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ABSTRACT

Worldwide coral reef decline appears to be accompanied by an increase in the spread
of hard coral diseases. However, whether this is the result of increased direct and
indirect human disturbances and/or an increase in natural stresses remains poorly
understood. The provision of baseline surveys for monitoring coral health status

lays the foundations to assess the effects of any such anthropogenic and/or natural
effects on reefs. Therefore, the objectives of this present study were to provide a coral
health baseline in a poorly studied area, and to investigate possible correlations
between coral health and the level of anthropogenic and natural disturbances.
During the survey period, we recorded 20 different types of coral diseases and other
compromised health statuses. The most abundant were cases of coral bleaching,
followed by skeletal deformations caused by pyrgomatid barnacles, damage caused
by fish bites, general pigmentation response and galls caused by cryptochirid crabs.
Instances of colonies affected by skeletal eroding bands, and sedimentation damage
increased in correlation to the level of bio-chemical disturbance and/or proximity

to villages. Moreover, galls caused by cryptochirid crabs appeared more abundant at
sites affected by blast fishing and close to a newly opened metal mine. Interestingly,
in the investigated area the percentage of corals showing signs of ‘common’ diseases
such as black band disease, brown band disease, white syndrome and skeletal eroding
band disease were relatively low. Nevertheless, the relatively high occurrence of less
common signs of compromised coral-related reef health, including the aggressive
overgrowth by sponges, deserves further investigation. Although diseases appear
relatively low at the current time, this area may be at the tipping point and an increase
in activities such as mining may irredeemably compromise reef health.

Subjects Conservation Biology, Ecology, Marine Biology

Keywords Coral diseases, Coral bleaching, Indo-Pacific, Scleractinians, Terpios hoshinota,

Chalinula nematifera, Waminoa sp., Cryptochirid crabs, Pyrgomatid barnacles, Skeletal eroding
band

INTRODUCTION

Coral reefs around the world are increasingly threatened by a multitude of stressors, both
natural and anthropogenic. These include decline in water quality, overexploitation of
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resources and global climate change which have all been linked with the onset of mass
coral bleaching and a variety of different disease signs (Carpenter et al., 2008; Ban, Graham
& Connolly, 2014; Burge et al., 20145 Thompson et al., 2014). Many environmental stressors
and anthropogenic disturbances are thought to favour the onset of infectious disease,
either on their own or more commonly synergistically (Sutherland, Porter ¢ Torres, 2004;
Harvell et al., 2007). For example, anomalous high sea surface temperatures and their
increasing frequency have been shown to raise coral susceptibility and pathogen virulence,
influencing the severity and rate of spread of infections (Harvell et al., 2002); (Lafferty

¢ Holt, 2003; Randall et al., 2014; Wooldridge, 2014). Furthermore, disease susceptibility
has also been linked to high sedimentation rates, water turbidity and eutrophication
(Bruckner ¢ Bruckner, 1997; Bruno et al., 2003; Fabricius, 2005; Voss ¢ Richardson, 2006a;
Voss & Richardson, 2006b; Haapkyli et al., 2011; Pollock et al., 2014). Interestingly, in
controlled experiments the above stressors have proven insufficient to cause the onset of
disease without direct physical injury. Such injury has been shown to occur from contact
with macroalgae, direct physical damage and predation for example (Nugues et al., 2004;
Nicolet et al., 2013; Séré et al., 2015). For this reason, it has been strongly recommended
that any coral reef health monitoring undertaken should consider all possible sign of
compromised health and not only those of infectious diseases and bleaching (Raymundo,
Couch ¢ Harvell, 2008).

Baseline coral health surveys are an important first step in identifying areas of concern
where management and mitigation strategies need to be implemented. To date, the
majority of published studies on coral diseases have been focused around the Caribbean
(for a review see Weil & Rogers, 2011), and the Australian Great Barrier Reef (e.g., Willis,
Page & Dinsdale, 2004; Haapkyld et al., 2013). More recently, survey effort has increased
to cover other areas of the Indo-Pacific such as the Maldives (e.g., Montano et al., 2012;
Montano et al., 2013; Montano et al., 2015; Montano et al., 2016) and certain areas within
the ‘Coral Triangle’ (e.g., Brown ¢ Suharsono, 1990; Hoeksema, 19915 Haapkyli et al.,
2007; Haapkyli et al., 2009b; Nugues ¢ Bak, 2009; Burke et al., 2012; Cervino et al., 2012;
Sabdono et al., 2014; Haapkylae, Melbourne-Thomas & Flavell, 2015; Johan, Ginanjar
& Priyadi, 2015; Miller et al., 2015). Nevertheless, baseline coral health surveys remain
sparse in other locations such as Sulawesi, Indonesia, for example (De Vantier ¢ Turak,
2004; Fava et al., 2009). In this study, we therefore aimed to assess the reef health around
Bangka Island, within a small archipelago at the northern tip of Sulawesi.

MATERIALS AND METHODS

Study area

Bangka Island belongs to a small archipelago located at the northern tip of Sulawesi,
Indonesia (Fig. 1). These islands are exposed to the main current coming from the
western Pacific Ocean and directed toward the Indian Ocean (Tomascik et al., 1997).

The central area of the archipelago is shallow, while the outer sides drop rapidly to over
1,000 m depth. The islands are covered by lush vegetation and fringing reefs are alternated
with mangroves and volcanic cliffs. The islands are home to some villages and few resorts,
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Figure 1 Sketch map of Bangka archipelago (north Sulawesi). Study sites, villages, pearl farms and mine
are shown.

of which the oldest was built in 1987. Bangka, the largest of these islands is less than

48 km?. It has a resident population of about 2,500 inhabitants (as of 2013), distributed
throughout five main villages (Busabora, Libas, Kahuku and Lihunu, Sawang), four small
resorts in the southeastern side (Murex, Blue Bay, Nomad, Mimpi Indah), and a private
research station (the Coral Eye) which hosts researchers and occasional tourists. Threats
faced by the reefs in this area include destructive fishing activities (e.g., blast fishing and
poison fishing) (De Vantier ¢ Turak, 2004) and mining which targets iron ore and other
minerals. Such trends are similar to those faced by other reefs throughout Indonesia (e.g.,
Edinger et al., 2008; Caras ¢ Pasternak, 2009; Lasut et al., 2010; Edinger, 2012; Reichelt-
Brushett, 2012). At Bangka Island, the mine (managed by a foreign company) started in
2013 but has since closed in July 2015. The closure, sanctioned by the Supreme Court in
Jakarta was a direct response to the opposition of residents and tourism operators.
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Table 1 Main characteristics of the study sites. Table 1 reports habitat typologies, disturbance levels, nearest village (including distance and inhab-
itants), island side, wave exposure, previous storm. Human disturbances were divided into three main groups: m, mechanic (e.g., anchoring, boat
strike, SCUBA diving, blastfishing), bc, bio-chemical (e.g., boat engine leaching, villages sewages), f, fishing pressure. Intensities of human distur-

bances and wave exposure were classified into four ranked levels (0, none; 1, low; 2, medium; 3, high).

Study site Geographic Habitat Disturbance Nearest village Island Wave Previous
coordinate (distance- side exposure storm
WGS84 inhabitants)

bc

Coral Eye 1.75112°N fringing reef 0 Busabora SW 2 12/11/2012
125.13334°E (1100 m—300)

Busabora Kampung 1.74438°N fringing reef 1 Busabora SW 2 12/11/2012
125.1401°E (100 m—300)

Tanjung Husi 1.73465°N volcanic 0 Busabora SE 2 unknown
125.1515°E rockslide (1800 m—300)

Tanjung Husi 2 1.73752°N volcanic 0 Busabora SE 2 unknown
125.15192°E rockslide (2200 m—300)

Mangrove Forest 1.76303°N fringing reef 0 Kahuku W 2 12/11/2012
125.13055°E (3600 m-700)

Pear]l Garden 1.81148°N fringing reef 1 Kahuku w 1 unknown
125.11253°E (2000 m-700)

Batu Gosoh 1.79968°N volcanic cliff 0 Libas 1B 2 unknown
125.18828°E (5200 m—500)

Sipi 1.78582°N fringing reef 3 0 3 Kahuku % 2 12/11/2012
125.13025°E (1500 m-700)

Batu Kapal 1.8365°N fringing reef 2 0 3 Kahuku NW 1 unknown
125.12317°E (5000 m-700)

Areng Kambing 1.76882°N volcanic cliff 1 0 2 Lihunu SE 1 unknown

125.17628°E

(3300 m—1000)

Sampling design and survey method

Benthic assemblages, coral diseases and other signs of compromised health around
Bangka Island (North Sulawesi, Indonesia; Fig. 1) were investigated at 10 randomly
selected sites at three depths: 3, 6 and 9 m (below the mean lower low water). Surveys
were conducted between the months of October and November 2013. Tide levels were
calculated by WXTide, a free Windows tide prediction software (http://www.wxtide32.
com), using the Manado subordinate station (based on Sungai Kutei reference station,
Borneo, Indonesia) and locally calibrated using a depth logger (DST centi-TD from Star-
Oddi, http://www.star-oddi.com). Six sites were characterised by fringing reefs, two

sites by coral rims growing on volcanic cliffs and the other two by sparse coral heads on
volcanic rockslides (see Table 1). Along fringing reefs, the three chosen depths roughly
correspond to reef flat, reef crest and slope (i.e., front reef), which are standard subzones
in coral reef monitoring studies (e.g., Hill & Wilkinson, 2004; Hoeksema, 2012). At each
site and depth, five belt transects (10 x 2 m) were laid randomly along reef contours
(Beeden et al., 2008). A gap of at least 5 m was left between each transect. Overall,

150 belt transects were analysed, covering a total area of 3,000 m?. Scleractinian coral
colonies larger than 20 cm in diameter were identified to genus level across all transects.
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Table 2 Investigated coral diseases and other signs of compromised health. Adopted classification scheme and acronyms (after Beeden et al.,
2008; Raymundo, Couch & Harvell, 2008).

Symptom Disease or compromised health cate- Acronym
gory
Unidentified NI
Fish bites FB
Predation or other stress Crowp—of—thorns starfish (Acanthaster COTS
planci)
Gastropod corallivory (e.g., Drupella sp.) GC
Sediment damage SD
Tissue loss Algal overgrowth AlO
Black band disease BBD
Coloured band disease Skeletal eroding band SEB
Brown band BrB
Ulcerative white spot UwsS
No band White syndrome WS
Atramentous necrosis AtN
Bleaching BL
White Focal bleaching FBL
Non-focal bleaching (e.g., patches, NFBL
Tissue discolouration stripes)
. Pigmentation response PR
Not white .
Trematodiasis TR
Galls caused by cryptochirid crabs GA
Skeletal deformations caused by pyrgomatid barnacles BA
Compromised health Aggressive overgrowth (e.g., coral-killing sponges Terpios hoshinota and Chalinula nematifera) AgO
Acoelomorph flatworm infestation (e.g., Waminoa sp.) RW

Scleractinian taxonomy was mainly based on Veron (2000), with some exceptions taking
into account the recent reclassification of certain coral species. For example, Acropora
and Isopora genera were separated according to Wallace, Done ¢ Muir (2012). Corals
previously from the genus Favia were reclassified to the genus Dipsastraea (Budd et al.,
2012). Phymastrea was used to indicate all Indo-Pacific species previously indicated as
Montastrea in Veron (2000) (according to Budd et al. (2012)) and more recently reassigned
to Astrea, Paramontastraea and Favites (Huang et al., 2014). Similarly we have used the
functional group ’Fungia’ to indicate some subgenera recently elevated to genus level (e.g.,
Danafungia, Verrillofungia and Pleuractis; see Gittenberger, Reijnen ¢» Hoeksema (2011)).
In order to reduce inconsistencies associated with disease identification (Lindop,
Hind ¢ Bythell, 2008), each visible sign of coral disease or other compromised health
indicators were photographed, identified and assigned to one of the 21 categories defined
according to the identification guides by Beeden et al. (2008) and Raymundo, Couch &
Harvell (2008). The classification scheme and adopted category acronyms can be seen in
Table 2.
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Benthic sessile assemblages, bare rock, sand and coral rubble were quantified by using
five photographic samples (50 x 50 cm), which were randomly located within each
transect. Benthic organisms were assigned to 14 main groups: algae, encrusting-, massive-,
erected- and boring- sponges, hydroids, anemones, soft- and hard- corals, gorgonians,
giant clams, colonial-, solitary- and social- ascidians. Percent covers were estimated by
superimposing a grid of 100 equal-sized cells, using the software PhotoQuad (Trygonis ¢
Sini, 2012). The data of percent cover was averaged across transects. No hard corals were
detected at two transects, both of which were at Pearl Garden.

Information on anthropogenic disturbance sources at each site was obtained by
interviewing local people, including those working at the resorts, and from data collected
in previous surveys carried out applying the Reef Check protocol (Ponti et al., 2012);
freely available data at http://data.reefcheck.us/). Local human disturbances were grouped
as mechanic (e.g., anchoring, boat strike, SCUBA diving, blast fishing), bio-chemical
(e.g., boat engine leaking, village sewage) and fishing pressure. Storms are the primary
natural disturbance in the area. Previous recent storms, such intense as to damage at
least the shallow-water corals, were analysed in term of direction, occurrence date and
wave exposure at each site. Intensities of human disturbances and wave exposure were
classified into four ranked levels according to the maximum impacts recorded in the area
(De Vantier & Turak, 2004): 0 = almost no human disturbance and/or well sheltered, 1
= low or occasional disturbance and/or sheltered, 2 = medium intensity, 3 = high and
frequent disturbance and/or very exposed.

A research permit was granted prior to undertaking the survey work by the authority of
Lihunu, Likupang eastern districts, Minahasa northern district government (Permit ID:
211/2019/SPP/IX-2013 issued at Lihunu on the 28th September 2013).

Data analyses

In the present study the abundances of each category of coral diseases and other compro-
mised health indicators were expressed for each transect and analysed in terms of mean
number of affected colonies per square metre of hard corals, based on the extension of
hard corals in the transect.

Differences between sites (10 levels, random) and depths (three levels, fixed) were
assessed by two-way crossed univariate and multivariate permutational analysis of
variance (PERMANOVA, « = 0.05; Anderson ¢~ Robinson, 20015 Anderson ¢ Ter Braak,
2003).

Univariate tests were performed on Euclidean distances calculated on untransformed
data (Anderson & Robinson, 2001). Multivariate tests were based on Bray-Curtis similarity
of square root transformed data (Clarke, 1993). Patterns of similarities in diseases and
other signs of compromised health among sites and depths were tested on zero-adjusted
Bray-Curtis similarity of square root transformed data. An adjustment was applied
to solve the indetermination of the Bray-Curtis coefficient, which occurs when it is
calculated for pairs of transects without signs of diseases. This was accomplished by
adding a dummy variable with a value of 0.22361, that is the square root of the lowest
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non-zero value attainable (i.e., 0.05 affected colonies mgazrd corals) (Clarke, Somerfield &
Chapman, 2006).

Multivariate similarity patterns were displayed by unconstrained ordination plots
using the Principal Coordinate Analysis (PCoA, i.e., metric multidimensional scaling;
Gower, 1966) based on the centroids of the similarity clouds at each site. Multivariate
multiple regressions between similarity patterns and variables were performed by the
DistLM procedure (marginal test; McArdle & Anderson, 2001) and significant correlations
(P < 0.05) were graphically represented by correlation vectors, proportional to the
Pearson’s correlation coefficients, superimposed on the PCoA plots. Correlations between
abundances of diseases and other signs of compromised health were made compared
with human and natural disturbances by the Spearman’s rank correlation coefficient
(p). p assesses how well the relationship between two variables can be described using
a monotonically increasing or decreasing function. Mean values were always reported
together with their standard errors (SE). Statistical analysis was performed using PRIMER
6 with PERMANOVA +add-on package (Anderson, Gorley ¢ Clarke, 2008). Spearman
rank correlations and their tests were calculated by the computational language R
(R Core Team, 2016).

RESULTS

Benthic community structure and coral cover
Benthic assemblages were very heterogeneous in the study area and the community
structures significantly differed among sites and depths (Site x Depth: Fig 129 = 2.2216,
P =0.0001). Differences between sites were significantly related to the percent cover
of bare rocks, sand, coral rubble, soft corals and encrusting sponges (Fig. 2). Percent
cover of both total hard corals and coral rubble significantly varied among sites but not
among depths (Coral rubble, Site: Fy 159 = 16.557, P = 0.0001; hard corals, Site: Fy 120=
2.0735, P = 0.0340). Total hard coral cover varied between 5.4 & 1.7% at Coral Eye and
17.6 & 3.4% at Busabora Kampung (Fig. 3A). Coral rubble cover varied from almost zero
at Areng Kambing, a volcanic cliff, to 35.9 & 5.0% at Coral Eye (Fig. 3B).

Opverall, 42 genera of hard corals were found. The most abundant genera were Porites
(mean cover 2.73 £ 0.35%, up to 27.2%) and Acropora (mean cover 1.75 £ 0.42%, up
to 42.0%; Fig. 4). Local high percent cover of Tubastraea (up to 54.4%) and Montipora
(up to 43.8%) was also observed. Hard coral assemblages were very heterogeneous
and variable among sites and depths (Site x Depth: Fig 115 = 1.2787,P = 0.0044).
Nevertheless, few hard coral genera significantly contributed to the observable differences
among sites. Those that did, included: Seriatopora, Stylophora, Goniastrea, and Pocillopora
(Fig. 5).

Occurrence of coral diseases and other signs of compromised health
20 different types of coral disease and other compromised health statuses were recorded
on 598 scleractinian colonies from 35 of the 42 genera identified at the different sites
(Table 3). The scleractinian genera that hosted the higher number of diseases and other
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Similarity patterns of benthic assemblages. The PCoA plot shows the multivariate similarity

patterns of benthic assemblages, analysed in terms of main groups (i.e., algae, encrusting-, massive-,
erected- and boring- sponges, hydroids, anemones, soft- and hard- corals, gorgonians, giant clams,
colonial-, solitary- and social- ascidians), among sites. Open circles represent the centroids of the
similarities of assemblages found at each site. Superimposed vectors indicate the intensity and direction of
the correlations of the benthic variables selected by DistLM procedure (P < 0.05 in the marginal test).

signs of compromised health were Porites followed by Acropora, with 14 and 11 categories

recorded respectively (Table 3).

Mean abundances and total number of occurrences of each category of coral diseases

and other

signs of compromised health are shown in Fig. 6. The most abundant type

of compromised health recorded during this survey was coral bleaching (BL; Figs.

7A and 7B), followed by skeletal deformations caused by pyrgomatid barnacles (BA;

Fig. 7C), damage caused by fish bites (FB), pigmentation response (PR) and galls caused
by cryptochirid crabs (GA; Fig. 7D).
No significant differences were recorded for bleaching across sites or depths, with

instances

recorded across 69% of the transects (mean 1.21 & 0.15 affected colonies

M} 24 coras) (Fig: 8A, Table 4). Bleaching was shown to affect 26 hard coral genera
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(Table 3), with the most affected genera being Porites, Dipsastraea, Goniastrea, Platygyra,
Seriatopora, Acropora and Pocillopora.

Skeletal deformations caused by pyrgomatid barnacles were found in 51% of transects
with a mean abundance of 0.92 & 0.20 affected colonies m}:azrd corals- Lheir distribution
was heterogeneous, showing significant differences of abundance among sites (Fig. 8B,
Table 4). Pyrgomatid barnacles were found to occur in 16 genera (Table 3); mostly
colonising massive forms of corals belonging to the Porites genus.

Fish bites were found in 27% of transects with no significant difference of abundance
among sites and depths (0.36 £ 0.11 affected colonies mgazrd coralss F1g. 8C, Table 4). Again,
these were more typically associated with massive Porites colonies and to a lesser extent
Acropora and Pocillopora (Table 3).
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Figure 6 Overall occurrence of coral diseases and other signs of compromised health in the study area.
Mean (+SE) number of affected colonies per seabed surface covered by hard corals for each category, dis-
regarding the affected coral genus, in brackets the total number of occurrences (see Table 2 for the mean-
ing of the acronyms).

Signs of pigmentation response (PR) i.e., tissue discoloration, often bordering
specific lesions or scars, were found in 16% of transects with a mean of 0.24 £ 0.10
affected colonies m; 4 .o~ Their distribution was very heterogeneous, with significant
differences found in abundance amongst both sites and depths (Table 4). However PR
was only associated with three genera; Acropora, Fungia group and Porites (Table 3). It
should be noted that PR (as classified in this study) can be caused by a number of factors
such as specific coral borers, competitors, algal abrasion, fish bites, breakages, etc. and
is therefore a type of “inflammatory” response suggesting a compromised health state
but not itself a sign of disease (Beeden et al., 2008). Galls (GA), caused by cryptochirid
crabs were encountered only at six of the sites surveyed (out of 10). GA occurred on
15% of transects, with a mean of 0.21 &+ 0.05 affected colonies m}:azr d corals- Occasionally
differences of GA abundances occurred between depths (Fig. 8D, Table 4). GA were
observed more commonly with branching Seriatopora and to a lesser extent Stylophora
(Table 3).

A number of unidentified signs of tissue loss (named as NI in this manuscript), were
found in 20 of the coral genera (Table 3) and at all sites (25% of transects, 0.26 £ 0.08
affected colonies mhaml corals)» Tandomly distributed between site and depth (Table 4).
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Figure 7 Examples of the most common health impairments found in the study area. Partially bleached
colonies of Dipsastraea (A) and Platygyra (B); skeletal deformations caused by pyrgomatid barnacles in
Porites (C); galls caused by cryptochirid crabs in Seriatopora (D); Terpios hoshinota infestation, mostly on
Seriatopora, at Kahuko in 2011 (E); Chalinula nematifera, characterised by mauve coloration and white
wavy filaments produced by symbiotic fungi, on Seriatopora (F).

Amongst less abundant categories of coral diseases and other signs of compromised
health, cases of ulcerative white spot (UWS) were the most prevalent (found at nine out
of 10 of the sites surveyed). UWS occurred on 11% of transects, with 0.06 £ 0.02 affected
colonies m; 4 orals- Eight genera showed signs of UWS (Table 3), with Porites being the
most commonly affected and significant differences between sites (Table 4).

Signs of gastropod corallivory (GGC; e.g., due to Drupella spp.) were found in five
coral genera and were more abundant on Pocillopora. Sediment damage (SD) affected
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Figure 8 Spatial and depth distribution of coral bleaching (A), skeletal deformations caused by pyrgo-
matid barnacles (B), fish bites (C), and galls caused by cryptochirid crabs (D). Mean (+SE) number of
affected colonies per seabed surface covered by hard corals at each site and investigated depth (—9, —6, —3
m).

12 genera but with relatively low prevalence at each site (Table 3). Focal (FBL) and non-
focal bleaching (NFBL, e.g., patches, stripes) together with aggressive overgrowth by
sponges and other invertebrates (AgO), e.g., the coral-killing sponges Terpios hoshinota
and Chalinula nematifera, were found on 11, 12 and 12 coral genera respectively (Table 3),
again at relatively low prevalence (Fig. 6).

Interestingly, trematodiasis (TR) was not found on any of the reefs surveyed and black
band disease (BBD) was only found on one colony of Goniastrea, two colonies of Porites
and two of Turbinaria. Similarly, skeletal eroding band (SEB) was found only on a colony
of Ctenactis, a colony of Galaxea and two colonies of Porites. Only one colony of Acropora
and one of Montipora showed signs of brown band disease (BrB) and atramentous
necrosis (AtN) respectively.

Other occasional findings included one Acropora affected by crown-of-thorns starfish
(Acanthaster planci; COTS), one Gardineroseris showing signs of algal overgrowth
(AlO), and a few colonies of Gardineroseris, Platygyra, Porites and Turbinaria infested by
acoelomorph flatworms (RW), more precisely Waminoa sp. (Table 3; Fig. 6).

Spatial distribution patterns of diseases and other signs of
compromised health

Patterns of similarities in diseases and other signs of compromised health revealed sig-
nificant differences among sites, but not among depths (Table 5; Fig. 9A). The categories
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Table 4 Effects of sites and depths on the distribution of coral diseases and other signs of compromised health. Summary of PERMANOVA tests
on the abundance (affected colonies m; 2, ...;.) of the most common coral diseases and other signs of compromised health, analysed individually,
according to the factors Site, Depth, and their interaction (Site x Depth). See Table 2 for the meaning of the acronyms.

Site Depth Site x Depth Res
MS Fo 118 P MS F, 15 p MS Fis 118 p MS
NI 0.6817 0.7194 0.7332 0.3929 0.4257 0.6740 0.9229 0.9739 0.4935 0.9477
FB 2.7547 1.6906 0.0708 0.0266 0.0178 0.9836 1.4972 0.9189 0.5800 1.6294
GC 0.6276 1.1400 0.3154 0.5835 0.9926 0.4127 0.5879 1.0679 0.3522 0.5505
SD 1.0092 0.7667 0.7422 0.5151 0.3747 0.7379 1.3747 1.0443 0.3652 1.3164
UWS 28.8050 1.6294 0.0041" 17.7010 1.0192 0.4588 17.3660 0.9824 0.5456 17.6780
WS 0.2285 0.7742 0.7603 0.3539 1.1990 0.3630 0.2951 0.9999 0.4530 0.2952
BL 0.8230 0.2220 0.9942 1.6280 0.4293 0.6647 3.7922 1.0230 0.4229 3.7069
FBL 0.2643 1.2635 0.2339 0.0813 0.4067 0.6855 0.1997 0.9548 0.5131 0.2092
NFBL 0.4497 0.8634 0.6467 0.4337 0.8365 0.4997 0.5185 0.9955 0.4662 0.5208
PR 1.8391 1.5731 0.0843 4.0477 1.9376 0.1715 2.0911 1.7887 0.0144 1.1691
GA 1.9667 6.7696 0.0003" 0.1365 0.2783 0.7676 0.4909 1.6896 0.0449 0.2905
BA 16.6410 3.0347 0.0018" 8.0038 1.9467 0.1637 4.1084 0.7492 0.8109 5.4836
AgO 0.3706 1.2014 0.2655 0.6377 2.5486 0.0924 0.2501 0.8108 0.7901 0.3084

Notes.

*Indicated significant level of P < 0.05.
" Indicated significant level of P < 0.01.

“"Indicated significant level of P < 0.001.

Table 5 Effects of sites and depths on the distribution of coral diseases assemblages. PERMANOVA
test on the multivariate similarity patterns obtained by applying the zeroadjusted Bray-Curtis coefficient
to square root transformed abundances of diseases and other signs of compromised health (affected
colonies m; 24 .....) according to the factors Site, Depth, and their interaction (Site x Depth).

Source df SS MS F P Perms Denominator
Site 9 48362 5374 2.3929 0.0001 9838 Res

Depth 2 3434 1717 0.6393 0.8225 9932 Site x Depth
Site X Depth 18 48361 2687 1.1964 0.0767 9783 Res

Res 118 264990 2246

Total 147 365100

that significantly contribute to the observed similarity pattern were skeletal deformations
caused by pyrgomatid barnacles, occurrence of corals showing signs of white syndromes,
fish bites, non-focal bleaching and gastropod corallivory. These signs of compromised
health increased in abundance closer to the Coral Eye site. In contrast, galls caused by
cryptochirid crabs increased towards Sipi and Pearl Garden sites (Fig. 9A).

The observed spatial pattern were not correlated with the distribution of the benthic
assemblages; however, there was a weak correlation with the abundance of sand, total
hard coral, coral rubble (which increased towards Coral Eye) and the amount of bare
rock (that characterised the volcanic cliff and rockslide at Batu Gosoh, Tanjung Husi and
Tanjung Husi 2; Fig. 9B).
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Figure 9 Similarity patterns of diseases and other signs of compromised health. The PCoA plot shows
the multivariate similarity patterns of diseases and other signs of compromised health assemblages among
study sites. Open circles represent the centroids of the similarities of assemblages found at each site. Cor-
relation vectors superimposed on the PCoA plot represent: (A) diseases and compromised health cat-
egories significantly related with the similarity pattern (see Table 2 for the meaning of the acronyms);

(B) substrate typologies significantly related with the similarity pattern (selected by DistLM procedure;

P < 0.05 in the marginal test).
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Correlations between diseases and possible human and natural
disturbances
According to information gathered from the local populace and previous surveys (Ponti
et al., 2012), the most impacted sites in terms of mechanical disturbance, pollution and
fishing, were Busabora Kampung (close to the homonymous village), Pearl Garden
(located in the surroundings of a dismissed pearl farm), and Sipi (in front of the newly
established metal mine) see Table 1. At Pearl Garden and Sipi, signs of recent blast
fishing were evident. The most relevant recent storm happened a year earlier and hit the
southeastern side of the island.

Few significant rank correlations between the abundances of diseases and other
signs of compromised health were observed with regard to possible human and natural
disturbances. Abundance of colonies affected by skeletal eroding bands increased with
the intensity of bio-chemical disturbances (p = 0.6864, P = 0.0284) and decreased with
distance from villages (p = —0.7647, P = 0.0100). Moreover, instances of damage caused
by sedimentation together with observed instances of non-focal bleaching, decreased
with regard to distance from the villages (respectively: p = —0.6933, P = 0.0262 and
p = 0.7455,P = 0.0133), while skeletal deformations caused by pyrgomatid barnacles
decreased with the intensity of bio-chemical disturbances (p = —0.6963, P = 0.0253).

DISCUSSION

The present study represents the first assessment of coral diseases and other signs of
compromised health around Bangka Island at the centre of the Coral Triangle. Surveys
were conducted at three depths (3, 6 and 9 m) at 10 random sites. Although the surveys
were limited to shallow depths, this study provides a wide overview of coral health status
in the investigated area and reveals new possible threats. Baseline surveys such as these
are vital for management and mitigation of reef environments to allow for assessment of
how different stressors are affecting reefs at different locations. Interestingly, results of this
survey showed that the percentage of corals showing signs of ‘common’ occurring diseases
such as black band disease, brown band disease, white syndrome and skeletal eroding
band disease was relatively low compared to other studies (e.g., Willis, Page ¢ Dinsdale,
2004; Dalton & Smith, 2006; Myers & Raymundo, 2009; Weil et al., 2012). Yet, the findings
are more consistent with recent studies in other areas such as the Maldives (Montano et
al., 2015; Montano et al., 2016) and south-east Sulawesi (Haapkyli et al., 2007; Haapkylii
et al., 2009D). Infectious diseases, such as those mentioned above have been previously
shown to be commonly promoted or exacerbated by mechanical injuries and predation
activities (e.g., Winkler, Antonius & Renegar, 2004; Page & Willis, 2008; Nicolet et al.,
2013). For example, brown band disease is generally associated with acroporids which

is sustained by ciliates (Sweet ¢ Bythell, 2012; Sweet ¢» Séré, 2016) and promoted by
mechanical scarring from coral predators such as Acanthaster planci (Katz et al., 2014)
and Drupella spp. (Nicolet et al., 2013). The rarity of this disease around Bangka Island
might be related to the low local abundance of such predators. Skeletal eroding band,

also associated with ciliates but with a wider host range (Antonius & Lipscomb, 2001;
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Page & Willis, 2008; Sweet ¢~ Séré, 2016), was found to increase towards villages and

their bio-chemical disturbances, supporting the hypothesis that its spread is favored by
anthropogenic stresses that may compromise corals health (Page ¢ Willis, 2008; Montano
etal., 2016).

Coral bleaching was the most common sign of compromised health in the study
area, affecting 26 genera. This fits current trends associated with reefs on a global scale
(Berkelmans & Oliver, 1999; Carpenter et al., 2008; Burke et al., 2012; Sutthacheep et
al., 2013). Although there appears to be no escape for corals from global increases in
sea surface temperature (Baker, Glynn ¢ Riegl, 2008), the susceptibility of corals to
bleaching appears to vary considerably. For example differences have been reported
between species (e.g., Hoeksema, 1991; Marshall ¢ Baird, 2000; Loya et al., 2001; Montano
et al., 20105 Hoeksema ¢ Matthews, 2011) and locations (e.g., Pineda et al., 2013). The
latter variation has been linked to differences in several regional environmental factors
(e.g., light intensity and water flow rate) which appear to be influencing the outcome
of bleaching intensity (Glynn, 1996; Brown, 1997). Indeed, it has long been ‘known’ that
branching corals (e.g., acroporids and pocilloporids) are more sensitive to thermal stress
than massive growth forms (Loya et al., 2001; Wooldridge, 2014). However, recent studies
have shown quite the opposite can occur (Guest et al., 2012). Observing high levels of
bleaching at any given time is often a worrying trend. However, the lack of major diseases
in this region is a promising sign, as studies have shown that bleaching events on their
own do not necessarily change the coral taxonomic community structure despite often
resulting in a reduced amount of total coral cover (Guest et al., 2016).

Next to bleaching, the second most common sign of compromised health around
Bangka Island was skeletal deformations caused by pyrgomatid barnacles. Corals with
massive growth forms (Porites and Platygyra for example), showed the highest abundances
of these skeletal deformations. Interestingly, although such organisms are present on reefs
throughout the world, few studies focus on assessing the potential damage they can do
to individual colonies (Frank et al., 1995). These coral-inhabiting barnacles are unable to
bore directly into the host, but to varying extent, they are able to inhibit or regulate their
host’s skeletal growth (Anderson, 1992). Few species are considered able to adversely affect
their hosts, nevertheless infestations may damage especially finely branched scleractinian
corals (Ross & Newman, 1995). Although this study does not assess the effects high
abundances of these organisms have on these reefs, the high abundances found warrants
further study to assess if these should be recorded in future baseline surveys of reef health.

Similar to above, the abundances of fish bites, including parrotfish, butterflyfish,
filefish, pufferfish, triggerfish, and damselfish families, for example are rarely charac-
terised and therefore measured in coral health surveys. This is despite several studies
suggesting that corallivorous fishes may be vectors for coral disease (Rogers, 2008). Indeed
numerous fish species have been documented to target feeding on coral lesions when
present and this has facilitated the hypotheses that they can spread the infectious agents
from colony to colony (Chong-Seng et al., 2011). Here, the majority of fish bites observed
were associated with massive Porites with only few examples associated with colonies of
Acropora and Pocillopora. Here instead of highlighting the potential of disease occurrence
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due to fish bites, we argue that an intermediate level of predation by fishes on hard coral
should actually be considered an index of a balanced fish assemblages in almost all healthy
coral reef environments (Cole, Pratchett ¢~ Jones, 2008).

In contrast, possible outbreaks of the corallivorous gastropods Drupella spp. are raising
concerns not only for their direct predatory effects on their preys, but also for their feared
involvement as vector in some infectious diseases (e.g., Turner, 1994; Antonius ¢» Riegl,
1998; Onton et al., 2011; Nicolet et al., 2013). Luckily, cases of Drupella around the island
are still relatively few yet we recommend they should still be monitored over time.

A commonly overlooked group of associated fauna affecting the morphology of corals
consists of cryptochirid crabs that live in corals of Seriatopora and related genera. These
tiny crabs are obligate symbionts of living scleractinian corals and have been found to feed
on coral tissue and mucus along with inducing gall formation (Kropp, 1990; Terrana et
al., 2016). Here, high abundances of cryptochirid crabs were observed at Pearl Garden
(the site of an old pearl farm) and Sipi (the location of an active metal mine) (Fig. 9A).
Moreover, both sites were also characterised by recent signs of blast fishing. Although
the rank correlation between galls caused by cryptochirid crabs and human disturbances
was not significant, the presence of many cases in the study area, especially in the most
disturbed sites, deserves further investigations. Gall crabs can perhaps also be found in
other coral species in the research area, since in nearby Lembeh Strait (North Sulawesi),
cryptochirids were observed to occur abundantly in a single, large coral colony of Pavona
clavus (Hoeksema ¢ Van der Meij, 2012).

Although coral injuries due to acoelomorph flatworms have not yet been reported,
these species have been hypothesised to cause a shading effect which may result in a
negative impact on the corals photophysiology (Haapkyli et al., 2009a) in addition to
displacement of the corals surface mucus layer (Naumann et al., 2010). In this instance,
only Waminoa sp. were observed, supporting a recent study which showed the presence of
these species infesting mushroom corals in the same region, the Lembeh strait (Hoeksema
¢ Farenzena, 2012). The effect these flatworms have on corals specifically when high
infestations occur remains unknown. Finally, some instances of coral-killing sponges
such as Terpios hoshinota and Chalinula nematifera were recorded overgrowing a variety
of otherwise healthy corals within the surveyed transects. In Indonesia, the spread of
the cyanobacteriosponge T. hoshinota in particular is worrying as this sponge has been
linked to outbreaks of the so-called ‘black disease’ first observed by De Voogd, Cleary ¢
Dekker (2013). Such infestations by T. hoshinota may have severe and persistent effects
on reef areas within this region and on a global scale, however to date outbreaks appear
to be spatially well defined and limited (Madduppa et al., 2015; Elliott et al., 2016; Van der
Ent, Hoeksema & De Voogd, 2016). During our first visit of these reefs, back in September
2011, a wide area of reef off the Kahuku village (6 m depth) was observed to be affected
by T. hoshinota (M Ponti, pers. obs., 2011; Fig. 7E). Confirmation of this discovery (by
DNA sequencing of the sponge) should be undertaken in order to track the westward
widening of this species geographical range (Madduppa et al., 2015). In addition, at the
same site and occasion several other corals were observed to be affected by C. nematifera
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(Fig. 7F). C. nematifera is similarly reportedly to be spreading fast throughout the Indo-
Pacific (Avila & Carballo, 2009) and is thought to have been introduced to this region,
possibly by fouling from ships. The presence of C. nematifera in the study area and along
eastern Sulawesi was recently documented by Rossi et al. (2015), nevertheless quantitative
studies are urgently needed to assess the severity of these sponge outbreaks.

Interestingly, although most studies of this kind focus on the coral genera which show
presence of disease signs or other compromised health, few highlight those genera which
appear disease-free. In this instance, the majority of genera which showed no signs of
compromised health were also those with very low abundances such as Heliofungia,
Herpolitha, Leptoseris, Merulina, Psammocora and Symphyllia. However such findings
may simply be down to the low occurrence of these genera. In contrast, Tubastraea which
was one of the most abundant genera of corals found at our sites was also shown to have a
lack of apparent instances of compromised health and further studies should assess if this
trend is seen throughout the corals range.

To conclude, although the study area is relatively undisturbed as far as tourism devel-
opment, impact on the area by other human activities appear to be having a significant
effect on coral health and this warrants further longer term study. Of particular concern is
the increase in mining which is occurring in this area along with other off shore islands
throughout Sulawesi (Edinger, Siregar ¢ Blackwood, 2007; Caras ¢ Pasternak, 2009;

Lasut et al., 2010). However, directly linking such activities to coral health status can be
challenging (Rogers, 1990; Bruckner & Bruckner, 1997; Fabricius, 2005; Voss & Richardson,
2006a; Haapkyli et al., 2011; Erftemeijer et al., 2012; Pollock et al., 2014; Heintz, Haapkylae
& Gilbert, 2015).

Regardless of asserting the cause of reef decline, the provision of baseline surveys
for monitoring coral health status lay the foundations to assess the effects of any such
anthropogenic and/or natural effects on reefs over future years. Therefore, such activities
should continue to be undertaken with the understanding that return visits are scheduled
and conducted in the same manner to allow for direct comparisons between data sets.
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