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ABSTRACT Nocturnal enuresis is a bothersome condition that affects many children and their caregivers.
Post-voiding systems is of little value in training a child into a correct voiding routing while existing
pre-voiding systems suffer from several practical limitations, such as cumbersome hardware, assuming
individual bladder shapes being universal, and being sensitive to sensor placement error. Methods: A
low-voltage ultrasound system with machine learning has been developed in estimating bladder filling status.
A custom-made flexible 1D transducer array has been excited by low-voltage coded pulses with a pulse
compression technique for an enhanced signal-to-noise ratio. In order to minimize the negative influence
of possible transducer misplacement, a multiple-position training strategy using machine learning has been
adopted in this work. Three popular classification methods, KNN, SVM and sparse coding, have been utilized
to classify the acquired different volumes ranging from 100 ml to 300 ml into two categories: low volume and
high volume. The low-volume category requires no further action while the high-volume category triggers
an alarm to alert the child and caregiver. Results: When the sensor placement is ideal, i.e., the position of the
practical sensor placement is on spot with the trained position, the precision and recall of the classification
using sparse coding are 0.957± 0.02 and 0.958± 0.02, respectively. Even if the transducer array is misplaced
by up to 4.5 mm away from the ideal location, the proposed system is able to maintain high classification
accuracy (precision ≥ 0.75 and recall ≥ 0.75). Category: Early/Pre-Clinical Research

INDEX TERMS Bladder filling status, bladder volume, machine learning, sparse coding, ultrasound system,
wearable system.
Clinical and Translational Impact: The proposed ultrasound sensor system for nocturnal enuresis is of
significant clinical and translational value as it addresses two major issues that limit the wide adoption of
similar devices. Firstly, it offers enhanced safety as the entire system has been implemented in the low-
voltage domain. Secondly, the system features ample tolerance to sensor misplacement while maintaining
high classification accuracy. These features combined provide a much more user-friendly environment for
children and their caregivers than existing devices.

I. INTRODUCTION

NOCTURNAL enuresis (NE) is the involuntary voiding
of urine during sleep that occurs at least twice a week in

children aged five years or above, according to the definition
from the International Child Continence Society (ICCS) [1].

It is a devastating condition in children that affects their
quality of life and emotional well-being. Approximately 5%
to 10% of children suffer from NE worldwide. In China,
7.3% of children and adolescents suffer from NE, and this
prevalence has been on an increasing trend over the recent
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years [2]. Although the majority of children will outgrow the
condition, the persistence of NE can lead to negative psy-
chosocial outcomes, including decreased self-esteem, social
isolation, and anxiety [3].

There are several treatment options for NE, including
medications, behavioral therapies, and sensor-based alarm
interventions. Desmopressin is a drug commonly used in the
treatment of NE and has a significant clinical response rate.
But it is also associated with about 65% relapse rate and
some undesirable side effects, such as dizziness, anorexia
and vomiting [4]. Urotherapy is a behavioral therapy which
involves implementing straightforward interventions such as
restricted fluid intake and educating individuals on opti-
mizing voiding patterns through lifestyle adjustment. These
interventions are known for their simplicity and have little
side effects. However, persistent behavioral therapy can be
very demanding for children, and low compliance may lead
to low effectiveness [5].

Sensor-based bedwetting alarm systems have minimal side
effects and do not cause dependency, making them to be the
first-line treatment for children with NE in the guidelines of
ICCS [6]. Commercially available bedwetting alarm systems
rely on a humidity sensor which has been embedded into
a child’s undergarment. When the child starts to urinate,
the increased wetness of the undergarment is detected and
triggers the alarm, waking up the child and caregiver. How-
ever, such a post-voiding alarm occurs after the child has
started urinating. Despite their simplicity and effectiveness
in reporting a bedwetting event, humidity sensor-based alarm
systems fail to provide pre-voiding warnings. Post-voiding
alarms have little use in training a child to develop reflexive
control mechanism of micturition [7], [50]. In addition, post-
voiding alarm systems do not change the fact that the quality
of sleep for both the child and his/her caregiver is signifi-
cantly affected by the burdensome routing, i.e., changing the
child’s diaper and possibly changing the child’s wet clothes
and beddings at midnight.

In recent years, many non-invasive sensor-based monitor-
ing techniques, such as near-infrared spectroscopy (NIRS),
electrical impedance tomography (EIT), and ultrasound (US),
have been applied to the field of bladder monitoring with
the common goal of producing a pre-voiding alert. NIRS
can estimate the increase in bladder volume by detecting
the absorption of infrared light by different urine volumes
at specific wavelengths [8]. However, NIRS can potentially
cause skin damage if a child is exposed to infrared light for
a prolonged period of time [9]. EIT can determine bladder
filling status by employing an electrode belt which is placed
along the perimeter of the lower abdomen of a user. It detects
impedance distribution and conductivity variations within the
perimeter of the electrode belt. The changing impedance is
a useful indicator for the variation of the bladder volume.
An EIT device typically requires more than 16 electrodes
to encircle the pelvis region [10] in order to obtain the
bladder shape information on the transverse plane. How-
ever, such an all-around electrode belt is sensitive to body

movements and is uncomfortable to wear at night. US is
a well-established clinical technique for imaging the inner
human organs. Clinical US imaging devices operating in
the brightness mode (B-Mode) have demonstrated sufficient
accuracy in estimating bladder volumes [11], [12]. A B-Mode
US image consists of hundreds of pixels whose brightness
correlates to the amplitude of reflected echo signals. Bladder
tissue and urine have very different acoustic impedance, caus-
ing ultrasound waves to reflect at the tissue-urine interface.
Hence, the boundaries between the bladder tissue and urine
are evident on a B-mode US image, illustrating the physi-
cal shape of a bladder. With a standard B-mode ultrasound
(US) device, the information on the height (H ), width (W ),
and depth (D) of a bladder can be extracted. The height is
determined from the maximum vertical distance between the
bladder walls in a sagittal-plane image, the width from the
maximum horizontal distance between the bladder walls in
a transverse-plane image, and the depth from the maximum
horizontal distance between the bladder walls in a sagittal-
plane image. Assuming a bladder is of an ellipsoid shape,
its volume can be calculated by the following empirical
equation [13]:

Volume(ml) = 0.52 × H (cm) ×W (cm) × D(cm) (1)

Although a clinical B-modeUS device has been considered
as a reliable tool for bladder scanning and volume estimation,
the equipment itself is bulky and expensive. To cover a wide
viewing angle so the entire bladder is within the vision,
a US probe with 128 or more transducer elements is usually
required in a B-mode US system. The high number of trans-
ducer elements significantly increases system complexity and
cost, limiting its usage to business users, such as those being
used in clinics. To meet the low-cost need of usage in a home
environment, portable US devices working in the amplitude
mode (A-mode) have been proposed. An A-mode US device
determines the positions of a bladder’s posterior and anterior
walls by measuring the amplitude and time of flight (TOF)
of echoed US signals. While a B-mode US system is able
to show the physical shape of an entire bladder, an A-mode
US system describe a bladder using limited numbers of dots.
Hence, an A-mode system trades the measurement accu-
racy for cost. Using a single transducer placed on the lower
abdomen, as shown in Fig. 1(a), Van Leuteren et al. found
a correlation between the depth of anterior-posterior (A-P)
walls and the volume of a bladder in a urodynamic study
consisting of 30 children [14]. Despite its simple structure,
the bladder monitoring relied on only one transducer and a
slight position change of the transducer could cause signifi-
cant measurement error. In Fig. 1(b), Niu et al. employed a
linear array of transducers to scan the bladder in the sagittal
plane [15]. The maximum depth, Dmax, was chosen among
a group of distances between anterior and posterior walls
measured by transducers at different heights. The height, H ,
was decided by the vertical height difference between the
highest and lowest transducers to which the bladder was visi-
ble. The bladder volume was then estimated by the following
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FIGURE 1. Existing wearable US systems for bladder volume monitoring.

empirical equation [16]:

Volume (ml) = 7.1 × H (cm) × Dmax (cm) − 23 (2)

A linear transducer array offers more accurate mea-
surement on the bladder volume and is less sensitive to
transducers’ placement errors than a single transducer. How-
ever, its estimation on the bladder volume is based on the
assumption of a bladder shape following a simple geometric
model, such as a sphere or ellipsoid. In practice, bladder
shapes vary on an individual basis and cannot be assumed
to be generic. Palanchon et al. proposed a US monitoring
system that employed five transducers with predetermined
angles [17], as shown in Fig. 1(c). One sound beam was
oriented perpendicularly to the bladder anterior wall (denoted
as 0◦), while other four beams were fixed at −25◦, 25◦,
25◦, 40◦ to estimate the depth, D, and height, H , of the
bladder. Different bladder shapes and volumes were visible
to different transducers. Depending on the set of transducers
involved in the measurement, the system had a sophisticated
algorithms in deciding the exact depth and height. Finally, the
bladder volume was calculated by:

Volume (ml) = k × H (cm) × D (cm) (3)

where k is a coefficient determined through linear regression
analysis of the experimental data. An experiment involv-
ing 33 volunteers demonstrated that the average error using
this method was approximately 12.5% [17]. Tanaka et al.
reconstructed a bladder image by cumulative fitting of mul-
tiple cones, crucibles, and hemispheres [18], as depicted in
Fig. 1(d). Therefore, the total volume of the bladder was the
sum of the individual volumes from separable parts. In a

trial based on 61 volunteers with bladder volumes ranging
from 44 ml to 506 ml, the estimated volumes using this
method showed good agreement (correlation coefficient r =

0.98) with the actually voided volumes. Using this method,
the arrangement of individual US elements in the transducer
array and the exact position of the array’s placement are two
major factors that affect the accuracy of the measurement.
In Fig. 1(e), Zhang et al. utilized five phase arrays each
of which consists of 64 US transducer elements [42]. Each
phase array has a beam steering range greater than 30◦.
The five phase arrays were placed in a cross arrangement,
capable of scanning both the transverse and sagittal planes
without the need for manually rotating the US patch. After
acquiring the bladder images in the transverse and sagittal
planes, the length, width and height of the bladder, which
were the key factors for estimating the bladder volume, were
extracted from the images. A human clinical study using this
method showed only −3.2 ± 6.4% mean error in estimating
bladder volume when being compared a reference clinical
system. A similar design but with a different transducer
array configuration was presented in [19]. The generation of
US images from phase arrays usually demands substantial
computational resources, leading to reduced battery time due
to high power consumption. In addition, the high cost of
phase-array transducers hinders its widespread applications
in wearable devices. In 2021, Jo et al. designed a wearable
bladder scanner system consisting of 25 standalone transduc-
ers embedded in a 5 × 5 matrix [20], as shown in Fig. 1(f).
In contrast to the phase array in Fig. 1(e) which had a steerable
range, the 25-transducer matrix in Fig. 1(f), could only send
acoustic signals in a predefined direction with no beam-
steering capability. An ellipsoid fitting algorithmwas utilized
to estimate the volume based on the acquired spatial informa-
tion. In an experiment using a porcine bladder submerged in
a water tank, the device had a mean error of 24 ml when the
expected bladder volume ranged from 50 ml to 450 ml.

In the aforementioned wearable US systems, the blad-
der shape was often approximated as a simple ellipsoid or
sphere. However, according to a research study including
146 children, bladder shapes have been categorized as sphere,
ellipsoid, cuboid and pyramid among which ellipsoid and
sphere take account for less than half of the total sample
size [21]. The practical bladder shape can have a signifi-
cant impact on the accuracy of bladder volume estimation.
Machine learning (ML) is a useful tool to obtain an accurate
estimation of the bladder filling status by training a large
number of samples without relying on any pre-determined
hypothetical geometric bladder shape or any specific mathe-
matical equations for calculating the volume. Kuru et al. used
ML methods to determine bladder filling status and to trigger
a pre-voiding alarm when the bladder volume reaches three
quarters of the maximum fullness [22]. The reported sensi-
tivity and specificity values were 0.89 and 0.93, respectively,
which was higher than any other work that used a single
US transducer element without using any ML algorithm.
Kuru’s first version of the hardware included only a single
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transducer and suffered from the possible outcome that the
transducer could miss the bladder completely, resulting in
significant accuracy degradation. His second version of the
hardware used five US transducers (including 1 transmitter
and 4 receivers) in order to accommodate possible placement
errors [23]. The information from the four receivers was first
averaged before being processed for extracting the bladder
volume. However, the new hardware still did not solve the
problem that some of its receiving transducers could miss
the bladder, reducing the number of effective transducers.
In their latest study [24], Neural Networks (NN) were applied
for processing and classifying data acquired from US trans-
ducers. The reported sensitivity and specificity values were
raised to 0.99 and 0.995 with almost identical hardware as
their previous versions.

Although various wearable US devices have been proposed
over the past decades, there are still several unmet challenges
that prevent US-based bladder sensors from mass usage.
In this paper, several novel techniques have been proposed
to address the existing challenges.
Challenge 1: Conventional methods for bladder volume

estimation rely on some unrealistic hypotheses, such as blad-
der shape being generic and sensors always being placed
at optimal locations. Such incorrect hypotheses can lead to
significant errors at practical conditions.
Proposed Solution: ML methods which does not

rely on any pre-determined hypothetical geometric blad-
der shape or any specific mathematical equations for
calculating the volume are utilized to classify the
acquired samples under different shape and placement
conditions.
Challenge 2: Since US signals attenuate quickly in a

human body, most existing US device use high-voltage (HV)
pulses, e.g., greater than 100 V, to excite US transducers in
order to obtain sufficiently high signal-to-noise ratio (SNR).
However, HV pulses require expensive HV-compatible hard-
ware, consume a significant amount of power, and are more
likely to cause thermal and cavitation effects in a human
body [25] when being compared with their low-voltage (LV)
counterparts.
Proposed Solution: The US transducers in this work are

excited by LV pulses to conserve power and improve bio-
safety. To maintain a high SNR, the LV US signal is coded
at the transmitter and later decoded at the receiver using SNR
enhancement techniques, such as sequence modulation and
pulse compression.
Challenge 3: In many existing US-based bladder monitor-

ing systems, it has been assumed that among all receiving
transducers, the one that was earlier responsible for transmit-
ting the US signals sees the strongest echoed signal. However,
since the bladder surface is curved and prone to mirror
reflection, the receiving transducer that sees the strongest
echoed signal is not necessarily the transmitting transducer.
The incorrect assumption can either put unnecessary burden
to the readout circuits or lead to neglection of more important
information from a nearby transducer.

Proposed Solution: Similar to the full matrix cap-
ture (FMC) method that has been widely adopted in
non-destructive testing applications [26], the elements in a
multi-dimensional transducer array can be formed into dif-
ferent transmitting-receiving combinations for capturing the
echoes from an extensive range. For cost saving purpose, 1D
array is preferable to 2D and 3D arrays.
Challenge 4:Given that the exact location of the biological

bladder is not visually accessible from the abdominal surface,
there is a risk of the scanning device being positioned too
high, resulting in the bladder being missed, or positioned
too low, causing echoed signals to originate from the pubic
bone rather than the bladder. Trial-and-error-based placement
is effectively a hit-and-miss process, significantly compro-
mising user confidence in such a sensor device. Some other
placement procedures involve some sophisticated protocols
in finding the optimal location. It takes time for new users to
familiarize themselves with complex placement procedures,
leading to poor user experience.
Proposed Solution:We propose a simple way to place the

transducer array, suitable for untrained users. It offers ample
tolerance to displacement errors.

II. METHODS
A. TRANSDUCER ARRAY
A custom US transducer array has been utilized in this work.
The 1D array consists of 11 square US transducer elements
mounted on a double-sided flexible printed circuit (FPC)
board (see Fig. 2(a)). Each element (width= length= 10mm,
thickness = 1 mm, pitch = 11 mm) is made of piezoelectric
ceramic (PZT-5H) with silver-coated electrodes (thickness =

80 µm). The resonance frequency of these elements are
1.95 ± 0.16 MHz. In Fig. 2(a), from top to bottom, ele-
ments S1 to S10 are bladder detection sensors pubic bone.
Fig. 2(b) shows that the transducer array can be easily curved
to wrap around a cylinder with a 9-cm diameter. The center-
to-center distance between S1 and S10 is 9.9 cm, greater than
the maximum possible bladder height over the pubic bone
of a typical 9-year-old child whose full bladder volume is
approximately 300 ml. It ensures that even if the transducer
array is misplaced from the ideal location by up to ±4.5 mm,
the bladder is still visible to all ten bladder detection sensors.
A displacement tolerance of ±4.5 mm is sufficient because
of the additional US element for locating the pubic bone.

Although our US transducer is of narrow band whose
−3dB bandwidth is only 17% of the center frequency, it offers
relatively high electromechanical coupling factor (Kt= 0.58)
and low unity cost (unit price < 1 USD), especially when
being compared with the high-profile US transducers used
in diagnostic US imaging. Both the US transducers and their
routings are placed on the top side while the bottom side of
the FPC board works as a ground plane. For enhanced SNR,
the routing tracks on the top side have been further covered
by an additional electromagnetic shielding layer (thickness=

18 µm) to prevent the faint echoed signals from being
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FIGURE 2. (a) The front view of the US transducer elements mounted on
an FPC board. (b) The rear view of the FPC board.

contaminated by surrounding electromagnetic interferences.
As the thickness of the FPC is merely 0.2 mm, it can be flexed
to conform to the natural curvature of a user’s abdomen.

B. HARDWARE
The functional block diagram of the proposed US system is
shown in Fig. 3. It consists of a signal processing unit (in a
computer), a pulse generator, a transmitting multiplexor (TX
MUX), a receiving multiplexor (RX MUX), a T/R switch,
an LV small-signal amplifier and an analog-to-digital con-
verter (ADC). The hardware system works as follows:

i) A custom coded signal is first described in MATLAB
in a PC before been transmitted to a low-voltage arbitrary
waveform generator (DG2052, RIGOL®).
ii) A switch array with ultra-low on-resistance (ADG1412,

ADI®) has been configured as a TX MUX so that the gen-
erated voltage pulses with Vpp = 20 V can be steered to the
target US transducer element in the 1 × 11 array.
iii) Echoed signals are received by the receiving ele-

ments in the US transducer array and the signals are passed
on for signal processing by the RX MUX. A T/R switch
(MD0100, Microchip®) is usually placed between the RX
MUX and the small-signal amplifier. This prevents large
excitation pulses from coupling to the front-end of the ampli-
fier, allowing only small echoed signals to be seen by the
amplifier’s input and maintaining the amplifier saturation
free. The amplifier (AD8336, ADI®) consists of a low-
noise front-end amplifier (LNA) and a programmable gain
amplifier (PGA). AnArduino Due provides an analog voltage
for setting the voltage gain of the PGA. The total gain is
adjustable from 0 dB to 60 dB, depending on the amplitude
of received echo signals. The amplified echo signals are then
acquired by a high-speed data acquisition card (USB8916,
ART Technology®). The digitized signals are sent to a PC
for signal processing using the MATLAB’s Filter Design
and Analysis toolbox. A 60th-order high-pass finite impulse
response (FIR) filter has been constructed for removing
low-frequency signals below 1.5 MHz. Both the TX and RX
MUXs are controlled by the Arduino Due, as shown in Figs. 3
and 4. The control signals for TX MUX are also used for

FIGURE 3. The functional block diagram of the proposed wearable US
bladder monitoring system.

FIGURE 4. Customized circuits for transmitting, receiving, and logic
control of US pulses.

triggering the waveform generator while the control signals
for RXMUX are used for triggering the data acquisition card.
The acquired signals are transmitted to the computer via a
USB interface which can be replaced by a wireless link in the
future.

C. CONTROL ALGORITHM
For an efficient FMC, a robust control algorithm is neces-
sary for sequentially interrogating different US transducer
elements. The proposed workflow of acquiring echoes from
each individual element is shown in Fig. 5(a). Each data
collection period has been divided into multiple measurement
rounds. In the first round, the element S1 is responsible for
transmitting while the elements S1 to S10 receive echoes.
In the second round, the transmitting element changes to S2.
According to the reciprocity principle, the S1 element does
not need to receive any more, and the S2 to S10 elements
are put into the receiving mode sequentially. The process is
repeated until the element S10 completes transmitting the
signal and receiving the echo. A total of 55 echo signals have
been received during the ten different rounds. During the ith
round, elements are sequentially enabled for acquiring the
echoes. Each receiving element is enabled for 4 ms and rests
for 4 µs before the next element is enabled, as depicted in
Fig. 5(b). Hence, the ith round lasts for T (ms):

T = 4 × (11 − i) + 0.004 × (10 − i) (4)
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Within the 4 ms when a receiving element is enabled, the
Tx broadcasts the coded signal (i.e., TX pulse) four times in
1ms interval. Each corresponding echo has been captured and
averaged for enhanced SNR. Due to the very short duration of
the time frame, the bladder appears ‘static’ in bladder shape.
The TX pulses and echo acquisition are synchronized by a
trigger signal (see Fig. 5(b)). The excitation pulse lasts for
18 µs which is long enough to enclose the entire customized
coded signal (see Section-D for further details). The duration
of each echo acquisition, Tacq(s), should be long enough to
capture the slowest echo. Tacq(s) is determined by the maxi-
mum scanning depth Dmax (m) and the maximum gap Gmax
(m), which is the center-to-center distance between elements
S1 and S10:

Tacq =
Dmax +

√
D2
max + G2

max

c
(5)

where c = 1540 m/s is the typical speed of acoustic signal
in soft tissue. Assuming an ellipsoid-shaped bladder with
a volume of 300 ml, the distance between the anterior and
posterior walls may reach 10 cm, and with the addition of a
distance of 4 cm from the anterior wall to the skin surface of
abdomen, a representative distance between the skin surface
of abdomen and the posterior wall is 14 cm. To accommo-
date possible variations among individual patients, we have
designed a US system that is able to measure up to 18 cm
away from the abdomen skin. While the Gmax is 9.9 cm in
the proposed 1D transducer array, Tacq = 250 µs is long
enough for recording all possible echo signals reflected from
the bladder. The 250-µs signal contains 10,000 samples in the
time domain under 40Msps sampling rate.

The shortest distance from the abdomen skin to anterior
bladder wall occurs when the bladder is full. In practice, this
shortest distance is about 2cm to 4 cm varying in individuals,
so the echo signal from a scanning depth less than the shortest
distance bears no bladder-shape-related information. Hence,
the first 0 to 3000 samples in raw signal can be discarded and
the final length of raw echo signal is 7,000 samples in each
channel.

D. US SIGNAL PROCESSING
In this work, the amplitude of excitation pulses is limited
to ±10 V which is lower than what was reported in similar
works. Low-voltage excitation pulses lead to smaller echoed
signals. In order to enhance the SNR at the US receivers,
coded excitation pulses, such as the ones using the Barker
code, Golay code, and chirp code have been used [27].We opt
for the Barker code because the amplitude of the side lobes
for Barker coding is smaller than those of other codes of
the same length [28]. However, short Barker code is not
compatible with the low-cost transducer used in this work
only has 17% fractional bandwidth and is not suitable for
short-pulse excitation because the bandwidth of the excita-
tion signals is much larger than that of the transducer itself.
To alleviate the bandwidth problem and to concentrate the
majority of signal energy within the limited bandwidth of the

FIGURE 5. (a) The working roles of US elements in different rounds.
Elements in gray color are inactive; (b) Time sequence for transmitting
and receiving US pulses.

transducer, the total length of the Barker code is expanded by
modulating a 5-bit Barker code B(5) = {1, 1, 1, −1, 1}where
{1} and {−1} in the code sequence represent 0◦ and 180◦

phase signals, respectively, by S(7) = {1, 1, 1, 1, 1, 1, 1}
which is a 7-cycle continuous sine wave. By choosing the
frequency of the sine wave to be 1.95 MHz which is the same
as the resonant frequency of the transducer, we are able to
confine most of the energy in the Barker code within the
limited bandwidth of the chosen transducer. The modulation
process is the Kronecker product of the Barker code and base
sequence [29], that can be described by (6):

X (n× m) = B (n) ⊗ S (m) (6)

where the B(n) is Barker code sequence, S(m) is base
sequence, and X (n × m) is the modulated sequence. The
original 5-bit Barker code is shown in Fig. 6(a) while Fig. 6(b)
shows the output waveform after the 5-bit Barker code is
modulated with a 7-bit base sequence. Fig. 6(c) shows the
frequency spectrum of the Barker code with and without
modulation. The original 5-bit Barker code (red dash line)
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FIGURE 6. (a) The output waveform of a 5-bit Barker code without
modulation; (b) The output waveform of a 5-bit Barker code modulated
with a 7-bit base sequence; (c) The frequency spectrum of the Barker
codes with and without modulation, and the pulse-echo signal acquired
by the transducer.

without modulation has much wider bandwidth than that of
the practical transducer (black solid line). Hence the trans-
ducer is effectively a band-pass filter and causes significant
energy loss of the transmitted signal. However, the signal
bandwidth of the modulated Barker code (blue dash-dot line)
fits well within the narrow bandwidth of the transducer.

The decoding process of received echo is filtered by a
matched filter X (-n) which is in the form of time-reversed
copy of X (n) in the time domain. The process of matched
filter output compresses the long pulse into a much shorter
duration pulse is called pulse compression. In this technique,
the coded excitation with long pulse duration is expected to
increase the SNR of the echo. The SNR at the US receiver’s
input is defined as [27]:

SNR = 10 · log10
Psignal
Pnoise

= 10 · log10

(
A2signal, RMS

A2noise,RMS

)
(7)

where the Psignal and Pnoise are the power of signal and noise,
respectively. Asignal,RMS and Anoise,RMS are the root-mean-
square amplitude of the signal and noise, respectively.

Theoretically, the SNR gain of a decoded echo is the SNR
ratio of the decoded echo to the original echo, which related
to the total number of chips in the coded pulse [27] and can
be calculated by:

SNRgain=10 · log (N ·M) (8)

FIGURE 7. (a) Simulated echo before (blue solid line) and after (red
dotted line) the pulse compression; (b) Measured echo before (blue solid
line) and after (red dotted line) the pulse compression. The SNR is
enhanced by using the technique of pulse compression.

where the N and M are the length of the Barker code and
base sequence, respectively. ForN= 5,M= 7, the theoretical
gain using the coded signal is 15.4 dB without increasing the
excitation voltage. The waveforms in Fig. 7 show the SNR is
enhanced by the pulse compression. It also can be seen that
the measured echo’s SNR gain (see Fig. 7(b)) obtained using
pulse compression technique is 12.6 dB, which is 2.8 dB
less than the SNR gain (15.4 dB) of simulated echo (see
Fig. 7(a)). The reason for the reduced gain is that due to
the non-linear attenuation of the transmission medium, the
waveform of practical echo does not completely match the
ideal Barker code waveform, thus affecting the effectiveness
of pulse compression. It is worth noting that the echo after
the pulse compression consists of two peaks in the main
lobe. In our experimental setup, the transducer array was
attached to the outside wall of the water tank. When the
sound wave passes through the water tank’s wall, it is par-
tially reflected at the solid-liquid interface and re-reflected
by the surface of transducer in a short time. The time interval
between the two peaks equals to two times the thickness of the
tank wall (5.5 mm) divided by the acoustic speed in acrylic
(2650 m/s). This is the reason why the two peaks appear in
the main lobe. Comparing the waveforms before and after
pulse compression, the use of coded excitation and pulse
compression technique can significantly improve the SNR of
echoes, which is crucial for subsequent signal processing and
classification.

E. DATA ANALYSIS IN THE TIME-FREQUENCY DOMAIN
Apart from echo variations in the time domain, the accumu-
lation of urine in bladder also produces a nonlinear effect
leading to variations in the frequency domain [22]. Hence,
analyzing the echo signals in both the time and frequency
domains can potentially enhance the prediction accuracy. The
short-time Fourier transform (STFT) is a common method
for analyzing how the frequency contents of a signal changes
over time. The process of STFT is to divide a raw signal into
many small segments by a sliding window and to perform
discrete Fourier transform on each individual segment. The
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FIGURE 8. (a) Diagram of the device positioning (from the view of sagittal
plane); (b) Workflow of positioning the device by users.

outcome of the STFT is given as (9) [30]:

X (m, n) =

+∞∑
k=−∞

x (k)w (k − n) e−j
2π
N mk (9)

where x(k) is the echo signal in the time domain, X(m,n) is
a function of both time and frequency, w(k) is the transfer
function of the sliding window, n represents the time-shift
parameter of the window, m is the frequency index, and N
is the total length of signal. When each segment is non-
overlapped, there may be abrupt changes between successive
windows, causing undesirable artifacts. Overlapping win-
dows can mitigate this issue by smoothing the transitions
between successive segments [31]. The length of the window
is determined by trading-off the time resolution and fre-
quency resolution according to the Heisenberg’s uncertainty
principle. In this work, the acquired signal in eachUS channel
is divided into segments by STFT using a Hamming window.
Each Hamming window contains 128 samples, 50 of which
were overlapped with the next window.

F. ASSISTANT POSITIONING
In practice, if the US sensor is placed too low, the bladder will
not be visible to the lower part of the transducer array as only
the echoes from the pubic bone, not the bladder, are detected.
The conventional placement method tends to be empirical.
For instance, it is recommended to place the US sensor 5 cm
above the pubic bone. This method can avoid placing the US
transducer over the pubic bone. But if the US sensor is placed
too high, it can also result in a reduction in the number of
effective US elements.

We propose an assistant positioning method by using the
lowest transducer element, i.e., S11 in the custom array,
for aligning with the pubic bone (see Fig. 8(a)). Hence the
positions of S1 to S10 are higher than the pubic bone.

Our method utilizes the fact that the typical acoustic
impedance of a pubic bone (Z = 7.8 MRayl) is significantly
different from those of the surrounding soft tissues (Z =

1.6 MRayl), so a US beam is repeatedly reflected back and
forth between the pubic bone and the transducer, producing
typical reverberation artifacts in B-mode images [32]. Such
an effect also appears in A-modeUS, as 2 or 3 high-amplitude

wave crests are evident in the A-mode echoes reflected from
pubic bone. The time intervals between adjacent wave crests
are determined by the TOF for an ultrasound to travel a
round trip between the S11 and pubic bone. In contrast, the
amplitude of echoes from the bladder are much lower than
that of the pubic echo. The high-amplitude wave crests are
used as a simple biomarker for identifying the pubic bone.

The protocol for placing the custom transducer array is as
follows:

Firstly, the belly button, a prominent landmark on the
abdomen, is used as a starting position for placing the trans-
ducer array. The linear array is placed on a subject’s abdomen
and the mid-line of the linear sensor array matches the lin-
eae mediana anterior. Then, the subject needs to align the
3rd lowest US element from the bottom with his/her navel.
At this moment, both the LEDs, L1 and L2, are off, indicating
US elements S10 and S11 are both above the pubic bone.
Secondly, the sensor array is gradually moving downwards
towards the subject’s feet. The movement ceases when both
L1 and L2 are turned on. Thirdly, the linear array is moving in
the opposite direction (i.e., towards the subject’s head) until
L2 starts to turn off while L1 remains on. The workflow for
positioning is shown in Fig. 8(b).

G. MACHINE LEARNING
1) PCA-BASED FEATURE EXTRACTION
The raw data captured by each individual receiving US ele-
ment contains K1 byte:

K1 = a1 × b1 × c1 (10)

where a1 = 7000 is the number of data samples, b1 = 55 is
the number of transceiver channels, c1 = 8 is the data length
for each recorded data point.

After the STFT, the total data length has been reduced to:

K2 = a2 × b2 × c2 (11)

where a2 = 6400, b2 = 55, c2 = 8. K2 is lower than K1,
but still too much. Hence, feature extraction can significantly
reduce the number of data dimensions, avoiding data over-
flow. Also, it can extract the essential characteristics from
the raw data. We extract features from the recorded data
before training models. In this work, the principal compo-
nent analysis (PCA) is applied to combine highly correlated
high dimension variables in raw signals into less dimensional
variable with low linear relativity and minimal information
loss. As the bladder size varies against time, for the same
US element, the amplitude of the echoed signal may vary
significantly over time. Thus, it is necessary to perform stan-
dardization before PCA. The samples are standardized prior
to PCA. The procedure of standardization can be described
as:

Z =
x − µ

σ
(12)

where the x is the input data, µ is the mean of the input data,
and σ is the standard deviation of the input data.
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To achieve good dimensional reduction without signifi-
cantly compromising the accuracy of the original dataset, the
principal components that account for more than 90% of the
data variation have been selected in this work.

2) CLASSIFICATION
Artificial intelligence (AI) is a powerful technology used for
tasks such as facial and speech recognition, real-time transla-
tion, and complex decision-making. In many AI approaches,
ML methods are particularly effective at deriving useful
insights from limited datasets and are widely adopted for
biomedical signal analysis and disease diagnosis, especially
suitable for deployment in wearable medical devices. For
example, support vector machines (SVM) and artificial neu-
ral networks (ANN) have been used for predicting hematic
parameters of blood [33]. SVM, K-nearest neighbor (KNN)
and Logistic regression (LR) have been applied for diag-
nosing the Parkinson’s Disease [35]. SVM and random
forest (RF) have been utilized for bladder monitoring [36].
Biomedical signals are often multi-dimensional, non-linear
and sensitive to noise. ML excels at identifying relevant
characteristics from raw signals and processing complex and
noisy biomedical signals. ML is also not new to bladder mon-
itoring. Among various ML methods for bladder monitoring,
KNN [34], [45] and SVM [36], [45] are two of the most
frequently used approaches because they usually require a
shorter training time for a small dataset and are less prone to
overfitting. Neural network is also popular as it often achieves
good classification performance [24], but it requires a large
amount of data in order to avoid overfitting, and both train-
ing and testing demand significant computational resources,
which limits their application in wearable devices. In addi-
tion, sparse coding (SC), which is a well-known unsupervised
dictionary learning method [37], has recently emerged as a
useful tool for efficiently representing high-dimensional data.
Although SC has previously been applied to various tasks,
such as biometrics recognition [47], diagnosis of nervous
system disorders [48], to the authors’ best knowledge, this
is the first time, SC has been utilized for bladder monitoring
application. In Section IV, we compare classification perfor-
mance under different ML algorithms.

SC can be used to find a set of over-complete sparse basis
vectors φi to represent the input vector X more efficiently,
as describe in (13):

X ≜
k∑
i=1

αiφi (13)

where the αi are the sparse coefficient matrix that should have
very few non-zero elements. To find the sparsest solution, the
sparse coding optimization problem can be written as:

argmin
α

[(
1
2
∥X − φα∥

2
2) + λ ∥α∥1] (14)

where the first term represents the reconstruction error
between the original data and the linear combination of dic-
tionary elements and the second term is L1 norm of the

FIGURE 9. The star is the ideal position for placing US transducer. In this
work, the possible shifting area is 10 mm × 10 mm square area.

coefficient matrix, encouraging sparsity. λ is a controller
that dictates the optimal trade-off between the reconstruc-
tion accuracy and sparsity. The optimization process aims to
find the coefficient matrix that minimizes the reconstruction
error while promoting a sparse representation. SC has the
advantage of learning the essential features inherent to the
data, leading to a significant reduction in redundant informa-
tion and noise, thereby enhancing the model’s accuracy and
generalization capability. Additionally, it operates as an unsu-
pervised learning algorithm, eliminating the need for manual
data labeling, and can efficiently leverage a vast amount of
unlabeled data for learning, eliminating the need for laborious
manual feature extraction.

3) PARAMETER OPTIMIZATION
KNN has no explicit training phase, but simply stores
the entire training dataset. The value of k (i.e., the num-
ber of nearest neighbors) has been optimized through
cross-validation on the training dataset. The training dataset
for SVM consists of feature vectors and corresponding class
labels. In a training process, a kernel function (e.g., linear,
polynomial, or radial basis function (RBF)) is chosen to trans-
form the data into a higher-dimensional spacewhere it ismore
likely to be linearly separable. The penalty parameter in SVM
is also essential for managing the trade-off between margin
maximization and misclassification minimization. A dictio-
nary for SC is initialized by randomly combining the input
vectors in the training process. The regularization parame-
ter is a hyperparameter that needs to be carefully tuned to
find the optimal balance between sparsity and reconstruction
accuracy during training.

We apply K-fold cross validation and grid search methods
to optimize the hyperparameters used in KNN, SVM and
SC for high performance and generalize better to new data.
Firstly, we defined a grid of hyperparameters (e.g., number
of neighbors, kernel type and regularization parameter) to
explore. Then evaluated each combination of hyperparam-
eters using 5-fold cross-validation. Finally, we found the
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combination of hyperparameters that yields the best cross-
validation performance.

4) USEFULNESS OF ML
Using the proposed assistant positioning method, it is guaran-
teed that the ideal location for placing the sensor can be found
without missing the bladder. However, even with assistant
positioning, the practical position may vary from the ideal
position, due to many unavoidable reasons, soML can further
solve this problem.

According to a study on the changes of bladder shape dur-
ing filling [38], it was found that the bottom of bladder hardly
moves in the entire filling process and that the maximum
expansion of bladder walls occurs in the cranial direction.

By using the assistant positioning method, the transducer
array can be placed in the position above the pubic bone
(except for the element dedicated to sense the pubic bone),
with its center, i.e., the mid-point of element S5 and element
S6 locates approximately 5 cm above the pubic bone, which
is consistent with the position described in the literature for
placing single US transducer [22]. We can regard the position
as an ideal position for placement, as depicted in Fig. 9.
In this work, we assume that the center of the transducer
array would be misplaced from the ideal position in the up,
down, left and right directions. In other words, the possible
shifting area is a square area of 10 mm × 10 mm. During the
period of sample acquisition for training, an optimal method
involving incremental position movement (2 mm per step)
and capturing the echo signals from different volume intervals
(2 ml, 4 ml, 6 ml, or 8 ml), is used to construct the training
dataset. Firstly, we search the algorithm that achieves the best
classification performance, within the region within an area
of 10 mm ×10 mm. Next, we increase the movement step,
while keeping other conditions constant, this process aims to
find the balance between good classification performance and
short training time.

III. VALIDATION EXPERIMENTAL SETUP
The proposed prototype device and machine-learning
algorithm have been validated on a latex balloon placed in an
acrylic water tank, as shown in Fig. 10(a). The inlet of the bal-
loon is held constant by a clamp. The thickness of the water
tank wall is 5.5 mm. To simulate the bladder filling process,
water is slowly injected into the balloon from a water bottle
by a programmable laboratory peristaltic pump (KE-300EL,
Jieheng®). The volume of injected water is calculated by
measuring the weight loss from the water bottle by a digital
electronic balance (Cmq-196, CGOLDENWALL®) which
has a measurement resolution of 0.1 g. The transducer array
is mounted on the outside of the tank wall facing the balloon.
US coupling gel is applied between the transducer surface and
the tank wall to make sure that there is an efficient pathway
for US propagation. The residual air inside the balloon before
the water injection can be removed by running the water
pump in the extraction mode first before pumping water into
the balloon.

FIGURE 10. (a) The diagram of experimental setup and its real photo;
(b) In this work, the balloon volume changes from 100 ml to 300 ml, and
the position varies 100 times with 1 mm step.

When a bladder is empty or at low volume, the majority
of the bladder is hidden behind the pubic bone, making the
detection difficult [39]. However, low volume is of no inter-
est to the proposed bladder monitoring application intended
for patients suffering from nocturnal enuresis. Hence, the
minimum volume to be classified is set at 100 ml in this
experiment. Whether a bladder volume is less than 100 ml or
not can easily be determined by the absence of echoes from
bladder. Themaximum volume in this experiment depends on
the expected bladder capacity (EBC) in children, which varies
with age and can be estimated by an empirical formula [40]:

EBC (ml) = 30 × Age + 30 (15)

In this work, the maximum volume for trigger an alarm is
chosen as 300ml that can almost cover all 9-year-old children
and younger. In this experimental setup, 1 ml of water is
injected into the tank from the water bottle at a time, and the
balloon’s volume varies from 100 ml to 300 ml. Therefore
201 different balloon volumes have been created.

To simulate the misplacement of the transducer array,
we alter the relative location of the transducer array to the
balloon. This can be achieved either by making the balloon
static and moving the transducer array around a central point,
or by making the transducer array static and moving the
balloon. We opt for the latter approach as constantly moving
the transducer array may compromise the efficacy of the
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coupling at the transducer-tank interface. The movement of
balloon was driven by a three-axis motorized moving stage
(FG50XYZ, TNE®) which offers an absolute positioning
accuracy of 20 µm and a repeated positioning accuracy of
10 µm. The moving stage is programmed to cover an area
of 10 mm (in the x direction) × 10 mm (in the y direction)
with a step size of 1 mm. Hence the moving stage created
100 different relative locations between the sensor array
and the balloon. The upper-right, upper-left, down-right and
down-left positions of transducer related to balloon is shown
in Fig. 10(b). The total sets consist of 100 × 201 sampled
data.

A. THE CLASSES OF VOLUME
The urgent status for voiding can be divided into several sta-
tuses according to the bladder volume that allows users to set
different pre-voiding threshold according to their individual
conditions. The gap volume of different threshold is decided
by the filling rate of urine. Assuming a child with 25 kg
weight and high filling rate 2.0 ml/(kg·h) [41], it takes about
one hour to increase 50 ml urine in the bladder at night. The
period is long enough for parents to wake their kids up before
voluntary voiding. Therefore, the 50ml gap between different
alarm thresholds is reasonable.

Although some children produce urine less than the EBC
during the night, based on the fact that most children urinate
when their bladder capacity is close to the EBC, to simplify
the analysis we labeled 100 ml to 249 ml into ‘low-volume’
samples while the others are ‘high-volume’.

B. TEST CASES (TC)
Three different test cases have been formed using different
training sets and test sets to simulate different scenarios. Each
set is derived from the total set based on different volume step
(VS) and position step (PS).

1) TC1 (Single-location training, same location testing):
Hypothesis: the transducer array can be placed at the desir-

able position. In other words, the array location (coordinates
[5, 5] in Fig. 10(b)) during testing is the same as that during
training.

Experimental conditions: In this case, different volumes
(VS = 2 ml) in training sets and all the volumes (VS = 1 ml)
in test sets, which means only a half of test sets are observed
in training sets.

2) TC2 (Single-location training, random placement for
testing):

In practice, the placement of transducer array may shift
from the ideal position.

Experimental conditions: In this case, the position of train-
ing sets still come from the ideal position and different
volumes (VS = 2 ml). But the test sets consist of all positions
(PS = 1 mm) and all volumes (VS = 1 ml). Almost all of the
test sets never seen in training sets, except for some data from
the ideal position.

TABLE 1. Summary of classification results.

3) TC3 (Multi-location training, random placement for
testing, fixed PS and VS):

To overcome the practical limitation on sensor misplace-
ment, a multi-location training strategy has been adopted in
this work. Firstly, training sets are composed of different
position steps (PS= 2 mm) and different volume steps (VS=

2 ml). The three classification methods from Section-G have
been used for classifying the test sets in all positions.

4) TC4 (Multi-location training, random placement for
testing, variable PS and VS):

Experimental conditions: different PS (values 2 mm, 3 mm
and 4 mm) and different VS (values 2 ml, 4 ml, 6 ml and
8ml) are applied in the training sets. The test sets are the same
as TC2. The larger PS and larger VS mean less samples in
the training process, which helps to reduce the training time,
and less US dosage in the training process, which is desirable
from the health and safety perspective.

IV. RESULTS
Although accuracy is the most direct and widely used metric
for evaluating classification models, it requires a balanced
number of samples in each class.

accuracy =
TP + TN

TP + FP + TN + FN
(16)

where the TP is true positive, FN is false negative, FP is
false positive and TN is true negative. For our particular
bladder monitoring application, the number of samples in the
low-volume class is much higher than that in the high-volume
class. In this work, we have chosen precision and recall as the
performance indicators for classification. Precision and recall

VOLUME 12, 2024 653



J. Wang et al.: Pre-Voiding Alarm System Using Wearable Ultrasound and ML Algorithms

FIGURE 11. Classification results of TC2.

are defined as:

precision =
TP

TP + FP
(17)

recall =
TP

TP + FN
(18)

TC1 has been performed 10 times. During each time, the
training process has gone through a 5-fold cross validation
under different classification methods. TABLE 1 shows the
average results after 10 trials. In general, all three classifica-
tion methods showed good capability in classifying different
volume samples as the mean precision andmean recall results
for all three classification methods were close to or above
0.90. Specifically, precisions ranked from low to high are
from KNN (0.916 ± 0.08), SVM (0.946 ± 0.03) and SC
(0.957 ± 0.02). Recalls ranked from low to high are from
KNN (0.814 ± 0.09), SVM (0.894 ± 0.05) and SC (0.958
± 0.02). In addition, SC also shows the best stability perfor-
mance among the three methods, as being evident from its
small standard deviation. The best classification performance
of SC is based on slightly longer execution time: 281 ms (SC)
vs. 261 ms (KNN) vs. 220 ms (SVM).

Fig. 11 shows that the classification results dramatically
deteriorate when the position of the test sets (randomly cho-
sen from the 10mm10mm area) is different from the position
of the training sets. The precision and recall reduce to below
0.5 for most position cases which are 2 mm or more away
from the ideal position, and the statistical results in different
positions are shown in TABLE 1. Such low precision and
recall values are unacceptable for any practical use. It indi-
cates the US system is extremely sensitive to misplacement of
the transducer array. In addition, the performance degradation
is more pronouncedwhen the transducer array is moved along

the horizontal direction than that along the vertical direction.
This is due to the vertical configuration of individual elements
in the transducer array.

The precision and recall for almost all positions in TC3
(i.e., using multiple positions training), shows in Fig. 12, are
higher than those in TC2. SC offers a superior performance
to KNN and SVM. By using the SCmethod, precision at 97%
of the positions are higher than 0.75, while recall at 98% of
the positions is higher than 0.75.

In TC4, using the SC approach, the classification results
obtained at VS = 6 ml were comparable to those obtained
at VS = 2 ml when PS = 2 mm. The result matrix is shown
in Fig. 13. For a given PS = 2 mm, reducing VS from 6 ml
to 2 ml leads to only 1.3% increase in the average precision;
however, the acquisition frequency needs to be tripled, which
is burdensome to user. For a given VS = 2 ml, by increasing
PS from 2mm to 3 mm, the average precision decreased from
0.975 to 0.897. The rate of reduction was 8%. This result
corresponds with the results for TC2, in which the system
is very sensitive to displacement. If both PS and VS can be
set freely, the average precision difference between (PS =

2 mm, VS = 2 ml) and (PS = 3 mm, VS = 6 ml) is only
5% in the center of the smaller area (6 mm10 mm), where
precision ≥ 0.75 occurs at 98% of the positions, and recall
≥ 0.75 occurs at 98% of the positions. Both the average
precision and recall are above 0.85 in all positions from the
TABLE 1, shows the combination (PS = 3 mm, VS = 6 ml)
is a good choice for training.

V. DISCUSSION
The issue on sensor misplacement is usually neglected
by conventional ultrasound sensor system for bladder
monitoring. The high classification accuracy of conventional
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FIGURE 12. Classification results of TC3.

systems relies on two unrealistic hypotheses: i) The sensor
can be placed at the ideal position which offers the best sen-
sitivity and accuracy, ii) The sensor location during practical
usage is the same as the location during the training process.
In contrast, we acknowledge the fact that not everyone can
place the sensor at the ideal location and even for a trained
user, he/she cannot always place the sensor at the ideal
location. We propose a robust system that offers ample toler-
ance to possible sensor misplacement. Insensitivity to sensor
placement has been achieved by two novel techniques: i) a
guidance protocol for locating the pubic bone. By doing so,
the sensor may not be placed at the ideal location, but it will
be within a controlled range not far from the ideal location; ii)
the multi-position training strategy ensures the sensor system
can offer reasonably high classification accuracy as long as
the sensor is within the controlled range.

From the TABLE 2, we can see the differences between
our work and other similar works. Among all the works, the
amplitude of the excitation signal we adopted is the smallest.
Similarly using the ML algorithm for classification, our clas-
sification performance is higher than that work [22], demon-
strating that the transducer array can capture more valuable
echoes than single element. In [24], they achieved higher clas-
sification performance than ours, but their high classification
was built uponwide-bandwidth transducers and computation-
heavy neural networks. The former makes transmitting
frequency-modulated signals easy at the cost of high-end US
transducer while the latter consumes significant amount of
power. In [42], researchers implemented US imaging patches
that can accurately estimate bladder volume, but for the
application of pre-voiding alarm, simple classification of dif-
ferent bladder filling levels is sufficient. The hardware system
required to generate US images is quite complex and expen-
sive. In comparison, our approach is more cost-effective.

The purpose of this work is to develop a bedwetting alarm
device suitable for home usage. Hence, we put safety and
usability as our first priority. A lower excitation voltage
results in a lower acoustic pressure. Since acoustic inten-
sity is proportional to the square of acoustic pressure, using
LV pulses means that the acoustic intensity produced for
detecting bladder is far below than the Food andDrugAdmin-
istration (FDA)’s safety limit of 720 mW/cm2. Even with
prolonged operation, the acoustic energy produced by the
system will not generate heating or cavitation effects that
could potentially harm the human body. The proposed device
is well-suited for long-term wearable usage. To address the
inevitable transducer misplacement issue during practical
usage, we have introduced sparse coding and a multi-position
training strategy, which significantly improve the classifica-
tion performance.

VI. FUTURE WORK
In clinical applications, coupling gel is another challenge
for wearable US devices. Applying coupling gel is a tedious
process, it may get dry, compromising the signal quality.Most
of engineering papers [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24] on bladder monitoring still rely on the
standard coupling gel to eliminate air gaps and ensure that
sound waves are effectively transmitted from the probe into
the body. It is a well explored research direction for forming
a better contacting interface between transducer and skin,
either by a better gel [43], [46] or no-gel [42], [44]. In the
future clinical trials, we will consider using some special US
coupling agent (such as hydrogel-elastomer hybrid gel and
non-Newtonian fluid coupling media) that are biocompatible,
have desired acoustic impedance, and prevent the transducer
array from being detached from skin after long-term usage.
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FIGURE 13. Classification results of TC4.
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TABLE 2. Performance summary and comparison to prior arts.

Although the multi-position training strategy is effective,
it requires a longer training time and may be somewhat
inconvenient to operate. We plan to design a two-dimensional
transducer array for acquiring data without moving the trans-
ducer array manually in the training period. After that, it can
be replaced by a linear array to reduce its size but to achieve
as good classification performance as the current design.
The proposed sensor system will be a useful front-end for
future closed-loop NE management system. For example,
it can potentially drive an electrical stimulator to excite the
tibial nerves with stimulus current of different frequencies for
eliciting or inhibiting purposes [49]. A robust sensor system
that is placement insensitive is a major step towards practical
usage in home-use environment.

VII. CONCLUSION
There are two main novelties proposed in this work:

1. Low voltage coded pulses are used to excite the US
transducer to reduce the excitation voltage significantly
compared to other works. The pulse compression tech-
nique helps maintain the same SNR even when using
low-voltage excitation signal. It also enhances the
safety of system. To the best of the authors’ knowledge,
this is the first time LV coded pulses have been applied
for bladder monitoring.

2. Also, to the best of our knowledge, the multiple posi-
tions training strategy in the classification of bladder

filling status is the first time it has been proposed. The
model trained with multiple positions is robust change
in probe displacement, which is common in real-world
scenarios.

The proposed device is capable of continuous monitor-
ing of a child’s bladder filling status and issuing an alert
before nocturnal enuresis actually occurs. The device is of
significant clinical value for helping with the management
of enuresis conditions and promoting the establishment of
normal micturition reflex mechanisms in children. Compared
with similar devices in the field, the proposed device is of
higher safety and lower sensitivity to placement errors.
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