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Abstract

Recently, there have been many case-control studies proposed to test for association between haplotypes and disease,
which require the Hardy-Weinberg equilibrium (HWE) assumption of haplotype frequencies. As such, haplotype inference of
unphased genotypes and development of haplotype-based HWE tests are crucial prior to fine mapping. The goodness-of-fit
test is a frequently-used method to test for HWE for multiple tightly-linked loci. However, its degrees of freedom
dramatically increase with the increase of the number of loci, which may lack the test power. Therefore, in this paper, to
improve the test power for haplotype-based HWE, we first write out two likelihood functions of the observed data based on
the Niu’s model (NM) and inbreeding model (IM), respectively, which can cause the departure from HWE. Then, we use two
expectation-maximization algorithms and one expectation-conditional-maximization algorithm to estimate the model
parameters under the HWE, IM and NM models, respectively. Finally, we propose the likelihood ratio tests LRT1 and LRT2 for
haplotype-based HWE under the NM and IM models, respectively. We simulate the HWE, Niu’s, inbreeding and population
stratification models to assess the validity and compare the performance of these two LRT tests. The simulation results show
that both of the tests control the type I error rates well in testing for haplotype-based HWE. If the NM model is true, then
LRT1 is more powerful. While, if the true model is the IM model, then LRT2 has better performance in power. Under the
population stratification model, LRT2 is still more powerful. To this end, LRT2 is generally recommended. Application of the
proposed methods to a rheumatoid arthritis data set further illustrates their utility for real data analysis.
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Introduction

In studies of genetic epidemiology, complex diseases are often

associated with multiple (interacting) markers [1–3]. As such,

haplotype-based analysis has gained increasing attention as it can

potentially be more efficient than a single-marker-based analysis

[4–9]. Therefore, haplotype inference of unphased genotypes may

be expected to play an important role in disease fine mapping [10].

Nowadays, there are many statistical and computational methods

available for inferring haplotypes based on different types of data,

such as unrelated individuals. One of the popular approaches is

the likelihood method, and the maximum likelihood estimation via

the expectation-maximization (EM) algorithm [11] is a frequently

employed method for haplotype inference. For genotype data of

unrelated individuals, an EM-based maximum likelihood method

for the estimation of haplotype frequencies was first proposed by

Excoffier and Slatkin [12]. We call it EM algorithm in this paper

for easy description later. However, the EM algorithm needs the

assumption that the population under study is in Hardy-Weinberg

equilibrium (HWE), otherwise the estimates of haplotype frequen-

cies may be biased.

Recently, there have been many case-control studies proposed

to test for association between haplotypes and disease. The

likelihood ratio test (LRT) was constructed from the maximum

likelihood functions for cases, controls and the pooled data of cases

and controls, to test for haplotype-disease association, which

requires the assumption of HWE in the pooled sample data [3].

Prospective likelihood methods based on logistic regression or

generalized linear models were investigated by Schaid et al. [13],

Stram et al. [14], Zaykin et al. [15], and others. These methods

treat unobserved haplotypes as covariates in a regression model

and compute the conditional expectation of the covariates given

genotype observations under the null hypothesis of no association

with a HWE assumption in the pooled sample of cases and

controls. Zhao et al. [16] proposed a prospective estimating-

equation approach for the assessment of disease association with

haplotypes when adjustment for covariates, which needs the HWE

assumption of haplotype frequencies only in the control sample.

The pooled sample of cases and controls is not necessarily in

HWE. On the other hand, a retrospective likelihood method can

be used in detecting haplotype-disease association in a case-control

study and also requires HWE only in the control population [17].

Therefore, the detection of haplotype-based HWE is crucial prior

to fine mapping and positional cloning studies for case-control

designs.
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The goodness-of-fit test is a frequently-used method to test for

HWE for multiple tightly-linked loci. However, when the number

of loci under study increases, the degrees of freedom dramatically

increase, which may lack the test power. As such, in this paper, to

investigate more powerful haplotype-based HWE tests, we first

recall three models which can cause Hardy-Weinberg disequilib-

rium (HWD). One was proposed originally by Niu et al. [6], which

includes a parameter K and is called Niu’s model (NM) in this

paper for convenience; the second one is the inbreeding model

(IM) with incorporating the inbreeding coefficient r [18]; the third

one is a population stratification (PS) model, which can also lead to

HWD. Then, we write out two likelihood functions of the observed

data based on the NM and IM models, respectively. We develop

an expectation-conditional-maximization (ECM) algorithm [19]

for the NM model to estimate the parameter K and haplotype

frequencies and suggest an EM algorithm for the IM model

(denoted by IEM algorithm here) to estimate the inbreeding

coefficient r and haplotype frequencies. Note that K~1 or r~0
means that HWE holds. So, we further propose two LRT tests

LRT1 and LRT2 to test for haplotype-based HWE under the NM

and IM models, respectively. We simulate the HWE, Niu’s,

inbreeding and population stratification models to assess the

validity and compare the performance of these two LRT tests. The

simulation results show that both of the tests control the size well in

testing for haplotype-based HWE. If the Niu’s model is true, then

LRT1 is more powerful. While, if the inbreeding model is true,

then LRT2 has better performance in power. Under the

population stratification model, LRT2 is still more powerful.

Therefore, LRT2 is generally recommended. In addition, we

obtain the sum of absolute differences (SAD) between the true and

estimated haplotype frequencies [20], and compare the perfor-

mance of the EM, ECM and IEM algorithms in estimating the

haplotype frequencies. If the true model is the Niu’s model, then

the ECM algorithm has more accurate estimates of haplotype

frequencies than the EM and IEM estimates. However, for all the

other simulation settings, the EM algorithm is not so much

affected by the departure from HWE, and the EM and IEM

algorithms almost have the same performance in controlling SAD,

which is less than the ECM estimates. Application of the proposed

methods to the Rheumatoid Arthritis (RA) data set from the North

American Rheumatoid Arthritis Consortium (NARAC) further

illustrates their utility for real data analysis.

Materials and Methods

Likelihood Function and EM Algorithm under HWE
Consider a sample of n unrelated individuals and q single

nucleotide polymorphism (SNP) markers. Assume that the SNPs

are tightly linked so that the recombination fraction between any

SNP pair is zero. For each SNP, there are two alleles 1 and 2. Let

H~fh1,h2, . . . ,hmg be the set of all possible haplotypes at these q

loci, where m~2q. We assume that hi is the frequency of

haplotype hi (i~1,2, . . . ,m), so the set of haplotype frequencies

can be denoted by H~fh1,h2, . . . ,hmg. Let G~fG1,G2, . . . ,Gng
be the set of the observed genotypes of all the n individuals, where

Gj is the genotype of the j th individual. For the j th individual, the

number of haplotype combinations compatible with Gj is sj .

Therefore, the likelihood function of the sample can be expressed

as

L(H)~L(GjH)~P
n

j~1
P(Gj jH)~P

n

j~1

Xsj

k~1

P(HjkjH) ð1Þ

where Hjk denotes the k th haplotype combination compatible

with genotype Gj for the j th individual.

To make the haplotype frequency estimation easy and feasible,

the EM algorithm was employed [11]. Let Z~(Z1,Z2, . . . ,Zn) be

the true haplotype combinations of the sample which are actually

unobserved, and Zj is the true haplotype combination of the j th

individual. Then the log-likelihood function of the complete data is

lc(H)~
Xn

j~1

Xsj

k~1

I(Zj~Hjk)ln P(HjkjH)
� �

ð2Þ

where I(:) is an indicator function and I(:)~1 if Zj~Hjk and 0

otherwise. Note that under HWE, the probability P(Hjk~hrhsjH)

of unordered haplotype pair hrhs is h2
r if r~s and 2hrhs otherwise.

Further, Excoffier and Slatkin [12] proposed the following EM

algorithm to obtain the maximum likelihood estimates of hi

(i~1,2, . . . ,m) at iteration (tz1),

ĥh(tz1)
i ~

1

2n

Xn

j~1

Xsj

k~1

ti
jk

P(HjkjĤH(t))Psj

l~1

P(Hjl jĤH(t))

, t~0,1,2, . . .

where ti
jk is the number of times that haplotype hi occurs in the

k th haplotype combination for the j th individual and takes values

of 0, 1 or 2, and P(HjkjĤH(t)) is the value of the probability

P(HjkjH) based on the estimated haplotype frequencies

ĤH(t)~fĥh(t)
1 ,ĥh

(t)
2 , . . . ,ĥh(t)

n g at iteration t.

Two Forms of HWD
Note that the underlying assumption of HWE is strong and

HWE does not hold usually. One may consider the following form

of HWD,

P(Hjk~hrhsjH)~
h2

r zrhr(1{hr), r~s

2(1{r)hrhs, rvs

(
ð3Þ

where r is the inbreeding coefficient which is generally positive

[21]. Note that Equation (3) is reduced to HWE when r~0. We

denote this form of HWD as ‘‘inbreeding model (IM)’’ for

convenient description in this paper.

Another form of the departure from HWE was originally

proposed by Niu et al. [6] as follows. Assume that the probability

of unordered haplotype pair hrhs is proportional to ah2
r if r~s and

2bhrhs otherwise, with two parameters a and b. Obviously, the

HWE assumption holds if a~b. Note that the sum of all these

terms for all the m haplotypes at the q loci may not be 1. Then,

HWD can be defined as the following form:

P(Hjk~hrhsjH)~
ah2

r=T , r~s

2bhrhs=T , rvs

(
ð4Þ

where

T~a
Xm

r~1

h2
r z2b

Xm

r~1

X
rvs

hrhs

Powerful Haplotype-Based HWE Tests
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Let K~a=b. Then, we assume K§1 due to the positive

inbreeding coefficient r. We denote this form of HWD as ‘‘Niu’s

model (NM)’’ for convenience.

Likelihood Function and Haplotype-Based HWE Test
under Niu’s Model

Using Equations (2) and (4), the log-likelihood function of the

complete data under the Niu’s model can be expressed as

lc1(Y)~
Xn

j~1

Xm

r~1

X
rƒs

I(Zj~hrhs)ln ah2
r I(r~s)z2bhrhsI(rvs)

� �
{nlnT

ð5Þ

where Y~(K ,H). In fact, there is only one additional parameter

K included in Equation (5), compared to the likelihood function

under HWE. So, we propose the following expectation-condition-

al-maximization (ECM) algorithm to estimate the haplotype

frequencies and the parameter K . It consists of one expectation

step (E-step) and m conditional-maximization steps (CM-steps) at

each iteration. In E-step at iteration (tz1), we can get the

following Q function after taking the conditional expectation of

Equation (5), given the observed genotype data G and current

estimate ŶY(t) of Y,

Q1(Y; ŶY(t))~
Xn

j~1

Xm

r~1

X
rƒs

P(Zj~hrhsjGj ,ŶY
(t))

ln½ah2
r I(r~s)z2bhrhsI(rvs)�{nln(T)

ð6Þ

where P(Zj~hrhsjGj ,Y
(t)) is the conditional probability of the

haplotype pair hrhs given Gj and ŶY(t), which is 0 if there is no

haplotype pair compatible with genotype Gj .

In CM-steps, we maximize the Q function in Equation (6) to

estimate Y. Let ŶY(x=mzt) be the estimate of Y in the xth CM-step

among m CM-steps at iteration (tz1). The detailed CM-steps are

as follows:

N Give the initial value Y(0)~(K (0),H(0)), where H(0)~(h
(0)
1 ,

h
(0)
2 , . . . ,h(0)

m ).

N At iteration (tz1), by fixing ŶY(t) in the first CM-step,

maximize the Q function by taking the first-order derivation

with respect to K so as to get the estimate of K , and then

K̂K (tz1)~

2B
(t)
1

Pm
r~1

P
rvs

ĥh(t)
r ĥh(t)

s

B
(t)
2

Pm
r~1

ĥh(t)
r

h i2

where B
(t)
1 ~

Pn
j~1

Pm
r~1 P(Zj~hrhrjGj ,ŶY

(t)), B
(t)
2 ~

Pn
j~1

Pm
r~1P

rvs P(Zj~hrhsjGj ,ŶY
(t)). So, ŶY(1=mzt)~(K̂K (tz1),ĤH(t)).

N Note that there is a constraint condition h1zh2z . . . zhm~1

when we maximize Q1(ŶY(1=mzt); ŶY(t)) to estimate the haplotype

frequencies H. Thus, from the second CM-step to the mth CM-

step, hi’s (i~2,3, . . . ,m) are estimated step by step and h1 is then

estimated by 1{ĥh(tz1)
2 {ĥh(tz1)

3 { . . . {ĥh(tz1)
m . Let ĤH(x=mzt)

{x be

the set of the haplotype frequency estimates for all the

haplotypes but h1 and hx in the xth CM-step. Then,

ĤH(x=mzt)
{x ~ ĥh(tz1)

2 ,ĥh(tz1)
3 , . . . ,ĥh(tz1)

(x{1),ĥh
(t)
xz1, . . . ,ĥh(t)

m

� �
. For exam-

ple, ĤH
(2=mzt)
{2 ~(ĥh

(t)
3 ,ĥh

(t)
4 , . . . ,ĥh(t)

m ) in the second CM-step for

estimating h2. As such, in the xth CM-step (x~2,3, . . . ,m), by

maximizing Q1(ŶY((x{1)=mzt); ŶY(t)), it is shown in Text S1 that a

cubic equation with respect to ĥh(tz1)
x is obtained,

A ĥh(tz1)
x

h i3

zB ĥh(tz1)
x

h i2

zCĥh(tz1)
x zD~0 ð7Þ

where the coefficients A, B, C and D are, respectively,

A~2½K̂K (tz1){1� 2n{Cx{C1ð Þ,

B~2½K̂K (tz1){1�(1{A1) 2CxzC1{3nð Þ

C~2½K̂K (tz1){1�(1{A1)2 n{Cxð Þ{A2 CxzC1ð Þ,

D~(1{A1)A2Cx

Cy~
Xn

j~1

Xm

r~1

2I(r~y)P(Zj~hyhrjGj ,ŶY
(t)), A1~ ĤH(x=mzt)

{x

� �
E

A2~(K̂K (tz1){1) ĤH(x=mzt)
{x

� �
F ĤH(x=mzt)

{x

� �T

{

2(K̂K (tz1){1)A1zK̂K (tz1)

and the vector E and the matrix F are respectively

E~

1

1

..

.

1

0
BBBB@

1
CCCCA, F~

2 1 1 . . . 1

1 2 1 . . . 1

..

. ..
. ..

. ..
. ..

.

1 1 1 . . . 2

0
BBBB@

1
CCCCA

Moreover, the cubic equation above is alway solvable, and its

solution can be obtained by Shengjin’s formulas [22]. Note that

the likelihood function converges no matter which initial values of

Y are chosen. So, if there are two or three solutions between 0 and

1, then we can choose the solution which is closer to ĥh(t)
x in the

former step. After this step,

ŶY(x=mzt)~(K̂K (tz1),ĥh(t)
1 ,ĥh(tz1)

2 , . . . ,ĥh(tz1)
x ,ĥh(t)

xz1, . . . ,ĥh(t)
m{1,ĥh(t)

m )

N For h1, ĥh(tz1)
1 ~1{ĥh(tz1)

2 {ĥh(tz1)
3 { . . . {ĥh(tz1)

m . Then ŶY(tz1)

~(K̂K (tz1),ĤH(tz1)).

N Repeat the steps above until the observed log-likelihood

function of Equation (1) converges.

Equation (1) can be written to be L(Y)~Pn
j~1Psj

k~1 P(HjkjY)
� �

under the Niu’s Model. Note that HWE holds

when K~1 and HWE is violated otherwise. Therefore, a

likelihood ratio test (LRT) for HWE is naturally constructed

based on the estimated haplotype frequencies as follows,

LRT 1~2ln
L(ŶY)

L(ŶY0)

" #
~2½lnL(ŶY){lnL(ŶY0)� ð8Þ

Powerful Haplotype-Based HWE Tests
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where L(ŶY0) and L(ŶY) are the values of the observed likelihood

function under the null hypothesis of HWE and under the HWD

alternative, respectively. Obviously, this LRT statistic asymptot-

ically follows a Chi-square distribution with the degree of freedom

being 1 when HWE holds.

Likelihood Function and Haplotype-Based HWE Test
under Inbreeding Model

Borrowing the idea of Zeng and Lin on how to estimate the

haplotype frequencies based on case-control data for testing for

association [18], here we rewrite the likelihood function for

unrelated individuals under study and then propose a haplotype-

based HWE test under the inbreeding model. Let Hj be a random

variable, which takes values from sj possible haplotype combina-

tions compatible with Gj of the j th individual. Suppose that r§0,

and Wj is a Bernoulli variable with success probability r. Let

P(V1j~hr=hr)~hr and P(V2j~hr=hs)~hrhs, where V1j and V2j

are discrete random variables, and the haplotype before ‘‘/’’ is

paternal and haplotype after ‘‘/’’ is maternal. So,

WjV1jz(1{Wj)V2j has the same distribution as Hj , and we

treat Wj , V1j and V2j as missing. Then, the log-likelihood function

of the complete data under the inbreeding model is

lc2(W)~Pn
j~1½rWj (1{r)1{Wj |

Pm
r~1h

Wj I(V1j~hr=hr)

r Pm
r,s~1(hrhs)

(1{Wj )I(V2j~hr=hs)
i ð9Þ

where W~(r,H).

To estimate the parameters Y in Equation (9), the EM

algorithm is considered. In E-step, the Q function is

Q2(W; ŴW(t))~
Xn

j~1

E(Wj jGj ,ŴW
(t))lnrzE(1{Wj jGj ,ŴW

(t))ln(1{r)
n

z
Xm

r~1

E½WjI(V1j~hr=hr)jGj ,ŴW
(t)�lnhr

z
Xm

r,s~1

E½(1{Wj)I(V2j~hr=hs)jGj ,ŴW
(t)�ln(hrhs)

)

In M-step, the estimation of W at iteration (tz1) can be

obtained by solving the following equation

LQ2(W; ŴW(t))

LW
~0

So, r can be estimated by

r̂r(tz1)~n{1
Xn

j~1

E½Wj jGj ,ŴW
(t)�

~n{1
Xn

j~1

Pm
i~1

r̂r(t)ĥh(t)
i I(V1j~hi=hi)

Psj

k~1

P(HjkjGj ,ŴW
(t))

where r̂r(t) and ĥh
(t)
i are the estimates of r and hi at iteration t,

respectively. The haplotype frequencies can be estimated by

ĥh
(tz1)
i ~c{1

Xn

j~1

E½WjI(V1j~hi=hijGj ,ŴW
(t))�z

n

2
Xm

r~1

E½(1{Wj)I(V2j~hi=hr)jGj ,ŴW
(t)�
)

where c is a normalizing constant, and E½WjI(V1j~

hi=hi)jGj ,ŴW
(t)� and E½(1{Wj)I(V2j~hi=hr)jGj ,ŴW

(t)� can be cal-

culated as follows,

E½WjI(V1j~hi=hi)jGj ,ŴW
(t)�~

Pm
r~1

r̂r(t)ĥh(t)
r I(V1j~hi=hi)

Psj

k~1

P(HjkjGj ,F̂F
(t)

)

E½(1{Wj)I(V2j~hi=hr)jGj ,ŴW
(t)�~

Pm
f ~1

Pm
g~1

(1{r̂r(t))ĥh(t)
f ĥh(t)

g I(V2j~hi=hr)

Psj

k~1

P(HjkjGj ,ŴW
(t))

We call this process IEM algorithm for distinguishing it from the

previous EM algorithm under HWE.

Table 1. Haplotype distribution for Niu’s model and
inbreeding model.

SNP Frequency

122 0.082

221 0.525

121 0.283

211 0.004

111 0.106

doi:10.1371/journal.pone.0077399.t001

Table 2. Haplotype distribution for population stratification
model.

SNP Frequency

I II

122 0.082 0.030

212 0.000 0.170

112 0.000 0.050

221 0.525 0.470

121 0.283 0.100

211 0.004 0.150

111 0.106 0.030

doi:10.1371/journal.pone.0077399.t002
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Note that under the IM model, HWE holds when r~0, and

HWE is not true when r=0. Therefore, we propose the following

LRT to test for haplotype-based HWE,

LRT 2~2ln
L(ŴW)

L(ŴW0)

" #
~2½lnL(ŴW){lnL(ŴW0)�

where L(ŴW0) and L(ŴW) are the values of the observed likelihood

function under the null hypothesis of HWE and under the HWD

alternative, respectively. Obviously, this LRT statistic asymptot-

ically follows a Chi-square distribution with the degree of freedom

being 1 when HWE holds.

Software Implementation
Based on the above EM, ECM and IEM algorithms, we have

written a software HAP-HWE to conduct the proposed haplotype-

based HWE tests, which is implemented in R (http://www.r-

project.org) and is freely available at http://www.echobelt.org/

web/UploadFiles/HAP-HWE.html. For each of the EM, ECM

and IEM algorithms, let N denote the number of haplotypes that

occur in all the possible haplotype combinations compatible with

the observed genotypes G in the sample. As such, the initial values

of all these N haplotype frequencies are taken as 1=N at t~0. For

the ECM and IEM algorithms, the initial values of K and r are

taken as 1 and 0.01, respectively. The convergence criterion is that

the absolute difference between the estimated values of the log-

likelihood function at two consecutive iterations is smaller than

Table 3. Mean and standard deviation (SD) of K and r estimates, mean of sum of absolute differences (SAD) of haplotype
frequency estimates for EM, ECM and IEM algorithms, simulated size and powers of two HWE tests for different values of K and n,
under Niu’s model.

n K K̂K r̂r SAD Size/Power

Mean SD Mean SD EM ECM IEM LRT1 LRT2

500 1.00 1.001 0.107 0.009 0.016 0.041 0.043 0.041 0.054 0.029

1.05 1.055 0.115 0.016 0.020 0.041 0.043 0.041 0.072 0.066

1.10 1.099 0.118 0.022 0.022 0.043 0.043 0.043 0.135 0.107

1.15 1.148 0.123 0.030 0.024 0.048 0.045 0.048 0.240 0.174

1.20 1.198 0.124 0.039 0.027 0.050 0.043 0.050 0.368 0.274

1.25 1.241 0.132 0.048 0.028 0.053 0.043 0.053 0.528 0.397

1.30 1.299 0.138 0.060 0.030 0.058 0.044 0.058 0.672 0.543

1.35 1.346 0.136 0.070 0.030 0.061 0.043 0.060 0.799 0.678

1.40 1.396 0.144 0.079 0.031 0.068 0.043 0.067 0.880 0.776

1.45 1.454 0.150 0.090 0.031 0.071 0.043 0.070 0.933 0.860

1.50 1.497 0.158 0.099 0.033 0.075 0.042 0.073 0.966 0.899

1000 1.00 1.001 0.076 0.007 0.010 0.029 0.031 0.029 0.050 0.019

1.05 1.047 0.080 0.013 0.014 0.030 0.031 0.030 0.097 0.073

1.10 1.096 0.082 0.020 0.017 0.033 0.031 0.033 0.229 0.157

1.15 1.148 0.085 0.030 0.019 0.036 0.030 0.036 0.452 0.329

1.20 1.201 0.089 0.040 0.020 0.041 0.031 0.040 0.673 0.532

1.25 1.247 0.091 0.049 0.021 0.045 0.030 0.044 0.839 0.695

1.30 1.296 0.094 0.059 0.021 0.050 0.030 0.049 0.933 0.838

1.35 1.352 0.101 0.071 0.022 0.055 0.030 0.054 0.975 0.920

1.40 1.398 0.106 0.080 0.023 0.060 0.031 0.058 0.985 0.961

1.45 1.444 0.104 0.090 0.022 0.066 0.031 0.064 0.996 0.987

1.50 1.504 0.111 0.101 0.023 0.070 0.030 0.068 1.000 0.999

1500 1.00 1.001 0.060 0.005 0.008 0.024 0.026 0.024 0.039 0.023

1.05 1.047 0.063 0.011 0.012 0.025 0.025 0.025 0.111 0.082

1.10 1.102 0.070 0.021 0.015 0.028 0.025 0.028 0.347 0.267

1.15 1.148 0.072 0.029 0.016 0.031 0.025 0.031 0.611 0.464

1.20 1.199 0.073 0.040 0.017 0.036 0.025 0.036 0.841 0.690

1.25 1.249 0.073 0.050 0.017 0.042 0.025 0.041 0.958 0.865

1.30 1.302 0.080 0.061 0.018 0.047 0.025 0.047 0.990 0.950

1.35 1.349 0.081 0.070 0.018 0.053 0.025 0.051 0.999 0.984

1.40 1.403 0.083 0.081 0.018 0.058 0.025 0.056 1.000 0.994

1.45 1.449 0.087 0.091 0.018 0.064 0.025 0.062 1.000 0.998

1.50 1.499 0.086 0.100 0.018 0.068 0.025 0.066 1.000 1.000

doi:10.1371/journal.pone.0077399.t003
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10{8. The default maximum number of iterations is 1000. Then,

the last estimates, ĤH(tz1), ŶY(tz1) and ŴW(tz1), are taken as the

maximum likelihood estimates of ĤH, Y and W, respectively.

Consequently, the values of LRT1 and LRT2 and the corre-

sponding P values are obtained.

The input data file is a standard linkage pedigree file

containing pedigree relationship, genotype and phenotype

information, with each row being for an individual. The HAP-

HWE software will only use the founders in the sample and

automatically exclude the nonfounders from the analysis.

Further, a haplotype block file is needed with each row

representing a haplotype block, which can be easily exported

from other existing software, such as Haploview [23]. Then, our

HAP-HWE software will analyze the haplotype blocks one by

one. The usage of the HAP-HWE software and other details

refer to Text S2.

Our HAP-HWE software outputs: (i) the convergence

processes of the log-likelihood function under the EM, ECM

and IEM algorithms, (ii) the haplotypes with frequency estimates

being larger than 10{5 and the associated frequency estimates

under the three algorithms, (iii) the estimated value of K , the

value of LRT1 and the corresponding P value under the Niu’s

model, and (iv) the estimated value of r, the value of LRT2 and

the corresponding P value under the inbreeding model. The

output results will be saved in a text file (named ‘‘results.txt’’) in

the working directory. In addition, like other haplotype frequency

estimation methods, our methods also face running time and

Table 4. Mean and standard deviation (SD) of K and r estimates, mean of sum of absolute differences (SAD) of haplotype
frequency estimates for EM, ECM and IEM algorithms, simulated size and powers of two HWE tests for different values of r and n,
under inbreeding model.

n r K̂K r̂r SAD Size/Power

Mean SD Mean SD EM ECM IEM LRT1 LRT2

500 0.00 1.001 0.111 0.010 0.015 0.041 0.044 0.041 0.060 0.020

0.01 1.035 0.108 0.015 0.019 0.041 0.044 0.041 0.048 0.060

0.02 1.077 0.120 0.024 0.023 0.041 0.044 0.041 0.114 0.137

0.03 1.109 0.123 0.030 0.025 0.042 0.047 0.042 0.170 0.218

0.04 1.157 0.124 0.041 0.027 0.041 0.048 0.041 0.268 0.345

0.05 1.185 0.124 0.049 0.028 0.042 0.049 0.042 0.357 0.468

0.06 1.241 0.131 0.061 0.028 0.041 0.051 0.041 0.528 0.629

0.07 1.279 0.141 0.070 0.030 0.042 0.054 0.042 0.638 0.735

0.08 1.316 0.144 0.079 0.031 0.043 0.057 0.043 0.718 0.811

0.09 1.366 0.140 0.090 0.029 0.044 0.061 0.043 0.851 0.906

0.10 1.409 0.156 0.099 0.032 0.043 0.064 0.043 0.889 0.940

1000 0.00 1.000 0.075 0.007 0.010 0.029 0.031 0.029 0.056 0.026

0.01 1.032 0.076 0.012 0.014 0.029 0.030 0.029 0.053 0.077

0.02 1.073 0.078 0.021 0.016 0.029 0.032 0.029 0.142 0.198

0.03 1.115 0.084 0.030 0.018 0.029 0.034 0.029 0.294 0.394

0.04 1.151 0.086 0.040 0.019 0.030 0.037 0.030 0.477 0.606

0.05 1.188 0.088 0.049 0.020 0.030 0.039 0.030 0.643 0.762

0.06 1.229 0.093 0.059 0.020 0.031 0.042 0.031 0.775 0.875

0.07 1.276 0.097 0.070 0.021 0.029 0.045 0.029 0.895 0.957

0.08 1.316 0.096 0.079 0.020 0.030 0.048 0.030 0.959 0.988

0.09 1.357 0.102 0.089 0.021 0.030 0.052 0.030 0.973 0.995

0.10 1.411 0.102 0.100 0.021 0.031 0.057 0.031 0.996 1.000

1500 0.00 1.001 0.064 0.006 0.009 0.024 0.025 0.024 0.053 0.028

0.01 1.038 0.062 0.012 0.012 0.024 0.026 0.024 0.079 0.096

0.02 1.073 0.066 0.020 0.014 0.024 0.027 0.024 0.210 0.272

0.03 1.111 0.072 0.030 0.016 0.024 0.029 0.024 0.392 0.534

0.04 1.150 0.070 0.040 0.015 0.024 0.032 0.024 0.610 0.763

0.05 1.191 0.071 0.050 0.016 0.024 0.035 0.024 0.794 0.902

0.06 1.231 0.075 0.059 0.017 0.025 0.038 0.025 0.916 0.970

0.07 1.276 0.082 0.070 0.017 0.024 0.042 0.024 0.975 0.992

0.08 1.318 0.081 0.080 0.017 0.025 0.047 0.025 0.995 0.997

0.09 1.365 0.081 0.090 0.017 0.025 0.050 0.025 0.999 0.999

0.10 1.408 0.086 0.100 0.018 0.025 0.054 0.025 1.000 1.000

doi:10.1371/journal.pone.0077399.t004
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storage space problems because of the large number of possible

haplotypes. In our software, to reduce storage space, each

haplotype is represented by an integer, rather than a vector of

alleles.

Results

Simulation Settings
To assess the validity and compare the performance of two LRT

tests in testing for haplotype-based HWE, we consider three

models with three tightly-linked SNPs that can lead to HWD:

Figure 1. Haplotype LD display for the seventh haplotype block on chromosome 15. The red box denotes that the LOD value between
any two loci is larger than or equal to 2.0. The numbers in the red boxes are the corresponding values of D0 and the empty box denotes that D0~1.
doi:10.1371/journal.pone.0077399.g001
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Niu’s model (NM), inbreeding model (IM) and population

stratification (PS) model. For both the NM and IM models, the

true marginal haplotype distribution is given in Table 1. For the

NM model, the value of K is taken from 1.0 to 1.5 in increments of

0.05. Firstly, we calculate the probabilities of all the haplotype

combinations from Equation (4). Then, one haplotype combina-

tion for each individual is randomly chosen. For the IM model, the

inbreeding coefficient r is taken from 0 to 0.1 in increments of

0.01. Firstly, we calculate the probabilities of all the haplotype

combinations from Equation (3), and then one haplotype

combination is selected at random for each individual. Finally,

we combine these two haplotypes to form the unphased genotype

for the individual. To investigate how the population admixture

affects the performance of two haplotype-based HWE tests, we

consider the following PS model with two subpopulations I and II,

where the corresponding haplotype distributions are given in

Table 2, respectively. The proportion t of the subpopulation I is

taken to be 0.6 and 0.8.

Note that when K~1 and r~0, HWE holds for the NM and

IM models, respectively. So, we simulate the type I error rates of

the proposed HWE tests when K~1 or r~0, and make power

comparison when Kw1 and rw0. The PS model is also used to

simulate the powers of both of the tests. For all the models, we

generate samples of unrelated individuals at these three loci and

the sample size is taken as 500, 1000 and 1500, respectively. The

number of simulation replicates is fixed at 1000 and the

significance level a is taken to be 5%.

As additional findings in this paper, we can also compare the

efficiency of the EM, ECM and IEM algorithms in haplotype

inference. The accuracy of haplotype frequency estimates is

assessed by the sum of absolute differences (SAD) between the true

and estimated frequencies, which was proposed by Fallin and

Schork [20] and defined as

SAD~
Xm

i~1

jhi{ĥhij

where hi and ĥhi are the true and estimated haplotype frequencies

of hi, respectively. It ranges from 0 (when the estimation is perfect)

to 1.

Simulation Results
Table 3 lists the estimate of K , mean SAD of haplotype

frequency estimates, simulated size and powers of two HWE tests

for different values of K and different sample sizes n under the

Niu’s model. It is shown in the table that the mean estimated value

K̂K over 1000 replicates is close to its true value. The type I error

rate of LRT1 is close to the nominal 5% level, while the size result

of LRT2 is less than 0.05, when K~1 (i.e. HWE holds). This

means that in testing for haplotype-based HWE, LRT1 controls

the size well and LRT2 is conservative under the NM model. The

powers of both LRT1 and LRT2 are larger when K increases from

1.1 to 1.5 and the sample size n is fixed. However, LRT1 is more

powerful than LRT2. In addition, when K~1 and n is unchanged,

the EM, ECM and IEM algorithms perform similarly in the

estimation of haplotype frequencies. However, with the increase of

the K value, the SAD measure of the ECM algorithm does not

have much change and is much smaller than the EM and IEM

algorithms. The SADs of the EM and IEM algorithms are very

close to each other and become larger when K is larger. On the

other hand, with the sample size increasing, the SAD measures of

all the three algorithms become less and two proposed LRT tests

have more powers.

Table 4 shows the estimate of r, mean SAD of haplotype

frequency estimates, simulated size and powers of two HWE tests

for different values of inbreeding coefficient r and different sample

sizes n under the inbreeding model. We can see from the table that

the mean estimated value r̂r over 1000 replicates is close to its true

value. As shown in Table 3, LRT1 performs better in controlling

the size than LRT2 under the IM model. However, LRT2 is more

powerful than LRT1 under this situation. On the other hand, both

the EM and IEM algorithms have the same performance and the

corresponding SADs are stable across different values taken for r
(0 to 0.1) in the estimation of haplotype frequencies. However, the

ECM estimate gets larger with the increase of r and performs

worse than the EM and IEM estimates. When the sample size is

larger, the corresponding SADs appear to be smaller and two

proposed LRT tests are more powerful.

Table 5 displays the mean SAD of haplotype frequency

estimates and simulated powers of two HWE tests based on

1000 simulation replicates, under the PS model, with the

proportion t of subpopulation I being taken as 0.6 and 0.8, and

the sample size being fixed at 500, 1000 and 1500. From the table,

we find that LRT2 is more powerful than LRT1, irrespective of the

t value or the sample size n. In the estimation of haplotype

frequencies, the EM and IEM algorithms perform similarly in

SAD and have better SADs than the ECM estimate, which

signifies that the EM and IEM algorithm are more robust to

population stratification than the ECM algorithm.

Table 5. Mean and standard deviation (SD) of K and r estimates, mean of sum of absolute differences (SAD) of haplotype
frequency estimates for EM, ECM and IEM algorithms, power comparison of two HWE tests under population stratification model,
with the proportion t of subpopulation I being taken as 0.6 and 0.8, and the sample size being fixed at 500, 1000 and 1500.

n t K̂K r̂r SAD Power

Mean SD Mean SD EM ECM IEM LRT1 LRT2

500 0.6 1.224 0.144 0.044 0.022 0.073 0.094 0.072 0.396 0.572

0.8 1.138 0.131 0.041 0.023 0.061 0.072 0.060 0.197 0.541

1000 0.6 1.223 0.103 0.045 0.016 0.061 0.086 0.061 0.674 0.874

0.8 1.138 0.092 0.041 0.016 0.047 0.060 0.046 0.350 0.828

1500 0.6 1.226 0.083 0.045 0.013 0.057 0.084 0.056 0.850 0.962

0.8 1.133 0.076 0.041 0.013 0.042 0.056 0.041 0.463 0.946

doi:10.1371/journal.pone.0077399.t005
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Application to NARAC Data Set
We apply our HAP-HWE software to the Rheumatoid Arthritis

(RA) data set from the North American Rheumatoid Arthritis

Consortium (NARAC) [24], which was made available through

the Genetic Analysis Workshop 15 [25]. In the data set, there are

757 pedigrees comprised of 8017 individuals (2481 founders and

5536 nonfounders), which were genotyped at 5407 SNP markers

over the 22 autosomes. In each pedigree, there is at least one

affected nonfounder with RA.

Note that information on haplotype blocks is needed prior to

the HAP-HWE analysis. In this application, we use the existing

software Haploview (version 4.2) [23] to define haplotype

blocks, with all the arguments being taken as the default

values. Then, 181 haplotype blocks are identified, 150 blocks

including 2 SNPs, 19 blocks including 3 SNPs, 7 blocks

including 4 SNPs, 1 block including 5 SNPs, 2 blocks including

6 SNPs, 1 block including 9 SNPs and 1 block including 13

SNPs.

On the other hand, HAP-HWE only uses the founders and

excludes the nonfounders from the analysis. Further, there is a

large proportion of missing genotypes for individuals in the data

set. Therefore, the reduced data set used for the HAP-HWE

analysis contains only a few founders in the data set. On the

average, there are about 295 pedigrees (about 367 unrelated

individuals) used for each haplotype block, ranging from 288 to

296 (ranging from 358 to 369).

Table 6 lists the results of the application to the NARAC data

set. The significance level is fixed at a~5%. There are 13

haplotype blocks (out of 181) with at least one of the P values of

the LRT1 and LRT2 being less than 5%. However, after multiple

testing based on Bonferroni correction (a0~0:05=181~

2:76|10{4), only the seventh haplotype block including 6 SNPs

(rs347117, rs383902, rs395601, rs387812, rs347115 and

rs610877) on chromosome 15 is statistically significant with the

P value of the LRT1 being 2:36|10{4. Figure 1 gives the

Haploview LD display for this haplotype block. On the other

hand, Min et al. [26] reported that chromosome 15p34 at

rs347117 showed a possible linkage peak to RA by using the

nonparametric linkage Z score (Z~2:80), which may support

our finding.

Discussion

In this paper, we first wrote out two likelihood functions of the

observed data based on the NM model and IM model. Then, we

developed the ECM algorithm for the NM model to estimate the

parameter K and haplotype frequencies and suggested the IEM

algorithm for the IM model to estimate the inbreeding coefficient

r and haplotype frequencies. Note that K~1 or r~0 means that

HWE holds. So, we further proposed two LRT tests to test for

haplotype-based HWE. We simulated the HWE, Niu’s, inbreeding

and population stratification models to assess the validity and

compare the performance of these two LRT tests. The simulation

results showed that both of the two tests are valid in testing for the

haplotype-based HWE. If the Niu’s model is true, then LRT1 is

more powerful. While, if the inbreeding model is true, then LRT2

has better performance in power. Under the population stratifi-

cation model, LRT2 is still more powerful. Therefore, if the

population model is unknown in practice, LRT2 is generally

recommended due to its good performance. Furthermore, we

compared the performance of the EM, ECM and IEM algorithms

in estimating the haplotype frequencies. If the true model is the

Niu’s model, then the ECM algorithm has more accurate

estimates of haplotype frequencies than the EM and IEM

estimates. However, for all the other simulation settings, the EM

algorithm is not so much affected by the departure from HWE,

and the EM and IEM algorithms almost have the same

performance in controlling SAD, which is less than the ECM

estimates. We also demonstrate the practical utility of the proposed

methods by the application to the Rheumatoid Arthritis (RA) data

Table 6. Results of application to North American Rheumatoid Arthritis Consortium data set.

Haplotype N. of

Chr. block SNPs SNP names K̂K r̂r P-value

LRT1 LRT2

2 3 2 rs1686430, rs1734449 1.349 0.137 0.0107 0.0089

2 9 2 rs1866209, rs1438048 1.563 0.150 0.0051 0.0057

3 1 2 rs1516337, rs1516350 1.287 0.086 0.0204 0.0213

5 6 2 rs244903, rs244896 1.052 0.067 0.6341 0.0311

6 7 2 rs1565528, rs1491074 1.284 0.074 0.0231 0.0505

7 16 2 rs1182378, rs1182414 1.137 0.071 0.2526 0.0440

10 3 2 rs1979720, rs1494201 1.302 0.082 0.0189 0.0313

13 2 2 rs436227, rs390704 1.350 0.096 0.0085 0.0173

14 3 2 rs1381641, rs1020897 1.264 0.077 0.0326 0.0704

15 7 6 rs347117, rs383902, 1.547 0.099 2.36|10{4 0.0428

rs395601, rs387812,

rs347115, rs610877

16 5 2 rs179209, rs179219 1.215 0.086 0.0708 0.0388

18 6 2 rs1787190, rs1981 1.330 0.139 0.0070 0.0076

21 3 2 rs1892687, rs2051179 1.372 0.146 0.0027 0.0048

Chr., chromosome; SNP, single nucleotide polymorphism; N. of SNPs, number of SNPs.
doi:10.1371/journal.pone.0077399.t006
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set from the North American Rheumatoid Arthritis Consortium

(NARAC). In addition, note that there are many abbreviations

and notations used in this paper. So, in Supporting Information,

we give two tables (Tables S1 and S2) to list them for the easy

reference.

Supporting Information

Table S1 Summary of abbreviations.

(PDF)

Table S2 Summary of notations.

(PDF)

Text S1 Conditional-maximization steps of ECM algorithm.

(PDF)

Text S2 Help file of HAP-HWE.

(PDF)
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