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Abstract: Since the second half of the 1990s, a large number of genome-wide analyses have been described that study 

gene expression at the transcript level. To this end, two major strategies have been adopted, a first one relying on hybridi-

zation techniques such as microarrays, and a second one based on sequencing techniques such as serial analysis of gene 

expression (SAGE), cDNA-AFLP, and analysis based on expressed sequence tags (ESTs). Despite both types of profiling 

experiments becoming routine techniques in many research groups, their application remains costly and laborious. As a 

result, the number of conditions profiled in individual studies is still relatively small and usually varies from only two to 

few hundreds of samples for the largest experiments. More and more, scientific journals require the deposit of these high 

throughput experiments in public databases upon publication. Mining the information present in these databases offers 

molecular biologists the possibility to view their own small-scale analysis in the light of what is already available. How-

ever, so far, the richness of the public information remains largely unexploited. Several obstacles such as the correct asso-

ciation between ESTs and microarray probes with the corresponding gene transcript, the incompleteness and inconsis-

tency in the annotation of experimental conditions, and the lack of standardized experimental protocols to generate gene 

expression data, all impede the successful mining of these data. Here, we review the potential and difficulties of combin-

ing publicly available expression data from respectively EST analyses and microarray experiments. With examples from 

literature, we show how meta-analysis of expression profiling experiments can be used to study expression behavior in a 

single organism or between organisms, across a wide range of experimental conditions. We also provide an overview of 

the methods and tools that can aid molecular biologists in exploiting these public data.  
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EXPRESSION PROFILING USING EST BASED 

META-ANALYSIS  

 Expressed sequence tags (ESTs) are short segments 
(about 200-900 nucleotides) obtained by sequencing the 5’ 
and/or 3’ ends of cDNA [1]. In the release of March 2008, 
the public repository dbEST (http://www.ncbi.nlm.nih.gov/ 
dbEST/) contained more than 50 million ESTs, from a wide 
diversity of organisms. As ESTs are obtained from diverse 
tissues, developmental conditions or disease stages, they 
unveil information on the condition-, tissue-dependent ex-
pression of a gene. ESTs are mainly useful for organisms of 
which the genome sequence is not yet available (and hy-
bridization based expression profiling is not yet possible) or 
for higher eukaryotes in order to improve annotation. Indeed, 
ESTs do not only give quantitative information on a gene’s 
expression level, but also can provide evidence for alterna-
tive splicing and polymorphisms. The joint analysis of EST 
databases provides a useful resource to profile the expression 
of genes over different conditions. The integration of ESTs 
from several libraries requires, as will be outlined below, a 
careful selection and standardization of useful libraries. 
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1. Standardization and Data Quality 

 A first step towards integration across libraries is the se-

lection of the libraries that allow for reliable EST quantifica-

tion. An EST library represents a random sample of the 

mRNA abundance in the sampled tissue or condition, imply-

ing that the number of ESTs provides a quantification of the 

transcript expression level. The sequence depth of the library 

determines the reliability of EST derived expression quanti-

fication, in other words, the more ESTs have been sequenced 

from a particular library (i.e., the larger the sequence depth), 

the more statistically valid the derived results will be and the 

more rare transcripts are covered. In order to guaranty reli-

able quantification, either profiles are derived only for those 

genes for which a minimum number of ESTs are available 

(for example 5 or 6 ESTs) [2, 3], or the analysis only in-

cludes libraries with a minimum sequencing depth (e.g. more 

than 10.000 ESTs per library) [4]. Libraries for which fre-

quencies of clones representing abundant and rare transcripts 

have been normalized with respect to one another, are no 

longer suitable for quantitative expression profiling [3]. As 

the absolute number of EST counts depends on the sequence 

depth of a library, the counts have to be standardized before 

they can be used as estimates of expression level, compara-

ble between libraries [4].  
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2. EST Indexing 

 Once the right libraries have been chosen, ESTs need to 
be correctly ascribed to their corresponding transcripts 
(called indexing). EST sequences usually cover only a frac-
tion of a transcript, and a single transcript can thus be repre-
sented by many different EST sequences. Public gene indi-
ces, such as UniGene (www.ncbi.nlm.nih.gov/UniGene/) and 
DFCI Gene Index (http://compbio.dfci.harvard.edu/tgi/), 
provide the link between available ESTs and genes [5]. Each 
of these public resources however introduces a different bias. 
By relying on different cluster strategies, Unigene rather 
clusters together alternative splice forms of the same gene 
while DFCI separates splice variants in different EST clus-
ters. If a transcript is covered by different clusters of non 
overlapping ESTs, it will be represented by several clusters 
and there is no longer a one-to-one relationship between a 
transcript and a cluster of ESTs. As an alternative to these 
public gene indices, many research groups use their own in-
house assembly of the selected ESTs [4]. 

3. Condition Annotation 

 For the sake of the interpretation, it is important to make 
sure that the tissues/cell types sampled by the libraries are 
clearly specified. This often requires manual curation of the 
library labels [5].  

INTEGRATING EST LIBRARIES ACROSS STUDIES 
(WITHIN ORGANISMS) 

 After standardization and indexing, EST profiling across 
different libraries just comes down to simple EST counting 
[3, 4, 6, 7]. Although still largely outnumbered by what is 
available for microarrays, tools exist that construct EST 
based expression profiles by combing data from diverse 
studies and laboratories. For example, DigiNorthern [8] al-
lows extracting EST based gene expression profiles for a 
given gene in human and mouse respectively, while Tissue-
Info [9] uses ESTs to study tissue-dependent expression in 
the same organisms. The GBA server [10] finds co-
expressed genes in respectively human, mouse and rat based 
on Unigene clusters. GO-Diff uses gene ontology (GO) 
terms to calculate functional differences between two sets of 
EST libraries [11].  

 EST based profiling is also often used to have a first 
glimpse on the gene expression prior to the sequencing of the 
full genome. It is mainly used to study general trends, such 
as the condition or tissue dependency of the gene expression. 
More detailed patterns such as time course experiments of a 
specific pathway are usually not covered. Ewing et al. [3] for 
instance, compiled a compendium of 10 rice EST libraries 
originating from different tissues, each of which contained 
about thousand ESTs. By grouping together genes with a 
similar expression profile over these different libraries, these 
authors were able to identify transcripts enriched in similar 
functions. More recent studies, include for instance the one 
of Kawaura et al. [4], who collected large public EST librar-
ies to study the expression profiles of gene families in wheat 
and the one of Ogihara et al. [12], who used a whole series 
of libraries covering the wheat life cycle to detect tissue spe-
cific genes. Ronning et al. [2] used EST libraries of potato 
(Solanum tuberosum) to find genes associated with physio-

logical and developmental processes such as tuber develop-
ment, dormancy, and sprouting. 

INTEGRATING CROSS-SPECIES EST LIBRARIES  

 When combining libraries derived from different species 
or organisms, the association of transcripts between different 
species poses an additional challenge. Ortholog association 
across species is not a simple task. It is well-known that, 
even in moderately related species, many orthologs or ho-
mologs do not show a simple one-to-one relationship. This 
problem of establishing a unique transcript set relation be-
tween two species is even exacerbated when also considering 
alternative splicing and EST assembly errors. Public data-
bases such as HomoloGene (http://www.ncbi.nlm.nih.gov/ 
HomoloGene/) allow the automated detection of homologs 
for sequenced eukaryotic genomes (see Microarray section 
for more details). These tools are suitable for both EST and 
microarray based profiling. An alternative way to link ESTs 
between organisms, which avoids the need for a gene-by-
gene based association is to construct relationships based on 
functional annotations using for instance Gene Ontology 
[11].  

 Cross-species comparison based on EST profiles has 

mainly been used to identify functionally conserved ho-

mologs. As the similarity in the EST based expression pro-

files hints towards functional conservation, EST profile 

comparison between homologous genes can aid in the anno-

tation of true orthologous relationships. Pao et al. [5] for 

instance, discovered, through comparison of EST profiles 

between human and mouse, that tissue-specific orthologs 

tend to have a more similar expression than those lacking 

significant tissue specificity. Orthologs for which they ob-

served a significant disparity in expression profiles might 

provide an indication for neofunctionalization or subfunc-

tionalization. It can, however, not be excluded that experi-

mental factors, such as the heterogeneity in the tissue sam-

ples used for the library construction or the presence of an 

insufficient number of ESTs for these particular orthologs, 

contribute to the observed disparities. Fei et al. [6] used EST 

based profiling and sequence homology simultaneously to 

identify functionally conserved homologs (rather than 

orthologs) between tomato and Arabidopsis. The authors 

show that in some cases, sequence similarity alone is not 
sufficient to associate homologs with conserved function.  

EXPRESSION PROFILING USING MICROARRAY 

BASED META-ANALYSIS 

 Currently, microarrays are the main technology for large-
scale transcriptional gene expression profiling. By combin-
ing several independently performed microarray studies, it 
becomes possible to profile gene expression over a large set 
of conditions. Contrasting to the uniformity of the EST tech-
nology, microarrays can be manufactured in different ways, 
on different platforms, such as Affymetrix, Agilent, Code- 
link or in-house microarrays (see [13] a review).  

 Each different platform requires its own optimized sam-
ple preparation, labeling, hybridization and scanning proto-
col, and concomitantly also a specific normalization proce-
dure. All these differences complicate the meta-analysis of 
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arrays performed in different research groups. Several stud-
ies have evaluated the feasibility of cross-platform and cross-
laboratory integration of array experiments. While some 
studies show low reproducibility of expression ratios be-
tween different studies [14, 15], others present more promis-
ing results [16, 17]. Irrespective of their final conclusion, 
these comparative studies revealed the most important fac-
tors to be addressed when aiming at integrating data from 
different studies. Some of these factors are reminiscent of 
those described for EST profiling:  

1. Standarization and Data Quality 

 The best agreement between results of different experi-
mental setups was reached when different labs used stan-
dardized protocols for both experimental work and data 
analysis [14]. Using optimized preprocessing algorithms 
instead of the default methods offered by the manufactures 
increases the comparability of the results [18]. Data obtained 
from microarray studies performed on the same experimental 
platform are usually more comparable than when different 
platforms are used [18]. Low data quality also seems to seri-
ously affect reproducibility: spot quality filtering and re-
moval of genes with low expression rates can increase the 
intra-platform correlation [16, 17], but results in sometimes 
dramatically reduced datasets. As is also the case for the 
selection of the right EST libraries, it is advisable to care-
fully test the quality of the datasets before data integration 
[19]. Since experiments in public databases generally have 
been performed independently from each other in space and 
time, they lack any standardization in protocols and plat-
forms. This is the main issue which complicates their direct 
meta-analysis (see also below).  

2. Probe Matching 

 As was also the case for combining EST profiling ex-

periments, integrating microarray data obtained from differ-

ent laboratories and/or platforms requires establishing a 
unique link between each gene and its corresponding probe 

on the different arrays. Public databases containing gene 

collections such as Unigene, Refseq [20] and Ensembl [21] 
can be used for this purpose. This linking procedure is criti-

cal and comparative studies have shown how differences in 

the reproducibility across platforms depend on the database 
used for probe matching [16, 18]. For example, as compared 

to probe matching using Unigene, mapping with RefSeq 

improved the correlation between expression ratios obtained 
on different platforms [16], probably because RefSeq allows 

a more accurate mapping of each probe to its respective 

splice variant than UniGene. Several probe matching tools 
are available for both cross-platform and cross-species appli-

cations. CROPPER [22] for example is based on the En-

sembl database, while RESOURCERER [23] is based on the 
TIGR Gene Indices and EGO (now DFCI) and CleanEx [24] 

combine information from several databases, such as Uni-

gene and RefSeq. 

3. Condition Annotation 

 To allow for biological relevant data integration, it is 
important to select array experiments that were performed in 
comparable conditions. Much effort has been taken to stan-

dardize the description of the experimental protocols used 
for microarray experiments. The developed standard MI-
AME [25] defines the content required for compliant reports. 
It carefully describes experimental conditions, such as the 
genetic background of the used strains, the used media, 
growth conditions, triggering factors, etc., but it does not 
specify the format in which these data should be presented. 
As a result, condition annotation of a collection of microar-
rays obtained from public databases is still mainly a manual 
process where information needs to be retrieved from origi-
nal publications, supplementary data and occasionally di-
rectly from the authors. After manual curation, conditions 
can be classified and structured to facilitate meta-analysis. 

MICROARRAY META-ANALYSIS ACROSS STUD-

IES FOR A SINGLE ORGANISM 

 Public databases, such as GEO [26] or ArrayExpress [27] 
offer a central repository of MIAME-compliant microarray 
data. Although these databases are an extremely rich source 
of information, containing thousands of experimental 
datasets for a particular model organism, they do not directly 
allow for an integrated exploration of the data between ex-
periments (as was the case for EST experiments). An addi-
tional conversion step is needed: compendia are derived 
from the public resources that combine all the experiments 
on one particular organism (see Fig. 1).  

Two types of compendia exist 

1. Single-platform compendia combine all data on a particu-
lar organism that were obtained from one specific plat-
form. Focusing on a single platform makes both the be-
tween-experiment normalization and the probe-matching 
relatively straightforward. Normalization is performed 
with the uniform platform-specific normalization proce-
dure. Most single-platform compendia focus on Af-
fymetrix as it turned out to be one of the more robust and 
reproducible platforms [14, 18]. Examples are, for in-
stance, Genevestigator [28], initially developed for 
Arabidopsis, but now being extended to other species 
such as human and mouse, and M3D [29], which offers 
Affy-based compendia for three microbial organisms (E. 
coli, yeast and Shewanella oneidensis). Such single plat-
form compendia are more straightforward to use for di-
rect meta-analysis (see below).  

2. Cross-platform compendia include data from different 
platforms and often combine data from both one- and 
two-channel microarrays. These compendia are topic-
specific, collecting all the publicly available experimen-
tal information related to the topic of interest. ITTACA 
[30] and ONCOMINE [31], for instance, focus on cancer 
in human, GAN [19] on aging in several species. They 
collect already normalized datasets (ITTACA and GAN) 
or apply a simple scaling normalization method (ON-
COMINE). In the examples mentioned above, Unigene is 
used for probe matching. Because of the heterogeneity in 
platforms, usually each experimental set is analyzed 
separately and independent analyses are subsequently 
combined or compared across datasets (indirect meta-
analysis/see below).  
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 Standard microarray analysis such as detecting differen-
tially expressed genes, clustering gene expression profiles, 
classification or reconstructing gene co-expression networks 
are also applicable on large expression compendia. However, 
the inter-study variability caused by the use of different plat-
forms and/or experimental procedures complicates the analy-
sis. The fact that compendia contain a plethora of different 
conditions makes the interpretation and analysis also less 
straightforward than is the case for the analysis of a single 
experiment. In the following, we describe standard microar-
ray analysis protocols that have been specifically adapted 

towards their use on a compilation of different independent 
datasets, i.e., towards meta-analysis. From a statistical point 
of view, such meta-analysis is interesting as for single ex-
periments the number of replicated conditions is usually 
small. By combining results from different studies that ad-
dress a set of related research hypotheses, the number of 
replicates and the power of the statistical tests will increase 
[32].  

 For the meta-analysis of microarrays, direct and indirect 
methods have been developed (Fig. 1), which can be applied 
on both, single and cross-platform compendia:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Overview of the construction and analysis of microarray compendia. Datasets generated by different laboratories can be combined 

to create single-platform compendia or cross-platform compendia. Methods for meta-analysis are applicable on single- and cross-platform 

compendia, and they can be classified as direct or indirect analyses. The methods for classification and biclustering described in this review 

correspond to direct analysis only. 
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(i) For direct meta-analysis, microarray analysis procedures 
(such as clustering, network reconstruction) are applied 
to the compendium as a whole. Consistent sources of 
variation related to differences in experimental set up 
have to be removed prior to these subsequent analyses.  

(ii) The indirect analysis first applies the desired microarray 
analysis procedure on each single data set within the 
compendium separately and subsequently combines the 
derived results.  

Detection of Differentially Expressed Genes 

 Many independently performed experiments exist in 
which a similar process is studied in comparable conditions, 
for example for the profiling of gene expression in a specific 
cancer type. Such datasets are ideally suited for the indirect 
meta-analysis of genes that are differentially expressed be-
tween two biological conditions. Rhodes et al. [33] com-
bined four independent datasets to identify genes dysregu-
lated in prostate cancer. For each gene in each dataset a p-
value was obtained as an indication of the probability that 
the gene was differentially expressed. P-values for the dif-
ferent datasets were subsequently aggregated to provide an 
overall estimate of the gene’s significance of being differen-
tially expressed during prostate cancer. This indirect ap-
proach aims at validating and statistically assessing the re-
sults across datasets. However, it is still limited in its use as 
it requires that the different datasets which are combined test 
the exact same conditions. To extend this approach to a 
compendium of more heterogeneous conditions, Rhodes  
et al. [34] first subdivided the compendium in subsets ac-
cording to predefined comparisons of interest (e.g., cancer 
versus normal, undifferentiated versus well differentiated 
cancer). By searching for subsets of genes that are frequently 
differentially expressed in a subset, but not necessarily in all 
the conditions within the subset they introduced more flexi-
bility towards the heterogeneity of the data. 

 Direct approaches that first standardize raw expression 
values by removing the inter-study variability and subse-
quently use these standardized data for detecting differen-
tially expressed genes, have also been applied. Such direct 
meta-analysis becomes useful if the number of studies in-
cluded in the analysis is sufficiently large to reliably estimate 
the inter-study variability [35]. Although they can enhance 
the power for detecting differentially expressed genes, these 
methods are still rarely used. An example is given by Choi  
et al. [36] who use a statistical model to estimate from a 
standardized mean difference in gene expression between 
two conditions the differential expression. The statistical 
model they use takes into account both the within-study (dif-
ferent replicas) and between-study variability. Hu et al. [37] 
have extended the model proposed by Choi et al. [36] with 
quality measures derived from of the original raw data. Ste-
vens et al. [38] proposed an alternative for the standardized 
mean difference [36] as estimator for differential expression 
specific for Affymetrix data. 

 Linear models such as LIMMA [39] and ANOVA [40] 
were originally developed to search for differentially ex-
pressed genes or to reconstruct profiles from complex mi-
croarray designs derived from a single experiment [41]. By 
explicitly including in these models, a factor that compen-

sates for consistent sources of variation across different ex-
periments, these techniques can be adapted in a straightfor-
ward way for direct cross-experiment analysis. Park et al. 
[42] propose an ANOVA model accounting for the inter-
study variability while Gilks et al. [43] propose a multiple 
regression model to combine different expression values 
profiles under the similar experimental conditions. In gen-
eral, direct and indirect approaches give different results. 
When taking the results obtained by the analysis of a single 
experiments as a reference, direct meta-analysis of multiple 
experiments detects more differentially expressed genes 
while indirect analysis tend to result in a more restricted 
gene list which corresponds grosso modo to the intersection 
of the sets of differentially expressed genes obtained by each 
of the single experiments.  

Classification Techniques  

 Also supervised classification techniques benefit from 
the larger number of samples in a microarray compendium. 
Their aim is to find genes or features (combinations of 
genes) that can discriminate two classes, such as normal and 
cancer samples, or between phenotypes. Some direct analy-
sis strategies for classification convert the expression values 
into sorted gene lists, and afterwards use the relative rank 
(the gene position in the sorted list) within each condition for 
further analysis. Although this rank-based transformation 
results in the loss of the absolute values of gene expression, 
it guarantees comparability between the different experi-
ments within a compendium while still providing sufficient 
information for classification [44, 45]. Several studies 
showed that classifiers trained with a compendium outper-
form classifiers based on a single dataset [44, 45]. 

Comparisons Across Platforms 

 Besides for classification purposes, also methods have 

been developed that allow making general comparisons be-
tween different datasets. Prior to the comparison, the com-

plexity of a compendium is reduced by defining linear com-

binations of genes that describe the main biological aspects 
contained within the compendium (metagenes) [46]. A refer-

ence (model set) compendium is used to define these me-

tagenes. Data from other platforms (test sets) can subse-
quently be compared with the reference set by projecting the 

test sets onto the meta-genes of the reference.  

 The previously described comparison method is gene 
based and as such the analysis is restricted to only those 
genes which are in common between all the arrays of the 
used compendium. In some cases this results in the exclusion 
of thousands of genes from the analysis. By using a condi-
tion-based approach, Culhane et al. [47] circumvented this 
problem. These authors developed “Co-inertia analysis” 
(CIA), an approach that identifies common trends or co-
relationships between the conditions of two different 
datasets. CIA is accomplished by finding successive or-
thogonal axes from the two datasets with maximum squared 
covariance using correspondence analysis. By applying their 
method to cancer related datasets, they were able to distin-
guish between cancer cell types and concomitantly identified 
the genes of which the expression contributed to the ob-
served global expression differences between the cell types.  



530    Current Genomics, 2008, Vol. 9, No. 8 Fierro et al. 

Reconstruction of Co-Expression Networks 

 Genes that are coexpressed over a certain number of con-
ditions suggest that these genes might be functionally related 
or even co-regulated. From a large-enough number of sam-
ples in a compendium, a coexpression network can be in-
ferred [48-52]. A coexpression network is a graph-based 
representation of pairwisely coexpressed genes. A node rep-
resents a gene and an edge indicates that the connected genes 
are coexpressed in the network. The pairwise co-expression 
is usually assessed by Pearson correlation [48, 50] or mutual 
information [51]. In general, the significance of each edge is 
calculated by assigning a “relevance score”, which is based 
on rank scores [48, 50, 51] or statistical tests [49, 52] to se-
lect the most significant interactions which define the net-
work. These networks are then further subdivided into highly 
connected subgraphs which correspond to modules of func-
tionally related genes [48-50, 52].  

 As coexpression networks are by definition condition-
dependent, not all interactions are valid in all conditions. To 
cope with this condition dependency, heterogeneous com-
pendia are subdivided before calculating the coexpression 
networks. In an indirect approach, the compendium is subdi-
vided into subsets according to the different experiments 
(datasets) from which its is composed [49, 52]. In a direct 
approach, the compendium is analyzed as a whole [51] or 
divided according to predefined categories, such as different 
tissues. In the latter case a predefined category does not 
necessarily correspond to a single experiment as is the case 
with an indirect analysis but can be composed of different 
experiment sets profiling similar conditions [48, 50]. Choi  
et al. [48] used a direct approach of coexpression network 
inference to search for differences in expression between 
cancer or normal tissues by comparing coexpression net-
works extracted from compendia containing expression data 
from the respective tissues. In some studies, a reference co-
expression network is derived from a first compendium and 
compared with an independent compendium to infer the sub-
networks that are affected by measuring the effects of a spe-
cific treatment [50]. Coexpression networks have also been 
used to refine gene annotation by studying the condition-
dependency of a particular interaction in the coexpression 
network [49].  

(Bi)Clustering and Gene Modules Inference 

 Another common task in microarray analysis is the clus-
tering of genes that share a similar gene expression pattern 
across the tested conditions. Standard clustering methods are 
successful in grouping together co-expressed genes in rela-
tively small datasets or larger datasets that focus on a par-
ticular condition. However, searching for patterns of co-
expression that extend over all conditions in a compendium 
that is heterogeneous with respect to these conditions, is little 
useful. In general we can expect that most genes are only 
affected by a small subset of these conditions. Moreover, 
genes may participate in different pathways and thus could 
be part of several overlapping clusters, a problem that is also 
not tackled by standard clustering approaches. To analyze 
large compendia, module detection or bicluster approaches 
are therefore more appropriate. These algorithms not only 
select genes which are co-expressed but also the conditions 
these genes are co-expressed in [53, 54].  

 Query based approaches allow searching compendia for 
genes that are coexpressed with a certain gene of interest, 
e.g., a potential drug target. These query driven methods 
report the set of genes with similar behavior to the query 
genes and the conditions under which these genes are coex-
pressed [55, 56]. To deal with the condition-dependency of 
the co-expression, Hibbs et al. [56] decompose the compen-
dium into its original experiment sets and assess coexpres-
sion in each of the individual sets. Dhollander et al. [55] do 
not use any prior condition partitioning of the compendium 
but rely on a bicluster strategy for deriving, simultaneously 
with the coexpressed genes, the conditions under which 
these genes are coexpressed. Since the query genes can be 
involved in several pathways and functions, Dhollander et al. 
[55] apply a range of different parameter settings to detect 
small biclusters with homogeneous co-expression profiles as 
well as bigger biclusters with more heterogeneous profiles. 

DATA INTEGRATION ACROSS SPECIES  

 With all these microarray platforms being set up for sev-
eral model organisms, the comparison of expression profiles 
across species offers new opportunities towards studying 
network and pathway evolution. Cross-species analyses exist 
which compare closely related species, such as different sub-
species of yeast or Drosophila (Drosophila melanogaster) 
[57, 58], or more evolutionary distant organisms, such as 
human (Homo sapiens), fly, yeast (Saccharomyces cere-
visiae) and Caenorhabditis elegans [59]. Comparative stud-
ies either focus on a particular biological process, such as 
aging [60] or metamorphosis [57], or on more global com-
parisons , to study for example, core biological functions 
such as the cell cycle, secretion, and protein expression [59]. 
Because compendia are usually heterogeneous in the condi-
tions they assess for the different organisms, specifically 
designed datasets profiling comparable conditions for the 
different organisms are more suitable for cross-species 
analysis. 

 As was also the case for cross-species analysis using EST 
profiling, most microarray based cross-species analyses rely 
on the mapping of orthologous genes between the different 
organisms. To this end, similar tools as described for EST 
analysis can be used (CROPPER and RESOURCERER). 
Ortholog identification usually relies on sequence similarity 
using bidirectional best hits (BBH) [59] or sequence similar-
ity combined with phylogenetic analysis [60]. However, due 
to evolutionary phenomena such as sub- and neofunctionali-
zation, associations based on sequence similarity do not al-
ways imply similar functionalities. Therefore, instead of 
identifying orthologs prior to the cross-species expression 
analysis, one can use the expression data besides the se-
quence similarity to simultaneously search for sequence and 
functional conservation. Bergmann et al. [61], for instance, 
developed to this end a two-step approach in which they 
first, starting from a group of coexpressed genes in one or-
ganism, identified the corresponding homologs in a second 
organism. In a second step only homologs that also appeared 
coexpressed in the second reference organism are retained as 
functional homologs. Lefebvre et al. [62] defined a single 
measure to detect functionally conserved genesets between 
C. elegans and Drosophila that includes simultaneously the 
sequence alignment score between homologous genes and a 
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within species gene coexpression score [62]. As such, ex-
pression data can help refining the ortholog identification 
[61, 62].  

 Because of the heterogeneity in platforms and compen-
dia, the meta-analysis of different datasets across organisms 
is much less straightforward than with ESTs and as a conse-
quence, no standardized procedures exist. Studies which use 
a homogeneous compendia, i.e. the dataset for both organ-
isms contain similar conditions, rely on differences of gene 
expression to compare the changes in the transcriptional re-
sponse between organisms [57]. The correlation between the 
log ratios of all genes is used as a global indication of how 
much the conditions are comparable between the different 
organisms [60]. Rifkin et al. [57] for example studied “evo-
lutionary variation” of gene expression in Drosophila at the 
onset of metamorphosis by comparing to what extent 
orthologous genes exhibiting developmental changes during 
metamorphosis in one species were no longer differentially 
expressed during the same process in other members of the 
species. McCaroll et al. [60] compared gene expression ra-
tios to assess the similarity of the process of aging between 
C. elegans and D. melanogaster. To compare networks be-
tween species, the concept of coexpression networks has also 
been applied (see above). Lelandais et al. [63], for instance, 
compared the sporulation network between budding and fis-
sion yeasts using for both organisms similarly designed time 
series experiments. The authors proposed a method that su-
perimposes the two species specific coexpression networks 
by taking into account the structure of each individual net-
work and the orthologous relations between the species. 

 When the compendia for each organism tend to be more 

heterogeneous in conditions, individual gene profiles are no 

longer comparable across organisms, but the mutual relation 

between genes, can still be compared between species [58, 

59, 61]. Stuart et al. [59] for instance used coexpression net-

works to compare expression networks in H. sapiens, D. 

melanogaster, S. cerevisiae and C. elegans. The authors 

started from a set of genes that exhibit sequence conserva-

tion in the different species studies. Subsequently, they iden-

tified the coexpression network of those genes for which the 

representatives are consistently coexpressed in all species 

studied. This conservation of genes being coexpressed over 

different species is an indication of conservation of coex-

pression throughout evolution. Also based on the conserva-

tion of coexpression, Ihmels et al. [58] developed the Differ-

ential Clustering Algorithm (DCA) to capture differences in 

expression patterns between two yeast species C. albicans 

and S. cerevisiae. The algorithm is used to determine if the 

expression of a group of coexpressed genes in one organism 

is fully, partially, or not at all conserved in the other organ-

ism. To facilitate the analysis and interpretation of the re-

sults, the authors focused their analysis on gene sets which 

are predefined by sharing common regulatory motifs or be-

longing to the same GO categories. They discovered that 

most of the differences in expression modularity occurred in 

genes involved in mitochondrial processes. In contrast to 

previous studies which calculated the coexpression between 

genes over all the conditions, Bergmann et al. take into ac-

count the condition-dependency of the coexpression by rely-

ing on a biclustering approach (see before) [61]. They com-

pared global expression patterns between S. cerevisiae, C. 

elegans, E. coli, A. thaliana, D. melanogaster, and H. 

sapiens. The iterative signature algorithm (ISA) [64] was 

applied to decompose the compendium of each organism in 

co-expressed modules. Next, they compared to what extent 

each of these organisms shared homologous modules, i.e. a 

module of coexpressed genes in the reference species (yeast 

in their study) of which the orthologs or homologs are also 

coexpressed in the other species. The difficulty with biclus-

tering is that the concept of a biological module, being a set 

of coexpressed genes and the conditions under which they 

are coexpressed is hard to formalize mathematically. De-

pending on the ISA parameter resolution, a gene can belong 

to a whole series of overlapping modules. At low resolution 

ISA finds few large loosely coexpressed modules, while at a 

high resolution ISA finds smaller but more tightly coex-

pressed modules. This complicates comparing modules over 

different species because a module is not uniquely defined. 

Bergmann et al. [61] tackle this issue by introducing high-

order regulatory structures or module trees that show the 

relation between the modules obtained at different resolu-

tions and comparing these module trees across the species 
instead of the single modules.  

COMPARISON BETWEEN ESTS AND MICROAR-

RAY BASED PROFILING 

 Although both ESTs and microarrays are used to measure 
gene expression and theoretically describe the same process 
of transcriptional regulation, both methods for expression 
profiling have largely been developed independently from 
each other. The question remains as to what extent both 
techniques agree with each other in describing similar tran-
scriptional processes.  

 The current sensitivity of microarrays is probably still 
insufficient to detect relevant changes in expression for low 
abundance genes such as transcription factors [65]. For EST 
based profiling, in principle, good estimates of gene expres-
sion, even for lowly expressed genes can be obtained pro-
vided a sufficient number of ESTs is available (sequence 
depth is sufficient and the library is large). However, this is 
usually not the case for classical sequence based profiling 
techniques because of the required cost and effort to generate 
such libraries. Another problem shared by the EST- and mi-
croarray based profiling techniques is their specificity in 
assigning each probe or sequence to a unique transcript or 
gene. Microarray probes that are too short or ill-designed 
will lead to cross-hybridization, a problem which is exacer-
bated for orthologs and paralogs belonging to the same pro-
tein family [66]. For EST based profiling, making the dis-
tinction between closely related members of a gene family 
would in theory be less of a problem because accurate EST 
sequencing results in discriminating nucleotide polymor-
phisms for each of the sequences [67]. However, such accu-
racy is usually not yet obtained with the classical EST based 
profiling techniques. For ESTs there are also other reasons 
why the mapping between a transcript and a gene is not al-
ways unique. For instance, when non overlapping ESTs are 
derived from the 5’ and 3’ extreme ends of a long transcript, 
their reads will erroneously be assigned to different genes. 
Also EST libraries are often incomplete because small tran-
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scripts are removed during library construction, and se-
quences which are difficult to clone or which lead to insta-
bilities in the vector are often missed.  

 Comparative studies focusing on the detection of differ-
entially expressed genes among tissues showed clear differ-
ences between results obtained by EST versus microarray 
profiling [5, 67, 68]. In general, at this stage the use of se-
quence based profiling techniques is probably less suitable 
for quantitative expression analysis than array based expres-
sion profiling, mainly because of incomplete and insuffi-
ciently large libraries and sequence coverage. However, with 
the use of the novel sequence strategies such as reversible 
terminator sequencing [69] or pyrosequencing technology 
[70], this situation can be quickly reversed. Massive parallel 
pyrosequencing strategies allow for the direct sequencing of 
cDNA, obviate the need for a library construction, and can 
obtain a much higher coverage at a lower cost and time. 
They thus overcome most of the limitations of the classical 
EST based profiling techniques [71, 72].  

CONCLUSION 

 The combination of relatively small-scaled publicly 
available profiling experiments increases the power of statis-
tical tests and improves the detection of interesting genes by 
identifying subtle signals that seem recurrent across multiple 
experiments. Moreover, by generating a compendium of 
experiments, a much wider range of conditions is covered for 
a particular organism. This not only allows increasing the 
scope of the own small-scale study, but also contributes to 
the understanding of the organism at a more global level. 
Integrated analysis of experiments across species improves 
functional annotation and true ortholog identification and 
will eventually lead to the basic understanding of how ex-
pression networks evolved. Meta-analysis of gene expression 
data thus holds much promise. Microarrays are already cus-
tomarily used and in principle very large compendia for 
model organisms can already be compiled. With the adop-
tion of the many novel ultra fast sequencing technologies, 
the sequence based expression profiling will definitely see a 
revival. 

 With the increasing number of high throughput technolo-
gies, we can expect that compendia for other “omics data” 
will also grow at an increasing pace. Each compendium pro-
vides a snap shot of the condition-dependent changes at a 
certain cellular level. A huge challenge remains of how a 
comprehensive view of the cellular machinery can be built 
by combining all these individual snap shots [73-75]. An 
important and often overlooked issue with the meta-analysis 
of biological data is the context-dependency, the condition 
dependency of the interactions, their timing, and their loca-
tion. Most of the representations of a network obtained so far 
are static. Taking into account context will require the devel-
opment of appropriate analysis techniques, such as for in-
stance biclustering (see higher), but more importantly, a 
more formalized and standardized way of describing experi-
mental context.  
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