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Abstract

The mismatch negativity (MMN) is an event related potential evoked by violations of regularity. Here, we present a model of
the underlying neuronal dynamics based upon the idea that auditory cortex continuously updates a generative model to
predict its sensory inputs. The MMN is then modelled as the superposition of the electric fields evoked by neuronal activity
reporting prediction errors. The process by which auditory cortex generates predictions and resolves prediction errors was
simulated using generalised (Bayesian) filtering – a biologically plausible scheme for probabilistic inference on the hidden
states of hierarchical dynamical models. The resulting scheme generates realistic MMN waveforms, explains the qualitative
effects of deviant probability and magnitude on the MMN – in terms of latency and amplitude – and makes quantitative
predictions about the interactions between deviant probability and magnitude. This work advances a formal understanding
of the MMN and – more generally – illustrates the potential for developing computationally informed dynamic causal
models of empirical electromagnetic responses.
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Introduction

Recent advances in computational neuroimaging [1] have

enabled inferences about the neurophysiological mechanisms that

generate non-invasive measures of task or stimulus-evoked

neuronal responses; as measured by functional magnetic reso-

nance imaging (fMRI) or electroencephalography (EEG). One

such approach is dynamic causal modelling [2] that tries to explain

EEG data in terms of synaptic coupling within a network of

interacting neuronal populations or sources. However, this

description is at the level of physiological processes that do not

have a direct interpretation in terms of information processing.

Cognitive scientists have been using formal models of cognitive

processes to infer on information processing from behaviour for

decades [3], but it has remained largely unclear how such

inferences should be informed by neurophysiological data. We

argue that one may overcome the limitations of both approaches

by integrating normative models of information processing (e.g.,

[4,5]) with physiologically grounded models of neuroimaging data

[4,5]. This approach may produce computationally informed

neuronal models – or neurocomputational models – enabling one

to test hypotheses about how the brain processes information to

generate adaptive behaviour. Here, we provide a proof-of-concept

for this approach by jointly modelling a cognitive process –

perceptual inference – and the event related potential (ERP) that it

may generate – the mismatch negativity (MMN). Specifically, we

ask whether the MMN can be modelled by a neuronal system

performing perceptual inference, as prescribed by predictive

coding [4,5].

The MMN is an event-related potential that is evoked by the

violation of a regular stream of sensory events. By convention, the

MMN is estimated by subtracting the ERP elicited by standards, i.e.

events that established the regularity, from the ERP elicited by

deviants, i.e. events violating this regularity. Depending on the

specific type of regularity, the MMN is usually expressed most

strongly at fronto-central electrodes, with a peak latency between

100 and 250 milliseconds after deviant onset [1]. More precisely,

the MMN has been shown to depend upon deviant probability

and magnitude. Deviant probability is the relative frequency of

tones that violate an established regularity. In studies of the MMN

evoked by changes in sound frequency, deviance magnitude is the

(proportional) difference between the deviant frequency and the

standard frequency. The effects of these factors are usually

summarized in terms of changes in the MMN peak amplitude and

its latency (see Table 1). While increasing the deviance magnitude

makes the MMN peak earlier and with a larger amplitude [4,6,7],

decreasing deviant probability only increases the MMN peak

amplitude [8] but does not change its latency [9].

The question as to which neurophysiological mechanisms

generate the MMN remains controversial (cf. [10] vs. [11]), even

though this issue has been addressed by a large number of studies

over the last thirty years [12]. One reason for an enduring

controversy could be that the MMN’s latency and amplitude

contain insufficient information to disambiguate between compet-
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ing hypotheses (but see [13]). While the MMN is the sum of

overlapping subcomponents that are generated in temporal and

frontal brain areas [12,14] – and are differentially affected by

experimental manipulations [15] – it is a continuous function of

time. This means that the underlying ERP waveforms may contain

valuable information about MMN subcomponents, the physiolog-

ical mechanisms that generate them and, critically, their functional

correlates (see e.g. [16]). Predictive coding offers a unique and

unified explanation of the MMN’s neurophysiological features. In

brief, predictive coding is a computational mechanism that

formally links perception and learning processes to neural activity

and synaptic plasticity, respectively [17]. More precisely, event-

related electrophysiological responses are thought to arise from the

brain’s attempt to minimize prediction errors (i.e. differences

between actual and predicted sensory input) through hierarchical

Bayesian inference. In this context, the MMN simply reflects

neuronal activity reporting these prediction errors in hierarchically

organized network of auditory cortical sources. If this is true, then

the rise and fall of the MMN may reflect the appearance of a

discrepancy between sensory input and top-down predictions –

and its resolution through perceptual inference. These ideas have

been used to interpret the results of experimental studies of the

MMN [8,18] and computational treatments of trial-wise changes

in amplitude [6]. However, no attempt has been made to

quantitatively relate predictive coding models to empirical

MMN waveforms. Here, we extend these efforts by explicitly

modelling the physiological mechanisms underlying the MMN in

terms of a computational mechanism: predictive coding. In other

words, our model is both an extension to dynamic causal models of

observed electrophysiological responses [18,19] to information

processing, and a neurophysiological view on meta-Bayesian

approaches to cognitive process [15]. We establish the face validity

of this neurocomputational model in terms of its ability to explain

the observed MMN and its dependence on deviant frequency and

deviance magnitude.

This paper comprises two sections. In the first section, we

summarize mathematical models of predictive coding (as derived

from the free energy principle), and describe the particular

perceptual model that we assume the brain uses in the context of a

predictable stream of auditory stimuli. The resulting scheme

provides a model of neuronal responses in auditory oddball

paradigms. In line with the DCM framework, we then augment

this model with a mapping from (hidden) neuronal dynamics to

(observed) scalp electrophysiological data. In the second section,

we use empirical ERPs acquired during an oddball paradigm to

tune the parameters of the observation model. Equipped with

these parameters, we then simulate MMN waveforms under

different levels of deviant probability and deviance magnitude –

and compare the resulting latency and amplitude changes with

findings reported in the literature. This serves to provide a proof of

principle that dynamic causal models can have a computational

form – and establish the face validity of predictive coding theories

brain function.

Models

To simulate the MMN under the predictive coding hypothesis,

we simulated the processing of standard and deviant stimuli using

established Bayesian filtering (or predictive coding) – under a

hierarchical dynamic model of repeated stimuli. This generates

time-continuous trajectories, encoding beliefs (posterior expecta-

tions and predictions) and prediction errors. These prediction

errors were then used to explain the MMN, via a forward model of

the mapping between neuronal representations of prediction error

and observed scalp potentials. In this section, we describe the steps

entailed by this sort of modelling. See Figure 1 for an overview.

Predictive coding and hierarchical dynamic models
Perception estimates the causes (v) of the sensory inputs (y) that

the brain receives. In other words, to recognise causal structure in

the world, the brain has to invert the process by which its sensory

consequences are generated from causes in the environment. This

view of perception as unconscious inference was introduced by

Helmholtz [2] in the 19th century. More recently, it has been

formalized as the inversion of a generative model m of sensory

inputs y [20]. In the language of probability theory, this means that

the percept corresponds to the posterior belief p(v,xDy,m) about the

putative causes v of sensory input y and any hidden states x that

mediate their effect. This means that any perceptual experience

depends on the model m of how sensory input is generated. To

capture the rich structure of natural sounds, the model m has to be

dynamic, hierarchical, and nonlinear. Hierarchical dynamic models

(HDMs) [21] accommodate these attributes and can be used to

model sounds as complex as birdsong [22].

HDMs generate time-continuous data y(t) as noisy observations

of a nonlinear transformation g1 of hidden states x(1) and hidden

causes v(1):

y~v(0)~g1 x 1ð Þ,v 1ð Þ; h
� �

zz 1ð Þ, ð1Þ

where the temporal evolution of hidden states x(1) is given by the

differential equation:

Table 1. Overview of the Phenomenological Properties of the
MMN.

Effect of Q on R |MMN Amplitude| MMN Latency

Higher Deviance Magnitude 8 [9]

9

[11]

Lower Deviant Probability 8 [9] no effect [9]

doi:10.1371/journal.pcbi.1003288.t001

Author Summary

Computational neuroimaging enables quantitative infer-
ences from non-invasive measures of brain activity on the
underlying mechanisms. Ultimately, we would like to
understand these mechanisms not only in terms of
physiology but also in terms of computation. So far, this
has not been addressed by mathematical models of
neuroimaging data (e.g., dynamic causal models), which
have rather focused on ever more detailed inferences
about physiology. Here we present the first instance of a
dynamic causal model that explains electrophysiological
data in terms of computation rather than physiology.
Concretely, we predict the mismatch negativity – an event-
related potential elicited by regularity violation – from the
dynamics of perceptual inference as prescribed by the free
energy principle. The resulting model explains the wave-
form of the mismatch negativity and some of its
phenomenological properties at a level of precision that
has not been attempted before. This highlights the
potential of neurocomputational dynamic causal models
to enable inferences from neuroimaging data on neuro-
computational mechanisms.

Modelling the MMN Waveform
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Figure 1. Flow Chart of MMN simulations. Sensory input was generated from a Hierarchical Dynamic Model (true HDM) for a standard or deviant
stimulus. This stimulus was produced by inputs controlling the temporal evolution of loudness and frequency (hidden causes). We simulated
perception with the inversion of the internal model (internal HDM) of a subject – who anticipates the standard event with a certain degree of
confidence (prior beliefs) – with Generalised Filtering (GF). This produces a simulated trajectory of the prediction errors that are minimised during
perceptual inference. These prediction errors were weighted by their precisions and used to predict event related potentials. Model parameters are
listed on the left and model equations are provided on the right. To map prediction errors to empirical responses, they were shifted and scaled so
that the simulated stimulus duration was 70 ms. A sigmoid function was applied to model nonlinearities in the relationship between prediction error
and equivalent current dipole activity. Third, the scalp potential at the simulated electrode location was modelled as a linear superposition of the
ensuing local field potentials. Finally, the simulated EEG data was down-sampled and sheltered.
doi:10.1371/journal.pcbi.1003288.g001

Modelling the MMN Waveform
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_xx(1)~f1 x 1ð Þ,v 1ð Þ; h
� �

zw(1): ð2Þ

This equation models the change in x(1) as a nonlinear function f1

of the hidden states x(1) and hidden causes v(1) plus state noise w(1).

The hidden causes v(1) of the change in x(1) are modelled as the

outputs of a hidden process at the second level. This second

process is modelled in the same way as the hidden process at the

first level, but with new nonlinear functions f2 and g2:

v(1)~g2 x 2ð Þ,v 2ð Þ; h
� �

zz(2)

_xx 2ð Þ~f2 x 2ð Þ,v 2ð Þ; h
� �

zw(2):

ð3Þ

As in the first level, the hidden dynamics of the second level are

driven by hidden causes v(2) that are modelled as the output of a

hidden process at the next higher level, and so forth. This

composition can be repeated as often as necessary to model the

system under consideration – up to the last level, whose input is

usually modelled as a known function of time plus noise:

v(n)~gzz(nz1): ð4Þ

The (Bayesian) inversion of HDMs is a difficult issue, which calls

for appropriate approximation schemes. To explain how the brain

is nevertheless able to recognise the causes of natural sounds, we

assume that it performs approximate Bayesian inference by minimising

variational free energy [23]. More generally, the free-energy

principle is a mathematical framework for modelling how

organisms perceive, learn, and make decisions in a parsimonious

and biologically plausible fashion. In brief, it assumes that

biological systems like the brain solve complex inference problems

by adopting a parametric approximation q(v,xDm) to a posterior

belief over hidden causes and states p(v,xDy,m). It then optimises

this approximation by minimizing the variational free-energy:

F qð Þ~{Sln p(y,v,xDm)TqzSln q(y,v,x)Tq: ð5Þ

One can think of this free-energy as an information theoretic

measure of the discrepancy between the brain’s approximate belief

about the causes of sensory input and the true posterior density.

According to the free-energy principle, cognitive processes and

their neurophysiological mechanisms serve to minimize free-

energy [24] – generally by a gradient descent with respect to the

sufficient statistics m of the brain’s approximate posterior q [5]:

_mm~{
LF
Lm

: ð6Þ

This idea that the brain implements perceptual inference by free-

energy minimization is supported by a substantial amount of

anatomical, physiological, and neuroimaging evidence [4]. Algo-

rithms that invert HDMs by minimizing free-energy, such as

dynamic expectation maximization [25,26] and generalized

filtering (GF) [4,5,23,27,28], are therefore attractive candidates

for simulating and understanding perceptual inference in the

brain.

Importantly, algorithmic implementations of this gradient

descent are formally equivalent to predictive coding schemes. In

brief, representations (sufficient statistics encoding approximate

posterior expectations) generate top-down predictions to produce

prediction errors. These prediction errors are then passed up the

hierarchy in the reverse direction, to update posterior expecta-

tions. This ensures an accurate prediction of sensory input and all

its intermediate representations. This hierarchal message passing

can be expressed mathematically as a gradient descent on the (sum

of squared) prediction errors ~ee(i) which are weighted by their

precisions (inverse variances) P(i):

_~mm~mm
ið Þ

v ~{L~vvF~D~mm ið Þ
v {L~vv~ee

ið Þ:j ið Þ{j iz1ð Þ
v

_~mm~mm
ið Þ

x ~{L~xxF~D~mm ið Þ
x {L~xx~ee ið Þ:j ið Þ

j ið Þ
v ~P ið Þ

v ~ee ið Þ
v ~P ið Þ

v ~mm i{1ð Þ
v {gi ~mm ið Þ

x ,~mm ið Þ
v

� �� �
j ið Þ

x ~P ið Þ
x ~ee ið Þ

x ~P ið Þ
x D~mm i{1ð Þ

x {fi ~mm ið Þ
x ,~mm ið Þ

v

� �� �
ð6bÞ

where ~ee(i) are prediction errors and P(i) are their precisions

(inverse variances). Here and below, the , notation denotes

generalised variables (state, velocity, acceleration and so on). The

first pair of equalities just says that posterior expectations about

hidden causes and states (~mm(i)
v ,~mm(i)

x ) change according to a mixture

of prior prediction– the first term – and an update term in the

direction of the gradient of (precision-weighted) prediction

error. The second pair of equations expresses precision weighted

prediction error (j(i)
v ,j(i)

x ) as the difference between posterior

expectations about hidden causes and (the changes in) hidden

states and their predicted values (e(i)
v ,e(i)

x ), weighed by their

precisions (P(i)
v ,P(i)

x ). The predictions are nonlinear functions of

expectations at each level of the hierarchy and the level above.

In what follows, this predictive coding formulation will serve to

simulate perceptual recognition. We will then use prediction

errors as a proxy for neuronal activity producing ERPs. To

simulate neuronal processing using Equation 6, we need to

specify the form of the functions (gi,fi) that constitute the

generative model:

The generative (auditory) model
To model auditory cortical responses, we assume that cortical

sources embody a hierarchical model of repeated stimuli. In other

words, the hierarchical structure of the auditory cortex recapitu-

lates the hierarchical structure of sound generation (cf. [25]). This

hierarchical structure was modelled using the HDM illustrated in

Figure 2. Note that this model was used to both generate stimuli

and simulate predictive coding – assuming the brain is using the

same model. The model’s sensory prediction y(t)~v(0) took the

form of a vector of loudness modulated frequency channels

(spectrogram) at the lowest level. The level above models temporal

fluctuations in instantaneous loudness (x
(1)
1 ,x

(1)
2 ) and frequency

(x
(1)
3 ). The hidden causes v

(1)
1 and v

(1)
2 of these fluctuations are

produced by the highest level. These three levels of representation

can be mapped onto three hierarchically organized areas of

auditory cortex: primary auditory cortex (A1), lateral Heschl’s

gyrus, and inferior frontal gyrus.

A1 and lateral Heschl’s gyrus contain neuronal units encoding

posterior expectations and prediction errors, respectively. The

activity of the expectation units encodes the time course of y for

A1 and expectations about hidden states x(1) for Heschl’s gyrus.

Error units encode prediction error, i.e. the difference between

posterior expectations and top-down predictions. Top-down

connections therefore convey predictions, whereas bottom-up

connections convey prediction errors. The hidden causes are the

Modelling the MMN Waveform
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expectations of v(1), providing top-down projections from units in

inferior frontal gyrus.

Our model respects the tonotopic organization of primary

auditory cortex (see e.g. [26]) by considering 50 frequency

channels y1, � � � ,y50. It also captures the fact that, while most

neurons in A1 have a preferred frequency, their response also

increases with loudness [29–31]. Specifically, we assume that the

activity yi of neurons selective for frequency vi is given by:

yi~g1,i x 1ð Þ,v 1ð Þ; h
� �

zz
1ð Þ

i

g1,i x 1ð Þ,v 1ð Þ; h
� �

~
x

1ð Þ2
1 zx

1ð Þ2
2ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp {1

�
2s2 x

1ð Þ
3 {vi

� �2
� � ð7Þ

We can rewrite this equation in terms of the loudness L and a

tuning function w that measures how close the log-frequency x
(1)
3 is

to the neuron’s preferred log-frequency vi:

y~L:q x
(1)
3 {vi

� �
=s

� �
zz(1)

with
L~x

(1)
1

2zx
(1)
2

2

q(x)~1
� ffiffiffiffiffiffi

2p
p :exp {x2�

2

� �
8<
: :

ð8Þ

This is our (perceptual) model of how the frequency and

loudness is encoded by frequency-selective neurons in primary

auditory cortex. We use it to simulate the activity of A1

neurons.

Note that a neuronal representation of x
(1)
3 depends only on

frequency. In the brain, frequency representations that are

invariant to the sound level (and other sound attributes) are found

in higher auditory areas; for instance in marmoset auditory cortex

[32]. Neuroimaging in humans suggests that periodicity is

represented in lateral Heschl’s gyrus and planum temporale

[33], and LFP recordings from patients again implicate lateral

Heschl’s gyrus [34]. We therefore assume that x
(1)
3 is represented

in lateral Heschl’s gyrus. The dynamics of the instantaneous

frequency x
(1)
3 is given by

t3 _xx(1)
3 ~ v

(1)
2 {x

(1)
3

� �
zw

(1)
3 : ð9Þ

This equation says that the instantaneous frequency converges

towards the current target frequency v
(1)
2 at a rate of 1=t3. In the

context of communication, one can think of the target frequency

as the frequency that an agent intends to generate, where the

instantaneous frequency x
(t)
3 is the frequency that is currently

being produced. The motivation for this is that deviations from the

target frequency will be corrected dynamically over time. The

agent’s belief about v
(1)
2 reflects its expectation about the frequency

of the perceived tone and its subjective certainty or confidence

Figure 2. Hierarchical dynamical model of stimulus generation. This figure shows the form of the hierarchical dynamic model used to
generate and subsequently recognise stimuli. The sensory input (y)is modelled as a vector of amplitude-modulated frequency channels y1 whose

values are nonlinear functions of the hidden states x(1) plus observation noise. The hidden states represent the instantaneous loudness (x(1)
1 and x

(1)
2 )

and frequency (x(1)
3 ). The temporal evolution of these hidden states is determined by a nonlinear random differential equation that is driven by

hidden causes (v(1)). The mean of the subject’s belief (posterior expectation) about hidden causes and states is denoted by m. The tilde denotes
variables in generalised coordinates of motion.
doi:10.1371/journal.pcbi.1003288.g002

Modelling the MMN Waveform
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about that expectation. Therefore, the effect of the deviant

probability – in an oddball paradigm – can be modelled via the

precision of this prior belief.

The temporal evolution of the hidden states x
(1)
1 and x

(1)
2

(encoding loudness) was modelled with the following linear

dynamical system:

t1
: _xx(1)

1

t2
: _xx(1)

2

 !
~

{1 4

{2 {1

� �
: x

(1)
1

x
(1)
2

 !
z

v
(1)
1

0

 !
z

w
(1)
1

w
(1)
2

 !
: ð10Þ

In this equation the first hidden cause v
(1)
1 drives the drives the

dynamics of hidden states, which spiral (decay) towards zero in its

absence. Finally, our model makes the realistic assumption that the

stochastic perturbations are smooth functions of time. This is

achieved by assuming that the derivatives of the stochastic

perturbations are drawn from a multivariate Gaussian with zero

mean:

~zz(i)~(z(i), _zz(i),€zz(i), � � � )*N(0,~SS(i)
z )

~ww(i)~(w(i), _ww(i),€ww(i), � � � )*N(0,~SS(i)
w )

ð11Þ

The parameters of this model were chosen according to the

biological and psychological considerations explained in Supple-

mentary Text S1.

Modelling perception
Having posited the relevant part of the generative model

embodied by auditory cortex, one can now proceed to its inversion

by the Bayesian generalized filtering scheme described in Equation

6. This is the focus of the next section, which recapitulates how

auditory cortex might perceive sound frequency and amplitude

using predictive coding mechanisms, given the above hierarchal

dynamic model.
Perception as model inversion by generalised

filtering. Generalised filtering or predictive coding (Equation

6) provides a process model of how auditory cortex might invert

the model above, yielding posterior estimates of (hidden) sensory

causes x,vð Þ from their noisy consequences y. Generalised filtering

(GF) [35,36] is a computationally efficient scheme for variational

Bayesian inference on hierarchical dynamical systems. This makes

it a likely candidate mechanism for typical recognition problems

that the brain solves when perceiving stimulus sequences.

Generalised filtering effectively updates posterior expectations

by accumulating evidence over time. Since it is well known that

neuronal population activity integrates inputs in a similar way

[37], we take generalised filtering as a model of neuronal evidence

accumulation or predictive coding (cf. [26]). The neuronal

implementation of this filtering is based on the anatomy of

cortical microcircuits and rests on the interaction between error

units and expectation units implicit in Equation 6. Irrespective of

the neuronal details of the implementation, prediction error units

are likely to play a key role, because (precision weighted)

prediction errors determine the free-energy gradients that update

posterior beliefs about hidden states. It has been argued that

prediction error units correspond to pyramidal neurons in the

superficial layers of cortex [38]. Since these neurons are the

primary source of local field potentials (LFP) and EEG signals, the

time course of prediction errors can – in principle – be used to

model event related potentials such as the MMN.
Modelling expectations and perception in MMN

experiments. To simulate how MMN features (such as

amplitude and latency) depend upon deviant probability and

magnitude, we assumed that the subject has heard a sequence of

standard stimuli (presented at regular intervals) and therefore

expects the next stimulus to be a standard. Under Gaussian

assumptions this prior belief is fully characterized by its mean – the

expected attributes of the anticipated stimulus – and precision

(inverse variance). The precision determines the subject’s certainty

about the sound it expects to hear; in other words, the subjective

probability that the stimulus will have the attributes of a standard.

This means one can use the expected precision to model the effect

of the deviant probability in oddball paradigms – as well as the

effects of the number of preceding standards. The effect of

deviance magnitude was simulated by varying the difference

between the expected and observed frequency. Sensory inputs to

A1 were spectrograms generated by sampling from the hierarchi-

cal dynamic model described in the previous section (Figure 2).

First, the hidden cause at the 2nd level, i.e. the target log-frequency

v
(1)
2 , was sampled from a normal distribution; for standards this

distribution was centred on the standard frequency and for

deviants it was centred on the standard frequency plus the

deviance magnitude. Then the sensory input (y) was generated by

integrating the HDM’s random differential equations with v
(1)
2

equal to the sampled target frequency. All simulated sensory inputs

were generated with low levels of noise, i.e. the precisions were set

to exp(32). The subject’s probabilistic expectation was modelled

by a Gaussian prior on the target log-frequency v
(1)
2 . Perception

was simulated with generalised filtering of the ensuing sensory

input. The generative model of the subject was identical to the

model used to generate the inputs, except for the prior belief about

the target frequency. The prior belief about the target frequency

models prior expectations established by the preceding events,

where the mean was set to the standard frequency – and its

precision was set according to the deviant probability of the

simulated oddball experiment: see Text S1. The noise precisions

were chosen to reflect epistemic uncertainty about the process

generating the sensory inputs: see Text S1. Note that since we are

dealing with dynamic generative models, the prior belief is not just

about the initial value, but about the entire trajectory of the target

frequency.

Figure 3 shows an example of stimulus generation and

recognition. This figure shows that the predictive coding scheme

correctly inferred the frequency of the tone. In these simulations,

the loudness of the stimulus was modulated by a Gaussian bump

function that peaks at about 70 ms and has a standard deviation of

about 30 ms. The sensory evidence is therefore only transient,

whereas prior beliefs are in place before, during, and after sensory

evidence is available. As a consequence, the inferred target

frequency drops back to the prior mean, when sensory input

ceases. Although we are now in a position to simulate neuronal

responses to standard and oddball stimuli, we still have to

complete the model of observed electromagnetic responses:

From prediction errors to ERPs
The production of the MMN from prediction errors was

modelled as a two stage process: the generation of scalp potentials

from neuronal responses and subsequent data processing (see

Figure 1). We modelled the scalp potentials (at one fronto-central

electrode) as the linear superposition of electromagnetic fields

caused by the activity of prediction error units in the three

simulated cortical sources – plus background activity. Specifically,

prediction error units in the A1 source are assumed to encode j(1)
v

– the precision weighted sensory error; error units in lateral

Heschl’s gyrus were assumed to encode j(1)
x – the precision

weighted errors in the motion of hidden (log-frequency and

Modelling the MMN Waveform
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amplitude) states; and prediction error units in the inferior frontal

gyrus were assumed to encode j(2)
v – the precision weighted errors

in their inferred causes. The prediction errors were transformed

into event related potentials by three transformations. First, the

time axis was shifted (to accommodate conduction delays from the

ear) and scaled so that the simulated stimulus duration was 70 ms.

Second, a sigmoidal transformation was applied to capture the

presumably non-linear mapping from signed precision-weighted

prediction error to neural activity (i.e. the firing rate cannot be

negative and saturates for high prediction error) and in the

mapping from neuronal activity to equivalent current dipole

activity; these first two steps are summarized by

LFPi(t)~
1

1zexp {bi
:ji a:t{bð Þð Þ : ð12Þ

Finally, the scalp potential P(t) is simulated with a linear

combination of the three local field potentials

LFP1(t), � � � ,LFP3(t) plus a constant:

P(t)~ 1 LFP1(t) LFP2(t) LFP3(t)ð Þ:

a0

a1

a2

a3

0
BBB@

1
CCCA: ð13Þ

Data processing was simulated by the application of down-

sampling to 200 Hz and a 3rd order Butterworth low-pass filtering

with a cut-off frequency of 40 Hz, cf. [6,23,28,39]. We performed

two simulations for each condition. In the first simulation the

subject expected stimulus A but was presented with stimulus B

(deviant). In the second simulation, the subject expected stimulus B

and was presented with stimulus B (standard). The MMN was

estimated by the difference wave (deviant ERP – standard ERP).

This procedure reproduces the analysis used in electrophysiology

[7,40].

This completes the specification of our computationally

informed dynamic causal model of the MMN.

To explore the predictions of this model under different levels of

deviant probability and magnitude, we first estimated the

biophysical parameters (i.e. the slope parameters b in (12) and

the lead field a in (13)) from the empirical ERPs described in [19],

using standard nonlinear least-squares techniques (i.e. the

GlobalSearch algorithm [41] from the Matlab Global Optimiza-

tion toolbox). We then used the estimated parameters to predict

the MMN under different combinations of deviant probability and

magnitude.

In particular, the simulated MMN waveforms were used to

reproduce the descriptive statistics typically reported in MMN

experiments, i.e. MMN amplitude and latency. MMN latency was

estimated by the fractional area technique [19], because it is

regarded as one of the most robust methods for measuring ERP

latencies [42]. Specifically, we estimated the MMN latency as the

time point at which 50% of the area of the MMN trough lies on

either side. This analysis was performed on the difference wave

between the first and last point at which the amplitude was at least

half the MMN amplitude. This analysis was performed on the

unfiltered MMN waveforms as recommended by [43]. MMN

amplitude was estimated by the average voltage of the low-pass

filtered MMN difference wave within a 610 ms window around

the estimated latency.

Results

Simulated ERPs
Figure 4 shows that the waveforms generated by our model

reproduce the characteristic shape of the MMN, the positivity

evoked by the standard and the negativity evoked by the deviant.

The latency of the simulated MMN (164 ms) was almost identical

Figure 3. Simulation of perceptual inference. This figure shows the simulated time course of the perceived frequency for four different
deviants. The expected frequency was 1000 Hz and the frequency of the simulated deviant varied between 1020 Hz and 1320 Hz. The simulated
auditory responses correctly inferred the deviant frequency, despite its discrepancy with its prior expectation. The prior certainty was chosen to
correspond to a deviant probability of 0.05.
doi:10.1371/journal.pcbi.1003288.g003
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to the latency of the empirical MMN (166 ms). Its peak amplitude

(22.71 mV) was slightly higher than for the empirically measured

MMN ({3:3 mV), and its width at half-maximum amplitude

(106 ms) was also very similar to the width of the empirical MMN

waveform (96 ms). In short, having optimised the parameters

mapping from the simulated neuronal activity to empirically

observed responses, we were able to reproduce empirical MMNs

remarkably accurately. This is nontrivial because the underlying

neuronal dynamics are effectively solving a very difficult Bayesian

model inversion or filtering problem. Using these optimised

parameters, we proceeded to quantify how the MMN waveform

would change with deviance magnitude and probability.

To simulate the effect of deviant probability, we simulated the

responses to a deviant under different degrees of prior certainty.

To simulate the effect of deviance magnitude, we varied the

discrepancy between the expected and observed frequency, while

keeping the deviant probability constant. Finally, we investigated

potential interactions between deviance magnitude and deviant

probability by simulating the effect of magnitude under different

prior certainties and vice versa.

Qualitative comparisons to empirical data. To establish

the model’s face validity, we asked whether it could replicate the

empirically established qualitative effects of deviant probability

and magnitude summarized in Table 1. Figure 5a shows the

simulated effects of deviance magnitude on the MMN for a

deviant probability of 0.05. As the deviance magnitude increases

from 2% to 32% the MMN trough deepens. Interestingly, this

deepening is not uniform across peristimulus time, but it is more

pronounced at the beginning. In effect, the shape of the MMN

changes, such that an early peak emerges and the MMN latency

decreases. The effects of deviance magnitude on MMN peak

amplitude and latency hold irrespective of the deviant probability:

see Figure 6. In short, our model correctly predicts the empirical

effects of deviance magnitude on MMN amplitude and latency

(Table 1).

Figure 5b shows the effect of deviant probability on the MMN

for a deviance magnitude of 12.7%. As the probability of a deviant

decreases, the MMN trough deepens, but its shape and centre

remain unchanged. As with empirical findings (Table 1), our

simulations suggest that the amplitude of the MMN’s peak

increases with decreasing deviant probability, but its latency is

unaffected. Figure 6 summarizes the peak amplitudes and latencies

of the simulated MMN as a function of deviance magnitude and

probability. As the upper plot shows, the MMN peak amplitude

increases with deviance magnitude and decreases with deviant

probability. Furthermore, deviance magnitude appears to amplify

the effect of deviant probability and vice versa. The lower plot

shows that the MMN latency is shorter when deviance magnitude

is 32% than when it is 12.7%. These results also suggest that the

deviant probability has no systematic effect on MMN latency – if

Figure 4. Simulated ERPs vs. empirical ERPs. This figure compares the simulated ERPs evoked by the standard and the deviant, and their
difference – the MMN – to the empirical ERPs from [70,71] to which the model was fitted. The simulation captures both the positivity evoked by the
standard and the negativity evoked by the deviant.
doi:10.1371/journal.pcbi.1003288.g004
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the deviance magnitude is at most 12.7% and deviant probability

is below 40%. However, they predict that MMN latency shortens

with decreasing deviant probability – if deviance magnitude is

increased to 32% or deviant probability is increased to 40%.

Furthermore, our model predicts that MMN amplitude is

higher when the deviant is embedded in a stream of standards

(deviant condition) than when the same tone is embedded in a

random sequence of equiprobable tones (control condition)

[44,45]: In the control condition – with its equiprobable tones –

the trial-wise prediction about the target frequency is necessarily

less precise. As a result, the neural activity encoding the precision

weighted prediction error about the target frequency will be lower,

so that the deviant negativity will be reduced relative to the

deviant condition. This phenomenon cannot be explained by the

Figure 5. Simulated effects of deviance magnitude and deviant probability. This figure shows the simulated effect of deviance magnitude
(panel A) and deviant probability (panel B) on the MMN waveform. As the deviance magnitude increases, the trough becomes deeper and wider and
an early peak emerges (panel A). As deviant probability is decreased, the depth of the MMN’s trough increases, whereas its latency does not change
(panel B). In panel A, the standard frequency was 1000 Hz, the corresponding deviance frequencies were 1020 Hz, 1040 Hz, 1270 Hz, and 1320 Hz,
and the simulated deviant probability was 0.05. In panel B, the deviance magnitude was 12.7% (standard: 1000 Hz, deviant 1270 Hz).
doi:10.1371/journal.pcbi.1003288.g005
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spike-frequency adaptation in narrow frequency channels [44], but

see [46-50] for a demonstration that it can be explained by

synaptic depression.

Quantitative comparisons to empirical data. Having

established that the model reproduces the effects of deviant

probability and magnitude on MMN amplitude and latency in a

qualitative sense, we went one step further and assessed

quantitative predictions. For this purpose, we simulated three

MMN experiments and reproduced the analyses reported in the

corresponding empirical studies. We found that the effects of

deviance magnitude and probability on the MMN peak amplitude

matched the empirical data of [51] and [52] not only qualitatively

but also quantitatively (see Figure 7a). Our model explained

93.6% of the variance due to deviance magnitude reported in [9]

(r~0:97,p~0:0015,n~6) and 93.2% of the variance due to

deviant probability reported in [10] (r~0:9658,pv10{7,n~14).

Furthermore, we simulated two experiments that investigated how

the MMN latency depends on deviance magnitude [9] and

probability [10] (see Figure 7b). The model correctly predicted the

absence of an effect of deviant probability on MMN latency in a

study where the deviance magnitude was 20% [9]. While our

model predicted that the MMN latency is shorter for high

deviance magnitudes than for low deviance magnitudes, it also

predicted a sharp transition between long MMN latencies

(195 ms) for deviance magnitudes up to 12.7% and a substantially

shorter MMN latency (125 ms) for a deviance magnitude of 32%.

By contrast, the results reported in [11] appear to suggest a

gradual transition between long and short MMN latencies. In

effect, the model’s predictions explained only 51.9% of the

variance of MMN latency as a function of deviance magnitude

[11] (r~0:7204,p~0:1064,n~6).

Discussion

We have described a process model of the MMN and its

dependence on deviant stimulus (deviance magnitude) and context

(deviant probability). Together with the study presented in [9], this

work demonstrates the potential of predictive coding to provide a

comprehensive explanation of MMN phenomenology. More

precisely, our model explains the effects of deviant probability

and magnitude on the MMN amplitude under the assumption that

evoked responses reflect the neuronal encoding of (precision

weighted) prediction errors. The simulated MMN was a superpo-

sition of the electrical fields generated by prediction errors at

different hierarchical levels of representation (see Figure 2), where

their relative contributions (i.e. the coefficients in equation (13))

differed: the errors in the predictions at the highest level of

representation (inferior frontal gyrus) were weighted most strongly,

followed by prediction error at the sensory level (A1) and

prediction errors at the intermediate level (lateral Heschl’s gyrus).

As a result, the simulated MMN primarily reflected prediction

errors on the hidden causes (attributes), rather than prediction

errors on their physical features.

Our model offers a simple explanation as to why the MMN

amplitude decreases with deviant probability and increases with

deviance magnitude. Precision weighted prediction errors are the

product of a prediction error and the precision of the top-down

prediction. Hence, according to our model, deviance magnitude

increases MMN amplitude, because it increases prediction errors.

Similarly decreasing the probability of the deviant increases the

MMN amplitude by increasing the precision of (learned) top-down

predictions. Furthermore, since precision and prediction error

interact multiplicatively, the precision determines the gain of the

effect of prediction error and vice versa.

This model explains the shortening of the MMN latency with

deviance magnitude by a selective amplification of frequency-

related prediction errors that are only transiently expressed –

because they are explained away quickly by top-down predictions.

These prediction errors increase with deviance magnitude.

However, there are also prediction errors that are not explained

away by perceptual inference. These errors are sustained

throughout the duration of the stimulus (as the stimulus amplitude

fluctuates) and do not depend on the difference between the

standard and the deviant event. Hence, according to our model,

deviance magnitude selectively increases the early prediction error

component, but not sustained errors. In effect, as deviance

magnitude increases, an early trough emerges within the MMN, so

that the MMN latency shortens (see Figure 5a and Figure 6). By

contrast, increasing the precision of high-level beliefs increases all

precision weighted frequency prediction errors – the transient and

the sustained – equally. Thus the MMN deepens uniformly, and

no early trough emerges. This is why – according to the model –

the deviant probability has no effect on the MMN latency for

moderate deviance magnitudes. However, if the deviance magni-

tude is so large that the transient component dominates the

Figure 6. Simulated MMN phenomenology. Our simulations
predict that deviance magnitude increases the MMN peak amplitude
and shortens its latency. Furthermore, our simulations suggest that
when the deviant probability is decreased, the peak amplitude
increases, while its latency does not change. The deviance magnitude
is specified relative to the standard frequency of 1000 Hz.
doi:10.1371/journal.pcbi.1003288.g006
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frequency-related prediction error, the situation is different. In this

case, increasing the weight of the frequency-related prediction

errors relative to loudness-related prediction errors can shorten the

latency, because the frequency-related prediction error predom-

inates at the beginning of perception – whereas the amplitude

related prediction error is constant throughout perception. This is

why our model predicts that the MMN latency becomes

dependent on deviant probability at higher levels of deviance

magnitude.

Novel predictions
Our MMN simulations predict a nonlinear interaction between

the effects of deviant probability and magnitude. The upper plot in

Figure 6 suggests that the effect of deviant probability on MMN

peak amplitude increases with increasing deviance magnitude.

Conversely, the effect of deviance magnitude increases with

decreasing deviant probability. Furthermore, the lower plot in

Figure 6 suggests, that the effect of deviant probability on MMN

latency depends on deviance magnitude: If deviance magnitude is

at most 12.7%, the MMN latency does not depend on deviant

probability, but when deviance magnitude is as large as 32%, the

MMN latency increases with deviant probability. Conversely, the

size of the effect of deviance magnitude on MMN latency depends

on deviant probability. Hence, our simulations predict a number

of interaction effects that can be tested empirically.

Relation to previous work
Although the physiological mechanisms generating the MMN

have been modelled previously [9], the model presented here is the

first to bridge the gap between the computations implicit in

perceptual inference and the neurophysiology of ERP waveforms.

In terms of Marr’s levels of analysis [53], our model provides an

explanation at both the algorithmic and implementational levels of

analysis – and represents a step towards full meta-Bayesian

inference – namely inferring from measurements of brain activity

on how the brain computes (cf. [13,19,51–55]).

Figure 7. Quantitative model fit of MMN amplitude and latency. This figure compares predictions about the MMN amplitude (panel A) and
latency (panel B) with empirical data from auditory oddball experiments. The upper plot in panel A is based on [72], where deviance magnitude was
varied for a fixed deviant probability of 0.05. The lower plot in panel A is based on [19], where deviant probability was varied for a fixed deviance
magnitude of 15% (deviant frequency: 1150 Hz, standard frequency: 1000 Hz). The upper plot in panel B is based on the same experiment [9] as the
upper plot in panel A. The lower plot in panel B is based on [10], where deviant probability was varied with a fixed deviance magnitude of 20%
(deviant frequency 1200 Hz, standard frequency 1000 Hz). The error bars indicate the standard error of the mean.
doi:10.1371/journal.pcbi.1003288.g007
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Our model builds upon the proposal that the brain inverts

hierarchical dynamic models of its sensory inputs by minimizing

free-energy in a hierarchy of predictive coding circuits [56].

Specifically, we asked whether the computational principles

proposed in [15,20] are sufficient to generate realistic MMN

waveforms and account for their dependence on deviant

probability and deviance magnitude. In doing so, we have

provided a more realistic account of the algorithmic nature of

the brain’s implementation of these computational principles:

While previous simulations have explored the dynamics of

perceptual inference prescribed by the free-energy principle using

dynamic expectation maximization (DEM) [23,39], the simula-

tions presented here are based on GF [23,39]. Arguably, GF

provides a more realistic model of learning and inference in the

brain than DEM, because it is an online algorithm that can be run

in real-time to simultaneously infer hidden states and learn the

model; i.e., as sensory inputs arrive. In contrast to DEM it does not

have to iterate between inferring hidden states, learning param-

eters, and learning hyperparameters. This is possible, because GF

dispenses the mean-field assumption made by DEM. Another

difference to previous work is that we have modelled the neural

representation of precision weighted prediction error by sigmoidal

activation functions, whereas previous simulations ignored poten-

tial nonlinear effects by assuming that the activity of prediction

error units is a linear function of precision weighted prediction

error [6,24,27,39]. Most importantly, the model presented here

connects the theory of free-energy minimisation and predictive

coding to empirical measurements of the MMN in human

subjects.

To our knowledge, our model is the first to provide a

computational explanation of the MMN’s dependence on

deviance magnitude, deviant probability, and their interaction.

While [26] modelled the effect of deviance magnitude, they did

not consider the effect of deviant probability. Although [6,24]

modelled the effect of deviant probability, they did not simulate

the effect of deviance magnitude, nor did they make quantitative

predictions of MMN latency or amplitude. Mill et al. [13,55]

simulated the effects of deviance magnitude and deviant

probability on the firing rate of single auditory neurons in

anaesthetized rats. While their simulations captured the

qualitative effects of deviance magnitude and deviant probabil-

ity on response amplitude, they did not capture the shortening

of the MMN latency with decreasing deviant probability. By

contrast, our model generates realistic MMN waveforms and

explains the qualitative effects of deviant probability and

magnitude on the amplitude and latency of the MMN. Beyond

this, our model makes remarkably accurate quantitative

predictions of the MMN amplitude across two experiments

[53] examining several combinations of deviance magnitude

and deviant probability.

Limitations
The simulations reported in this paper demonstrate that

predictive coding can explain the MMN and certain aspects of

its dependence on the deviant stimulus and its context.

However, they do not imply that the assumptions of predictive

coding are necessary to explain the MMN. Instead, the

simulations are a proof-of-concept that it is possible to relate

the MMN to a process model of how prediction errors are

encoded dynamically by superficial pyramidal cells during

perceptual inference. For parsimony, our model includes only

those three intermediate levels of the auditory hierarchy that are

assumed to be the primary sources of the MMN. In particular,

we do not model the subcortical levels of the auditory system.

However, our model does not assume that predictive coding

starts in primary auditory cortex. To the contrary, the input to

A1 is assumed to be the prediction error from auditory

thalamus. This is consistent with the recent discovery of

subcortical precursors of the MMN [52]. Since MMN wave-

forms were simulated using the parameters estimated from the

average ERPs reported in [9,10], the waveforms shown in

Figure 4 are merely a demonstration that our model can fit

empirical data. However, the model’s ability to predict how the

MMN waveform changes as a function of deviance magnitude

and deviant probability speaks to its face validity.

Our model’s most severe failure was that while our model

correctly predicted that MMN latency shortens with deviance

magnitude, it failed to predict that this shortening occurs gradually

for deviance magnitudes between 2.5% and 7.5%. In principle,

the model predicts that the latency shortens gradually within a

certain range of deviance magnitudes, but this range did not

coincide with the one observed empirically.

There are clearly many explanations for this failure – for

example, an inappropriate generative model or incorrect forms for

the mapping between prediction errors and local field potentials.

Perhaps the more important point here is that these failures

generally represent opportunities. This is because one can revise or

extend the model and compare the evidence for an alternative

model with the evidence for the original model using Bayesian

model comparison of dynamic causal models in the usual way [57–

59]. Indeed, this is one of the primary motivations for developing

dynamic causal models that are computationally informed or

constrained. In other words, one can test competing hypotheses or

models about both the computational (and biophysical) processes

underlying observed brain responses.

Conclusions
This work is a proof-of-principle that important aspects of evoked

responses in general – and the MMN in particular – can be

explained by formal (Bayesian) models of the predictive coding

mechanism [19]. Our model explains the dynamics of the MMN in

continuous time and some of its phenomenology at a precision level

that has not been attempted before. By placing normative models of

computation within the framework of dynamic causal models one

has the opportunity to use Bayesian model comparison to adjudicate

between competing computational theories. Future studies might

compare predictive coding to competing accounts such as the fresh-

afferent theory [60–62]. In addition, the approach presented here

could be extended to a range of potentials evoked by sensory stimuli,

including the N1 and the P300, in order to generalise the

explanatory scope of predictive coding or free energy formulations.

This sort of modelling approach might be used to infer how

perceptual inference changes with learning, attention, and context.

This is an attractive prospect, given that the MMN is elicited not only

in simple oddball paradigms, but also in more complex paradigms

involving the processing of speech, language, music, and abstract

features [7,53,63]. Furthermore, a computational anatomy of the

MMN might be useful for probing disturbances of perceptual

inference and learning in psychiatric conditions, such as schizophre-

nia [13,55]. Similarly, extensions of this model could also be used to

better understand the effects of drugs, such as ketamine [12,64–66],

or neuromodulators, such as acetylcholine [67–69], on the MMN.

We hope to pursue this avenue of research in future work.
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Text S1 Modelling assumptions about tuning curves in
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uncertainty. The supplementary text details and justifies our

model’s assumptions about the tuning curves of neurons in

primary auditory cortex and the covariance matrices in the

perceptual model.
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46. Schröger E, Wolff C (1996) Mismatch response of the human brain to changes in

sound location. Neuroreport 7: 3005–3008.
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49. Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity.

Clinical Neurophysiology 114: 1133–1143.
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64. Schröger E, Bendixen A, Trujillo-Barreto N, Roeber U (2007) Processing of

abstract rule violations in audition. PLoS ONE 2: e1131.
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