavelet spectrogram generation. Wavelet spectrogram is generated using wavelet transform for 
collecting bird song data.

Module 2: Classification model construction. The spectrogram of birdsongs is divided into training and 
validation sets in the ratio of 8:2. The MSCNN and EMSCNN are built by training with input WT spectrograms 
and compared with the state-art such as LeNet, VGG16, MobileNetV2, ResNet101, EfficientNetB7, Darknet53, 
and CNN.

Module 3: Classification model evaluations. The indicators, Accuracy, Precision, F1-score, Recall, Top-1 and 
Top-5, are adopted to evaluate the performance of the above classification models.

Results and discussion
Wavelet spectrogram of birdsongs.  In this study, a total of 30 kinds of birdsong data were collected 
from the public birdsong dataset (https://​www.​xeno-​canto.​org/ and http://​www.​birder.​cn/). Table 1 lists infor-
mation of 30 species of birdsongs including Latin name, genus, family name, and the number of wavelet spectro-
gram samples of birdsongs for each specie.

The wavelet spectrograms of 30 species of birdsongs are shown in Fig. 6. From the wavelet spectrograms of 
birdsongs, we can clearly see that there are great differences between different species of birdsongs. The results 
show that the use of wavelet spectrograms to classify birds has practical significance.

Experimental results.  The experiment constructed the following models: LeNet, VGG16, MobileNetV2, 
ResNet101, EfficientNetB7, Darknet53, SPP-net, CNN Scale 2 × 2 (CNN-S22), CNN Scale 2 × 3 (CNN-S23), 
CNN Scale 3 × 2 (CNN-S32), CNN Scale 3 × 3 (CNN-S33), CNN Scale 5 × 5 (CNN-S55), our MSCNN and 
EMSCNN. Epoch is set to 30 times; the optimization function is Adam. The activation function used by the 
convolutional layer of the CNN model is ReLU. The evaluation of the above models is completed through the 
above 6 indicators.

In this work, CNN architecture with different scales is presented as ‘CNN-SXX’, where ‘XX’ stands for the 
kernel size. For example, CNN-S23 refers to the kernel size is 2 × 3. The structure of CNN models is the same 
except for the different scales of the convolution kernel. The CNN parameters are listed in Table 2, and the kernel 
Size of CNN-SXX models are listed in Table 3.

In the models of LeNet, VGG16, MobileNetV2, ResNet101, EfficientNetB7, and SPP-net the input image size 
is uniformly set to 112 × 112 × 3, 500 as the output of the dense layer, and the SoftMax is 30 to start model training 
and verification. For the Darknet53 model, the input image size is set to 112 × 112 × 3, the SoftMax value is 30, 
and other parameters are default values for training. The results obtained by establishing the models through 
experiments are shown in Table 4.

The Top-1, Top-5, model training time, and the number of iterations of the classification model are obtained 
through experiments, as shown in Table 4.  The time of the ensemble model is the sum of the training time of 

Figure 5.   Experimental design process.

https://www.xeno-canto.org/
http://www.birder.cn/
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CNN-S22, CNN-S23, CNN-S32, and CNN-S33. The Darknet53 model is run in Visual Studio, OpenCV, and 
CMake-GUI compilation environments. The default parameters of Darknet53 are selected, and the results of 
this experiment are obtained by iterating 100,000 times. The remaining model epochs are set to 30 times, and 
821 is calculated for each epoch. The Top-1, Top-5 and running time of 13 models can be observed in Table 4. 
The MSCNN and EMSCNN models proposed in this paper have achieved better results in a limited number of 
iterations and running time than others. The experiment is described according to the model Top-1 and Time 
values, as shown in Fig. 7.

According to the Top-1 comparison of 14 models, it can be seen that our EMSCNN model achieves the 
best Accuracy compared with other models with the same training time. Compared with other models, our 
EMSCNN achieves the most outstanding Accuracy with a slight increase in model training time. It shows that 
our MSCNN and EMSCNN have more significant advantages in efficiency and performance. In order to evalu-
ate the model more comprehensively, the experiment outputs the results of the Accuracy, precision, Recall, 
F1-score, Accuracy and loss with epochs transformation of the validation model, as shown in Tables 5, 6 and 7 
and Figs. 8, 9, 10 and 11.

Table 5 shows the validation of these models: LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7, 
MSCNN and EMSCNN. Our MSCNN and EMSCNN are better than other models and achieve the best results. 
The accuracy of MSCNN is 2.21%, 35.15%, 42.40%, 17.38% and 36.78% higher than LeNet, VGG16, ResNet101, 
MobileNetV2 and EfficientNetB7 respectively. The accuracy of EMSCNN is 4.08%, 37.02%, 44.28%, 19.26%, 
38.65% and 1.88% outperformance to LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7 and MSCNN 
respectively. The comparison of accuracy and Loss on the validation dataset is shown in Fig. 8.

The curves in Fig. 8a show the MSCNN and EMSCNN models perform better on the validation dataset; 
the accuracy curves are more stable and higher than other models with better convergence. The loss curves in 
Fig. 8b shows the loss of the MSCNN and EMCNN are also relatively stable, and their loss value are lower than 
other models and converge better.

Model ablation.  To further study the utility of our proposed models, two schemes are designed to verify the 
performance of MSCNN and EMSCNN, respectively.

Table 1.   Description of dataset.

Number Latin name Genus Family Spectrogram samples

1 Francolinus pintadeanus Francolinus Phasianidae 690

2 Perdix perdix Perdix Phasianidae 1140

3 Coturnix coturnix Coturnix Phasianidae 1367

4 Gallus gallus Gallus Phasianidae 1024

5 Phasianus colchicus Phasianus Phasianidae 1001

6 Lagopus muta Lagopus Phasianidae 973

7 Lyrurus tetrix Lyrurus Phasianidae 1180

8 Cygnus olor Cygnus Anatidae 1444

9 Cygnus cygnus Cygnus Anatidae 1135

10 Branta canadensis Branta Anatidae 580

11 Anas platyrhynchos Anas Anatidae 594

12 Aythya fuligula Aythya Anatidae 800

13 Asio otus Asio Strigidae 696

14 Asio flammeus Asio Strigidae 1900

15 Grus grus Grus Gruidae 758

16 Numenius phaeopus Numenius Scolopacidae 1802

17 Glareola maldivarum Glareola Glareolidae 956

18 Larus canus Larus Laridae 692

19 Milvus migrans Milvus Accipitridae 1668

20 Haliaeetus albicilla Haliaeetus Accipitridae 812

21 Accipiternisus Accipiter Accipitridae 1066

22 Accipiter gentilis Accipiter Accipitridae 647

23 Falco tinnunculus Falco Falconidae 803

24 Cettia cetti Cettia Sylviidae 1500

25 Acrocephalus arundinaceus Acrocephalus Sylviidae 2934

26 Phylloscopus trochiloides Phylloscopus Sylviidae 1022

27 Phylloscopus plumbeitarsus Phylloscopus Sylviidae 1236

28 Elachura formosa Spelaeornis Sylviidae 848

29 Leiothrix lutea (Scopoli) Leiothrix Sylviidae 754

30 Erpornis zantholeuca Yuhina nigrimenta Sylviidae 800
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Different scales of MSCNN model.  The classification results of CNN-S22, CNN-S23, CNN-S32, CNN-S33, 
CNN-S55 and MSCNN models in the validation set are shown in Table 6. The results show that MSCNN achieves 
quite competitive results on the validation set, and all indicators are higher than other scale CNN models. In 
Table 6 the accuracy of MSCNN is 89.61%, which is 2.68%, 0.35%, 1.37%, 0.15%, 0.15% higher than CNN-S22, 
CNN-S23, CNN-S32, CNN-S33, and CNN-S55, respectively. The more details of comparison at different scales 
model and MSCNN are shown in Fig. 9.

In Fig. 9(a), the accuracy of MSCNN is higher in the most epochs, and the fluctuation is slight. In Fig. 9(b), 
the loss of the MSCNN converge faster and has minor changes. Experimental results demonstrate that the multi-
scale CNN model can achieve better classification results, and the model performance is more stable, which is 
helpful for practical application.

Figure 6.   Wavelet spectrograms. The WT spectrogram is arranged from top to bottom and from left to right 
according to the bird number in Table1. The x-axis and y-axis of the wavelet spectrogram represents the time 
domain and frequency-scale domain respectively, and the color is energy information, the hotter color the more 
energy is.

Table 2.   CNN model structure parameters.

Layer Name Type Kernel size Stride Filters Input Size

1 Conv Input Input Layer – – – 112 × 112 × 3

2 Conv 1 Convolution2D n × m 1 64 112 × 112 × 3

3 Pool 1 MaxPool2D 2 × 2 2 – 112 × 112 × 64

4 Conv 2 Convolution2D n × m 1 64 56 × 56 × 64

5 Pool 2 MaxPool2D 2 × 2 2 – 56 × 56 × 64

6 Conv 3 Convolution2D n × m 1 32 28 × 28 × 64

7 Pool 3 MaxPool2D 2 × 2 2 – 28 × 28 × 32

8 Conv 4 Convolution2D n × m 1 32 14 × 14 × 32

9 Pool 4 MaxPool2D 2 × 2 2 – 14 × 14 × 32

10 – Dropout (0.4) – – – 7 × 7 × 32

11 – Flatten – – – 7 × 7 × 32

12 – Dense_1 – – – 1568

13 – Dense_2 – – – 500

14 Output – – – 30
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Different scales of EMSCNN model.  In order to further study the difference of the integrated multi-scale model 
EMSCNN, each model of EMSCNN is built with the single-scale convolution kernel (2 × 2, 2 × 3, 3 × 2, 3 × 3, 
5 × 5) while keeping the CNN structure and parameters unchanged. The results are shown in Table 7.

According to the experimental results, EMSCNN (with multi-scale) proposed in this paper achieves the best 
results in the different scales. In Table 7 the accuracy of EMSCNN with multi-scale is 91.49%, which is 1.56%, 
1.01%, 0.77%, 1.32%, 0.65% higher than the 2 × 2, 2 × 3, 3 × 2, 3 × 3 and 5 × 5 scale of EMSCNN models, respec-
tively. The accuracy of the models on the validation set and the comparative analysis of the change of Loss with 

Table 3.   CNN model structure parameters.

Model Kernel size

CNN-S22 2 × 2

CNN-S23 2 × 3

CNN-S32 3 × 2

CNN-S33 3 × 3

CNN-S55 5 × 5

MSCNN Conv1: 2 × 2 Conv2: 2 × 3 Conv3: 3 × 2 Conv4: 3 × 3

EMSCNN Model1: 2 × 2 Model2: 2 × 3
Model3: 3 × 2 Model4: 3 × 3

Table 4.   Model classification results.

Model Top-1 (%) Top-5 (%) Time(s) Epochs(iterations)

LeNet 87.41 97.38 958 30 × 821

VGG16 54.46 82.72 1127 30 × 821

ResNet101 47.21 78.49 1807 30 × 821

MobileNetV2 72.23 92.79 1243 30 × 821

EfficientNetB7 52.84 79.94 3839 30 × 821

Darknet53 64.73 92.14 32,040 100,000

SPP-net 78.42 95.82 1165 30 × 821

CNN-S22 86.94 97.55 1017 30 × 821

CNN-S23 89.26 97.98 1027 30 × 821

CNN-S32 88.24 97.93 1023 30 × 821

CNN-S33 89.46 97.93 1008 30 × 821

CNN-S55 89.46 97.99 1022 30 × 821

MSCNN 89.61 98.19 1017 30 × 821

EMSCNN 91.49 98.70 1856 30 × 821

Figure 7.   Comparison of Top-1 and Time of different models.
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epoch are shown in Fig. 10. It can be seen that the multi-scale convolution kernel EMSCNN model can converge 
quickly, and can obtain better accuracy.

Discussion.  In this paper, we consistently demonstrate that multi-scale CNN models outperform other 
models for learning wavelet-transformed spectrograms, especially when ensemble multi-scale applications.

With respect to the recognition of speech and birdsong, many researchers often learn multi-scale features 
directly from waveforms42–44 or use short-time Fourier transforms19,45, and Mel filters21,46 to generate spectro-
grams as input into CNN. Mel filtering is designed to imitate human hearing habits, and there is a lack of evi-
dence about whether birds have the same characteristics. The method of directly extracting multi-scale features 
from birdsong waveforms has limited feature scales, and uses a fixed scale of STFT to extract a single feature. 
The above methods are difficult to adapt the fast-changing frequency of birdsong in a short period of time. 
The wavelet transform for multi-resolution analysis can effectively overcome these shortcomings. Continuous 
wavelet transform generates more discriminative multi-scale spectrograms for subsequent convolutions. Sec-
ondly, considering the different sensitivity of the convolution kernel scale to the spectrogram, the small-scale 
convolution kernel is used to extract high-frequency information, and the large-scale convolution kernel extracts 

Table 5.   Model classification results.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

LeNet37 87.41 86.57 86.30 86.27

VGG1638 54.46 56.83 51.73 53.20

ResNet10139 47.21 51.03 44.30 44.67

MobileNetV240 72.23 74.83 70.03 71.37

EfficientNetB741 52.84 53.70 50.73 51.53

SPP-net36 78.42 79.13 76.90 77.57

MSCNN 89.61 89.53 88.90 88.90

EMSCNN 91.49 90.73 90.07 90.30

(a) Accuracy comparison of different models (b) Loss comparison of different models

Figure 8.   Comparison of MSCNN, EMSCNN and other models in the validation set.

Table 6.   Classification results of MSCNN at different scales.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

CNN-S22 86.94 86.97 85.73 86.17

CNN-S23 89.26 89.00 88.23 88.60

CNN-S32 88.24 89.00 88.23 88.60

CNN-S33 89.46 88.93 88.37 88.43

CNN-S55 89.46 89.50 88.50 88.83

MSCNN 89.61 89.53 88.90 88.90
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low-frequency information. So as shown in Fig. 2, multi-scale convolution kernels are explored to build MSCNN 
and EMSCNN models.

Recently, CNN has received more attention from researchers in various fields. The structures CNN have 
shown great potential in classification problems as well as other tasks such as object detection, semantic seg-
mentation, natural language processing. The well-known architectures such as LeNet, VGG16, MobileNetV2, 
ResNet101, and EfficientNetB7 have become more popular in image classification. Few people have built multi-
scale CNN model with WT spectrum for birdsong recognition. This study explored the characteristic of WT 

(a) Accuracy comparison of different scale (b) Loss comparison of different scale

Figure 9.   Comparison of MSCNN model results at different scales in the validation set.

Table 7.   Classification results of EMSCNN at different scales.

Model Scale Accuracy (%) Precision (%) Recall (%) F1-score (%)

EMSCNN

2 × 2 89.93 89.87 88.83 89.10

2 × 3 90.48 90.33 89.50 89.80

3 × 2 90.72 90.43 89.97 90.07

3 × 3 90.17 89.70 89.67 89.53

5 × 5 90.84 90.57 89.99 90.17

Multi-scale 91.49 90.73 90.07 90.30

(a) Accuracy comparison of different scale (b) Loss comparison of different scale

Figure 10.   Comparison of EMSCNN model results at different scales in the validation set.
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of birdsong and multi-scale CNN to propose the MSCNN and EMSCNN architectures. Compared with the 
performance of LeNet, VGG16, MobileNetV2, ResNet101, and EfficientNetB7, our MSCNN model accuracy 
improved 2.21–42.4%, EMSCNN model achieves an increase of 2.21–44.28% compared to other models.

Similar to the multi-scale model proposed in this paper, the SPP-net36 model achieves better performance 
in the classification field. SPP-net trains a deep network with a spatial pyramid pooling layer. It can deal with 
different size of input images. Features extracted at any scale can be pooled. Pyramid pooling makes the network 
more robust. SPP-net has been applied to object detection, image classification and other fields. In order to bet-
ter reflect the performance of the model proposed in this paper, an image multi-scale model SPP-net was built 
in the experiment, and trained on the data set used in this paper. The results are shown in Table 5 and Fig. 11.

The performance of MSCNN and EMSCNN proposed in this paper are better than SPP-net. The accuracy 
of SPP-net is 78.42%, which is 11.19%, 13.07% lower than MSCNN and EMSCNN, respectively. Experimental 
results demonstrate the effectiveness of the model proposed in this paper, which may provide a reference for the 
establishment of subsequent multi-scale models.

However, the method proposed in this paper still has some limitations. First of all, this paper only uses the 
wavelet transform extraction method to generate the bird song spectrogram, and does not use other feature 
extraction methods. Second, the proposed network has only been tested on 30 kinds of bird song data, and it is 
uncertain whether it will be effective in the increasingly complex birdsong data. Third, the division method of 
the convolution kernel may not be the optimal solution, and further exploration is needed.

Conclusion
Based on the WT spectrogram, this paper proposed a classification method and explored MSCNN and EMSCNN 
to solve the problem of birdsong classification. We first generated the WT spectrograms of 30 species birdsongs. 
The MSCNN and EMSCNN classification models were constructed on the WT spectrogram. The results show 
that in the 5 × 5 convolution kernel decomposition experiment, the performance of the MSCNN model is bet-
ter than that of LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7, Darknet53 and SPP-net models. The 
accuracy rate of EMSCNN is more excellent than MSCNN with an increase of 1.88%. In the experiments on 30 
bird species, MSCNN and EMSCNN effectively improved the classification effect of the model while ensuring the 
stability and efficiency of the model compared with other models. All indicators are higher than other models, 
indicating that the models proposed in this paper have better generalization ability. In the future, we will fuse 
multi-view birdsong features to explore the applicability of the proposed network, and extend the MSCNN and 
EMSCNN models to more bird song audios and other audio data classification tasks.
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