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    Introduction 
 Fluid shear stress, the frictional force from blood fl ow, acts 

directly on the endothelium to modulate vessel structure and 

function ( Davies, 1997 ). In arterial regions with laminar fl ow, 

the endothelial cells (ECs) express various atheroprotective 

genes and suppress several proatherogenic ones, leading even-

tually to stability and quiescence ( Malek et al., 1999 ). In con-

trast, in regions with slow or disturbed fl ow where low shear 

stress occurs, the atheroprotective genes are suppressed, whereas 

the proatherogenic genes are up-regulated, thereby promoting 

the atherosclerotic process ( Malek et al., 1999 ). Importantly, 

acute onset of laminar fl ow stimulates many of the same re-

sponses as disturbed shear. However, over longer periods, the 

cells adapt to the unidirectional shear forces and down-regulate 

the stress signaling, whereas in the disturbed shear, continual 

changes in fl ow magnitude and direction lead to sustained sig-

naling ( Orr et al., 2006 ). Thus, the in vitro protocol in which 

cells under static conditions are exposed to an abrupt increase in 

fl ow has been widely used as a model for disturbed fl ow and is 

particularly useful in analyzing temporal responses to fl ow. 

 EC surfaces are equipped with numerous mechanorecep-

tors that are capable of detecting and responding to shear stress 

( Traub and Berk, 1998 ;  Lehoux et al., 2006 ). After activation of 

mechanoreceptors, a complex network of several intracellular 

pathways is triggered, a process known as mechanotransduc-

tion. Forces from the apical surface must be transmitted through 

the cytoskeleton to points of attachment that resist shear stress 

and anchor the cell in place ( Davies, 1995 ). In that regard, both 

cell – cell and cell – ECM adhesions have been implicated in shear 

stress signal transduction. The junction-localized, endothelial-

specifi c cadherin, vascular endothelial cadherin (VE-cadherin), 

is required for transducing shear stress – dependent signals into 

the endothelium ( Shay-Salit et al., 2002 ;  Tzima et al., 2005 ). 

We recently reported that VE-cadherin forms a mechanosensory 

complex with the EC adhesion molecule PECAM-1 and tyro-

sine kinase VEGF receptor 2 (VEGFR2), and this minimal 

complex is necessary for a subset of endothelial shear stress re-

sponses, such as the activation of nuclear factor  � B (NF � B) and 

proinfl ammatory target genes ( Tzima et al., 2005 ). In addition 

to cell – cell junctions, cell – matrix adhesions have also been im-

plicated in shear stress signaling. Acute onset of laminar fl ow 

stimulates the conversion of integrins to a high-affi nity state 
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culature associated with chronic infl ammation due 
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mechanotransduction pathways, but how this is achieved is 

not well understood. We show here that, in response to fl ow, 
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duction in both matrix-independent and matrix-dependent 

signals. Furthermore, Shc regulates fl ow-induced infl amma-

tory signaling by activating nuclear factor  � B – dependent 

signals that lead to atherogenesis. In vivo, Shc is activated in 

atherosclerosis-prone regions of arteries, and its activation 

correlates with areas of atherosclerosis. Our results support 

a model in which Shc orchestrates signals from cell – cell 

and cell – matrix adhesions to elicit fl ow-induced infl am-

matory signaling.
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blood turbulence and to develop atherosclerotic lesions. To fur-

ther test whether the activation of Shc correlates with athero-

sclerotic lesions in vivo, the ascending aortas from ApoE  � / �   and 

C57BL/6 mice were isolated and processed for immunohisto-

chemistry. ApoE  � / �   mice develop atherosclerotic lesions through-

out the aortic tree, with localization similar to the lesions seen 

in human atherosclerosis ( Daugherty, 2002 ). Although Shc 

phosphorylation was robust in ApoE  � / �   mice, particularly in 

ECs overlying the atherosclerotic lesions, it was almost un-

detectable in C57BL/6 aorta ( Fig. 1 B ). Thus, Shc phosphorylation 

correlates with atherogenesis and atherosclerosis-prone regions 

near bifurcations. 

 The distinct activation pattern of Shc in areas of athero-

sclerosis in vivo prompted us to ask whether the activation of 

Shc is regulated by different fl ow patterns in vitro. Cells stimu-

lated with prolonged oscillatory fl ow (which is proinfl ammatory 

and atherogenic) showed elevated Shc phosphorylation com-

pared with cells stimulated with extended laminar fl ow (which 

is considered antiinfl ammatory and atheroprotective;  Fig. 1 C ). 

Interestingly, acute onset of laminar shear stimulates many of 

the same responses as disturbed/oscillatory fl ow (Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200709176/DC1). 

However, in a prolonged laminar shear, these events are down-

regulated as cells adapt, whereas in a disturbed shear, they are 

sustained ( Orr et al., 2005 ). Thus, a large number of in vitro 

studies have exploited the acute onset of laminar shear to model 

AP signaling, and a temporal map of signaling cascades can al-

ready be assembled ( Chatzizisis et al., 2007 ). We therefore used 

the laminar fl ow protocol to assay the early responses down-

stream of Shc. To this end, we fi rst examined whether the rapid 

initiation of fl ow also regulates Shc activation in vitro. In bovine 

aortic ECs (BAECs), Shc phosphorylation was readily detected 

upon the onset of fl ow, as assessed by immunoblotting the cell 

lysates with a phospho-Shc Tyr239/240 antibody ( Fig. 1 E ). 

 Notably, all three isoforms of Shc are phosphorylated in response 

to fl ow. Immunofl uorescence staining showed that a fraction of 

activated Shc localized to cell – cell junctions ( Fig. 1 D ) and co-

localized with  � -catenin (Fig. S3 A). Flow-induced phosphoryl-

ation of Shc Tyr317 was not observed in parallel experiments 

(unpublished data), which suggests that the downstream signal-

ing elicited by Shc in response to fl ow is primarily mediated 

through its phosphorylation at Tyr 239/240. 

 Shc associates with components of EC 
junctions in response to shear stress 
 The distinct spatial activation of Shc in response to the onset of 

fl ow suggested that Shc might associate with components of inter-

endothelial junctions. Recently, we identifi ed a minimal complex 

necessary for a subset of EC shear stress responses, which requires 

PECAM-1, VE-cadherin, and VEGFR2 ( Tzima et al., 2005 ). 

To further investigate the role of Shc in shear stress signaling, the 

association of Shc with crucial components of the VE-cadherin �

 VEGFR2 signaling pathway was examined. Rapid onset of 

fl ow induced an acute association of Shc with VE-cadherin as 

assessed by coimmunoprecipitation assays ( Fig. 2 A ). VEGFR2 

was also present in these immune complexes ( Fig. 2 A ), which 

s uggests its possible role in Shc activation and the existence 

( Tzima et al., 2001 ) followed by their binding to the subendo-

thelial ECM ( Jalali et al., 2001 ;  Tzima et al., 2001 ). The newly 

occupied integrins subsequently activate multiple signaling 

pathways that lead to cell and cytoskeletal alignment in the 

direction of fl ow as well as the activation of NF � B, which is 

important for the expression of infl ammatory genes in the endo-

thelium ( Jalali et al., 2001 ;  Tzima et al., 2001, 2002, 2003 ). 

 Importantly, the activation of NF � B by fl ow is dependent on ECM 

composition (activated on fi bronectin [FN] but not collagen 

[CL];  Orr et al., 2005 ), and certain types of matrix proteins, 

such as FN, are deposited at the atherosclerosis-prone sites in vivo 

( Sechler et al., 1998 ). Although the biochemical and mechanical 

consequences of integrin- and cadherin-mediated adhesions each 

have been described, how these adhesions cross-talk and co-

operate, especially in response to fl ow, is less well understood. 

 Members of the Shc family of adaptor proteins are key 

components of the pathways that activate Ras and MAPKs down-

stream of growth factors, cytokines, integrins, and mechanical 

forces ( Pelicci et al., 1992 ;  Chen et al., 1999 ;  Ravichandran, 

2001 ). Shc is phosphorylated at tyrosine residues 239/240 and 

317 and recruits the adaptor protein Grb2 and the nucleotide 

exchange factor SOS ( Ravichandran, 2001 ). The assembly of 

Shc – Grb2 – SOS complex provides a mechanism for the acti-

vation of Ras and the MAP kinases ( Ravichandran, 2001 ). 

In addition, tyrosine-phosphorylated Shc associates with inte-

grins  �  5  �  1 ,  �  1  �  1 , and  �  v  �  3  when they are conjugated to the ap-

propriate ligands ( Bhattacharya et al., 1995 ;  Wary et al., 1996 ). 

Notably, ShcA is expressed primarily in the cardiovascular sys-

tem of mouse embryos and is required for normal development 

of the heart and the vascular system ( Lai and Pawson, 2000 ). 

 Here, we show that Shc associates with constellations of 

both cell – cell and cell – matrix adhesions in response to fl ow. 

Furthermore, activation of Shc occurs in areas of disturbed fl ow 

and correlates with atherosclerosis in vivo. Finally, we reveal a 

surprising role for Shc in fl ow-induced infl ammatory signaling. 

Thus, Shc orchestrates signals from junctional and matrix adhe-

sion complexes to mediate infl ammatory signaling in response 

to fl uid fl ow. 

 Results 
 Activation of Shc in atheroprone (AP) 
areas of the vasculature 
 Areas of disturbed fl ow in vivo are prone to infl ammation and 

atherogenesis. To determine whether Shc is activated in a fl ow-

dependent manner, we performed immunohistochemical analy-

ses in different locations of C57BL/6 mouse aortas using a Shc 

phospho-Tyr239/240 antibody as a marker. The arch of the aorta, 

which corresponds to proinfl ammatory and AP regions ( Suo et al., 

2007 ), showed remarkably pronounced phospho-Shc staining. 

In contrast, the ascending aorta, which is atheroresistant (AR), 

displayed barely detectable levels of phospho-Shc ( Fig. 1 A ). 

The focal activation of Shc is not caused by differences in Shc 

expression levels as shown in Fig. S1 (available at http://www

.jcb.org/cgi/content/full/jcb.200709176/DC1). Thus, activated 

Shc is localized in regions where blood vessels exhibit sharp 

curvatures and are therefore more likely to be susceptible to 



187SHC REGULATES INFLAMMATORY SIGNALING UNDER FLOW  • Liu et al. 

 Figure 1.    Shc phosphorylation in vivo and in vitro.  (A) Aortas were isolated from C57BL/6 mice. Serial sections were obtained from AR and AP regions 
and stained for phospho-Tyr239/240 of Shc. Inserts show ECs lining up the aorta lumen. (B) Aortas were removed from ApoE  � / �   or C57BL/6 mice of the 
same age and embedded in paraffi n. Serial sections were stained for phospho-Tyr239/240 of Shc. Boxes indicate the enlarged views shown in the insets. 
(C) BAECs were plated on FN-coated slides and subjected to oscillatory or laminar fl ow for 18 h or kept as static controls. Cell lysates were analyzed 
by immunoblotting with anti-Shc phospho-Tyr239/240 or anti-Shc antibodies. (D) BAECs were left untreated or subjected to laminar fl ow at 12 dyne/cm 2  
for 5 min as described in the Materials and methods. Cells were subsequently fi xed, permeabilized, and immunostained for phospho-Tyr239/240 of Shc. 
(E) BAECs were plated on FN-coated slides and sheared for 1, 5, or 30 min or kept as static controls. Cell lysates were subjected to SDS-PAGE and immuno-
blotting with anti-Shc phospho-Tyr239/240 or anti-Shc antibodies. Numbers to the left of the gel blots indicate molecular mass standards in kD.   
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in VE-KO and VE-RC cells upon shear. As shown in  Fig. 2 C , 

fl ow-induced Shc phosphorylation at Tyr 239/240 was not ob-

served in VE-cadherin – null cells ( Fig. 2, C and D ), which indi-

cates that this event is dependent on VE-cadherin. 

 We then sought to characterize the tyrosine kinases re-

sponsible for the fl ow-induced Shc activation. Flow rapidly 

activates several tyrosine kinases, including Src family kinases 

( Takahashi and Berk, 1996 ;  Jalali et al., 1998 ;  Okuda et al., 

1999 ;  Yan et al., 1999 ) and VEGFR2 ( Chen et al., 1999 ;  Jin et al., 

2003 ). Because Src and VEGFR2 both localize to cell – cell junc-

tions in response to fl ow, we tested their requirement for the 

fl ow-induced Shc activation. Pretreatment of ECs with Src in-

hibitor SU6656 abrogated fl ow-induced Shc tyrosine phosphory-

lation and translocation ( Fig. 3 ). Similarly, treatment with the 

VEGFR2 kinase inhibitor 4-([4 ’ -chloro-2 ’ -fl uoro]phenylamino)-

6,7-dimethoxyquinazoline (VTI) abolished fl ow-induced Shc 

activation and localization to junctions ( Fig. 3 ). These results 

indicated that tyrosine phosphorylation of Shc and its translocation 

of a multiprotein complex induced by shear. Stimulation of ECs 

with oscillatory fl ow also induced the formation of a Shc –

 VEGFR2 – VE-cadherin complex and the localization of activated 

Shc to junctions (Fig. S3). Importantly, the association of Shc 

with VE-cadherin was sustained under oscillatory fl ow (Fig. S3 C), 

which is similar to the sustained Shc phosphorylation ( Fig. 1 C ). 

 Because VE-cadherin is required for VEGFR2 activation by 

fl ow and downstream shear-dependent signaling ( Shay-Salit et al., 

2002 ;  Tzima et al., 2005 ), we tested whether VE-cadherin is es-

sential for the interaction of Shc with VEGFR2. VE-cadherin null 

(VE-KO) and cells reconstituted with human VE-cadherin (VE-RC) 

were used for these studies ( Lampugnani et al., 2002 ). As shown 

in  Fig. 2 B , application of shear stress to VE-RC cells stimulated 

Shc association with VEGFR2, which was not observed in VE-KO 

cells, suggesting that VE-cadherin is required for the formation of 

Shc-VEGFR2 complex in response to fl ow. 

 To investigate whether VE-cadherin is also required for 

fl ow-induced Shc activation, we examined Shc phosphorylation 

 Figure 2.    Shear-induced interaction of Shc with VE-cadherin and VEGFR-2.  (A) BAECs were subjected to laminar fl ow for 1 min or left untreated. Cell extracts 
were immunoprecipitated with a VE-cadherin antibody and immunoblotted with antibodies specifi c for Shc, VEGFR-2, or VE-cadherin. Similar results were ob-
served in three experiments. (B) VE-cadherin – null (VE-KO) and reconstituted (VE-RC) cells were left untreated or sheared for 5 min. Cell extracts were immuno-
precipitated with anti-Shc antibody and analyzed by Western blotting with anti-VEGFR2 or anti-Shc antibodies. The quantifi cation represents mean  ±  SD 
( n  = 3; *, P  <  0.05). (C) VE-RC and VE-KO cells were left untreated or exposed to shear stress for 5 min. Cells were fi xed, permeabilized, and immunostained 
with an antibody specifi c for Shc phospho-Tyr239/240. (D) VE-RC and VE-KO cells were subjected to shear stress as in C. Cell extracts were analyzed by 
Western blotting with anti-Shc phospho-Tyr239/240 or total Shc antibodies. Numbers to the left of the gel blots indicate molecular mass standards in kD.   
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whether Shc is involved in fl ow-induced extracellular signal – reg-

ulated kinase (ERK) activation, we suppressed cellular levels of 

Shc using siRNAs. As depicted in  Fig. 6 (A and B) , transfection 

of BAECs with Shc-specifi c siRNA resulted in a 90 – 95% de-

crease in the levels of all three isoforms of Shc. Decreasing Shc 

expression by siRNA dramatically inhibited the fl ow-induced 

ERK activation, whereas the control siRNA had no effect ( Fig. 6, 

C and D ). Interestingly, ERK activation was impaired to a similar 

extent in VE-KO cells when compared with VE-RC cells (unpub-

lished data). In parallel experiments, the activation of another 

MAPK, p38, was also inhibited by attenuating Shc expression 

levels with siRNA, although p38 was inhibited to a lesser extent 

compared with ERK (unpublished data). Similar to the activation 

pattern for ERK, shear stress – induced p38 activation does not oc-

cur in ECs lacking VE-cadherin ( Shay-Salit et al., 2002 ). As dem-

onstrated ( see Fig. 2 D ), VE-cadherin is important for fl ow-induced 

Shc phosphorylation. These data are consistent with a model in 

which VE-cadherin – dependent Shc signaling contributes to the 

transient activation of ERK and p38 MAP kinases in response to 

fl uid fl ow. 

 Shc mediates the fl ow-induced 
infl ammatory responses 
 Shear stress regulates the chronic infl ammation associated with 

atherogenesis ( Caro et al., 1969 ;  Ku et al., 1985 ;  Glagov et al., 1988 ). 

to EC junctions in response to shear stress require the kinase 

activities of Src and VEGFR2. 

 VE-cadherin is required for fl ow-induced 
Shc – integrin association 
 In addition to cell – cell junctions, signals from integrin – matrix 

adhesions are also important for shear stress – dependent re-

sponses. Acute onset of shear triggers conversion of integrins to 

a high-affi nity state followed by their binding to the subendo-

thelial ECM ( Tzima et al., 2001 ). Resultant integrin signaling 

mediates cytoskeletal rearrangements ( Tzima et al., 2001, 2002 ), 

gene expression ( Chen et al., 1999 ), NF � B activation ( Bhullar 

et al., 1998 ;  Orr et al., 2005 ), and permeability ( Orr et al., 2007 ). 

Shc is recruited to integrin – matrix adhesions upon cell attach-

ment ( Wary et al., 1996 ) and onset of fl ow ( Chen et al., 1999 ). 

Interestingly, the association of Shc with  �  v  �  3  integrin occurred 

at later times (30 min) after the onset of fl ow ( Fig. 4 ). This asso-

ciation is absent in VE-KO cells ( Fig. 4 ), which suggests that 

the ECM-dependent events in shear stress also require VE-cad-

herin. At this later time, no association of VEGFR2 with the 

Shc –  �  v  �  3  integrin complex was detected (unpublished data), 

which is consistent with the association of Shc with VEGFR2 

being transient ( Chen et al., 1999 ). Collectively, these data show 

that both the early association of Shc with VEGFR2 and the 

later one with  �  v  �  3  integrin require VE-cadherin, and that Shc 

may participate in both cell – cell and cell – matrix signaling in 

response to fl ow. 

 Shear stress – induced Shc-integrin association depends on 

specifi c integrin – ECM interactions ( Fig. 5 A ). Consistent with 

previous results, fl ow-induced Shc – integrin association was ob-

served in cells plated on FN and vitronectin (both engage integ-

rin  �  v  �  3 ) but was absent in cells plated on CL or laminin (LN; 

both engage integrin  �  2  �  1 ;  Fig. 5 A ). Importantly, the composi-

tion of the subendothelial ECM modulates infl ammatory signal-

ing and permeability in response to fl uid fl ow ( Orr et al., 2005, 

2007 ). To determine whether Shc activation is also matrix spe-

cifi c, ECs were plated on either FN or CL, and Shc phosphory-

lation was assayed. Onset of fl ow triggered an increase in Shc 

phosphorylation irrespective of the matrix that the cells were 

plated on ( Fig. 5 B ). To test whether the fl ow-induced Shc asso-

ciation with cell – cell junctions is ECM dependent, immuno-

precipitation assays were performed with lysates from cells 

plated on FN or CL. As shown in  Fig. 5 C , Shc interaction with 

VE-cadherin was rapidly enhanced after the onset of fl ow re-

gardless of the ECM composition. Cells plated on LN exhibited 

similar responses (Fig. S4, available at http://www.jcb.org/cgi/

content/full/jcb.200709176/DC1). Thus, Shc activation and asso-

ciation with cell – cell junctions correlate closely and are indepen-

dent of the matrix composition, whereas the later Shc – integrin 

association is ECM dependent. 

 Shc function is required for the activation 
of MAPKs by shear stress 
 The role of Shc in the activation of the Ras – MAPK pathway and 

mitogenic signaling has been well described ( Ravichandran, 2001 ). 

The MAP kinases are activated by shear stress and mediate some 

of the effects of shear stress on ECs ( Traub and Berk, 1998 ). To test 

 Figure 3.    Src and VEGFR2 kinase activities are required for fl ow-dependent 
Shc activation.  BAECs were pretreated with vehicle (DMSO), the Src inhibi-
tor SU6656, or the VEGFR-2 inhibitor VTI for 30 min before their exposure to 
fl ow for the indicated times. Cells were fi xed, permeabilized, and stained for 
Shc phospho-Tyr239/240 as described in the Materials and methods.   
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portant for the initial events in infl ammation and atherogenesis 

induced by shear stress. 

 Discussion 
 In the present study, we present evidence that Shc integrates 

signals from both cell – cell and cell – matrix adhesions to regu-

late fl ow-induced infl ammatory signaling. Shc activation oc-

curs in vivo and correlates with areas of disturbed fl ow and 

atherogenesis. Shc associates with components of the junctional 

complexes VE-cadherin and VEGFR2 at early times after the 

onset of fl ow and with integrin – ECM complexes at later times. 

The increased Shc phosphorylation in ApoE  � / �   aorta raises 

the possibility that Shc may participate in the regulation of the 

infl ammatory response elicited by shear stress. NF � B is a key 

regulator of shear stress – induced infl ammatory gene expression 

and contributes to the initiation of atherosclerosis by shear 

stress. We therefore tested whether Shc is upstream of NF � B 

activation in response to the onset of fl ow. NF � B is normally 

held inactive in the cytoplasm through its interaction with I � B. 

Degradation of I � B results in NF � B nuclear targeting and initi-

ation of transcription. As shown in  Fig. 7 A , attenuation of Shc 

expression abrogated nuclear translocation of NF � B, which 

suggests that Shc is upstream of NF � B activation in response 

to fl ow. 

 In addition to its nuclear targeting, phosphorylation of 

the p65 subunit of NF � B at Ser536 in its transactivation do-

main alters NF � B-dependent transcription. As shown in  Fig. 7 B , 

Ser536 phosphorylation was stimulated by fl ow in cells trans-

fected with control siRNA but showed deregulation in cells in 

which Shc levels were attenuated ( Fig. 7 B ). These data suggested 

that Shc function is important for fl ow-induced NF � B activation. 

 The NF � B dimer, particularly the p65/p50 heterodimer, 

binds to a shear stress – responsive element found in the promoter 

of several atherogenic genes, including ICAM-1 and VCAM-1, 

that regulate monocyte recruitment ( Resnick et al., 1993 ; 

 Khachigian et al., 1995 ). To test whether the Shc-dependent 

NF � B activation translates to altered gene expression, we as-

sayed expression of both ICAM-1 and VCAM-1. Because cel-

lular responses to laminar fl ow are transient, we examined the 

expression of these cell adhesion molecules in ECs exposed to 

oscillatory fl ow for longer times. As shown in  Fig. 8 (A and B ), 

under the extended oscillatory fl ow condition, although the ex-

pressions of ICAM-1 and VCAM-1 increased signifi cantly in 

cells transfected with control siRNA, the up-regulation was 

strongly inhibited when Shc function was abrogated. Consistent 

with these observations, monocyte adhesion to EC monolayers 

was also inhibited as a result of reduced Shc expression levels 

( Fig. 8, C and D ). Thus, fl ow-dependent NF � B nuclear trans-

location, phosphorylation, target gene expression, and monocyte 

adhesion correlate closely. We conclude that Shc function is im-

 Figure 5.    Shear-induced Shc – integrin association, but not Shc phosphor-
ylation or Shc – VE-cadherin association, is ECM dependent.  (A) Slides were 
coated with vitronectin, CL, LN, or FN. BAECs were sheared for 30 min or 
kept as static controls. Cell lysates were immunoprecipitated with LM609 
anti- �  v  �  3  followed by immunoblotting with anti-Shc antibody. Each pair 
of lanes represents static control (C) and sheared (S) samples from cells 
plated on the indicated ECM. (B) BAECs were plated on CL- or FN-coated 
slides and sheared for 5 or 30 min, or kept as static controls. Cell lysates 
were subjected to SDS-PAGE and immunoblotting with anti-Shc phospho-
Tyr239/240 or anti-Shc antibodies. (C) BAECs were plated on CL- or FN-
coated slides and sheared for 1 or 5 min, or kept as static controls. Cell 
lysates were immunoprecipitated with a VE-cadherin – specifi c antibody 
and immunoblotted with anti-Shc or anti-VE-cadherin. Numbers to the left 
of the gel blots indicate molecular mass standards in kD.   

 Figure 4.    VE-cadherin is required for shear-induced Shc –  �  v  �  3  complex 
formation.  VE-cadherin – null (VE-KO) and reconstituted (VE-RC) cells were 
left untreated or sheared for 30 min. Cell extracts were immunoprecipi-
tated with anti- �  v  �  3  antibody LM609 and analyzed by Western blotting 
with anti-Shc or anti- �  v  �  3  LM609 antibodies. Numbers to the left of the gel 
blot indicate molecular mass standards in kD.   
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 Coordinated changes between cell adhesions to the ECM 

and those to neighboring cells are crucial for numerous physi-

cal transformations that the cells must undergo during develop-

ment, tissue homeostasis, and wound healing. Although cell – cell 

junctions and cell – matrix adhesions mediate unique down-

stream signals, integrin and junctional signaling pathways are 

highly interwoven into complex signaling networks. In the 

context of shear stress signaling, there are many levels of cross 

talk. For instance, both cell – cell and cell – matrix adhesions 

activate common effectors such as NF � B ( Shay-Salit et al., 

2002 ;  Tzima et al., 2002 ;  Orr et al., 2005 ;  Tzima et al., 2005 ), 

ERK and p38 MAPKs ( Takahashi and Berk, 1996 ;  Li et al., 1997 ; 

 Osawa et al., 2002 ;  Shay-Salit et al., 2002 ;  Tai et al., 2005 ;  Fleming 

et al., 2005 ), Akt and Src kinases ( Okuda et al., 1999 ;  Fleming 

et al., 2005 ;  Tai et al., 2005 ;  Tzima et al., 2005 ), and endothelial 

nitric oxide synthase (eNOS;  Jin et al., 2003 ;  Dusserre et al., 

2004 ;  Fleming et al., 2005 ;  Bagi et al., 2005 ). Another level 

The association with integrins requires VE-cadherin and the acti-

vation of Shc requires the activities of VEGFR2 and Src, two 

ty rosine kinases that localize to EC junctions in response to fl ow. 

Although Shc phosphorylation and its association with VE- cadherin 

are ECM independent, Shc binding to integrins occurs only on 

specifi c matrices. Depletion of Shc with siRNA inhibits the ac-

tivation of fl ow-responsive signaling proteins including ERK 

and NF � B. The up-regulation of the EC adhesion molecules 

ICAM-1 and VCAM-1, as well as leukocyte adhesion to endo-

thelial monolayers, are also signifi cantly inhibited as a result of 

reduced Shc expression levels. Interestingly, the activation of 

downstream ERK signaling is ECM independent whereas the 

activation of NF � B signaling is ECM specifi c and correlates 

with the ECM specifi city for the Shc – integrin association. Thus, 

we propose that Shc functions as a molecular switch to orches-

trate signals from cell – cell and cell – matrix adhesions to elicit 

an infl ammatory response in ECs under fl ow ( Fig. 9 ). 

 Figure 6.    Shc mediates fl ow-induced Erk activation.  (A) BAECs were transfected with control siRNA or ShcA siRNA as described in the Materials and 
methods. Cells were lysed at indicated times after transfection, and cell lysates were analyzed by immunoblotting with a Shc-specifi c antibody to confi rm 
the knockdown effect of the Shc siRNA. Blots were stripped and reprobed with an antibody against actin as a loading control. (B) Quantitation of the RNAi 
effi ciency 48 h after transfection. The data represent mean  ±  SD ( n  = 5; **, P  <  0.01). (C) BAECs were transfected with control siRNA or Shc-specifi c siRNA 
as in A. 48 h after transfection, cells were subjected to laminar fl ow for indicated times. Cell lysates were analyzed by immunoblotting with a phospho-
Erk – specifi c antibody or anti-Erk antibody. Numbers to the left of the gel blots indicate molecular mass standards in kD. (D) Quantitation of the fold increase 
for p-ERK levels normalized to total ERK levels. The data represent mean  ±  SD ( n  = 4; *, P  <  0.05; **, P  <  0.01).   
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is required for the association of Shc with integrins, which medi-

ates Ras – ERK activation and the fl ow-dependent transcriptional 

responses. It is worth noting here that upon VEGF treatment, 

VE-cadherin becomes phosphorylated and binds to Shc, which 

is dephosphorylated ( Zanetti et al., 2002 ). The functional im-

portance of this association may be that it facilitates Shc de-

phosphorylation through a VE-cadherin – associated phosphatase. 

In contrast to the stimulation by VEGF, the temporal response 

of Shc tyrosine phosphorylation induced by shear stress is sus-

tained ( Chen et al., 1999 ). 

 The contribution of Shc to both integrin- and growth fac-

tor – induced activation of ERK is well documented ( Wary et al., 

1996 ;  Barberis et al., 2000 ;  Lai and Pawson, 2000 ), but this is 

the fi rst study to reveal a role for Shc in the infl ammatory sig-

naling through NF � B. It has recently been shown that fl ow-

induced NF � B activation is ECM dependent and is only observed 

in cells plated on FN but not on CL. ECM composition is a cru-

cial factor in atherogenesis and may regulate the early changes 

of cooperation lies in the commonality of binding partners. 

VEGFR2 binds to both adherens junctions (through VE-cadherin) 

and integrins, and thus, at any given time, VEGFR2 may regu-

late two distinct signaling modules by interacting with either 

VE-cadherin or  �  v  �  3  integrin ( Bussolino et al., 2001 ). More 

recently, integrins were implicated as intermediates that are 

activated downstream of junctional signaling that leads to 

phosphoinositide 3-kinase – induced integrin activation and in-

creased ECM binding ( Tzima et al., 2001, 2005 ). We now pro-

vide evidence that the adaptor protein Shc plays a critical role 

in the cross talk between cell – cell junctions and integrins dur-

ing fl ow. 

 The function of Shc in fl ow may be tightly regulated by 

tyrosine phosphorylation/dephosphorylation events. Shear stress 

stimulates the activation of Src kinases, which transactivate 

VEGFR2 ( Jin et al., 2003 ). VEGFR2 activation may result in the 

recruitment and tyrosine phosphorylation of Shc, which is depen-

dent on VE-cadherin. As demonstrated (see  Fig. 4 ), VE-cadherin 

 Figure 7.    Shc is required for fl ow-induced NF � B activation.  (A) BAECs were transfected with control siRNA or Shc-specifi c siRNA. 48 h after transfection, 
cells were exposed to laminar fl ow for 30 min or left as a static control. Cells were fi xed, permeabilized, and stained for the p65 subunit of NF � B as 
described in the Materials and methods. Three independent experiments were performed and 100 cells were counted for each experiment (**, P  <  0.01). 
(B) BAECs were transfected with control siRNA or Shc-specifi c siRNA. 48 h after transfection, cells were exposed to laminar fl ow for indicated times or left 
as a static control. Cells were lysed and analyzed by immunoblotting with anti-p65 phospho-Serine536, anti-p65, anti-Shc, or anti-actin antibodies ( n  = 3; 
**, P  <  0.01). Numbers to the left of the gel blot indicate molecular mass standards in kD. The data represent mean  ±  SD.   
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 cell and cell – ECM adhesions that drive the complex infl am-

matory signaling elicited by disturbed shear stress. As ECM 

deposition and leukocyte adhesion to the AP sites are instru-

mental to early events in atherogenesis, our observations together 

with previously published results point to Shc as a potential 

therapeutic target in the treatment of atherosclerosis and coro-

nary artery diseases. 

 Materials and methods 
 Cell culture, transfections, and shear stress 
 BAECs were maintained in DME (Invitrogen) with 10% FBS (Invitrogen), 
10  μ g/ml penicillin, and 0.25  μ g/ml streptomycin (Invitrogen). VE-cadherin 
null (VE-KO) and reconstituted (VE-RC) cells were prepared as described 
previously ( Carmeliet et al., 1999 ) and grown in DME containing 10% 
FBS, 5  μ g/ml EC growth serum, and 100  μ g/ml heparin and penicillin/
streptomycin. THP-1 leukocytes were maintained in RMPI 1640 medium 
(Invitrogen) with 10% FBS, 10  μ g/ml penicillin, 0.25  μ g/ml streptomycin, 
and 2 mM glutamate (Invitrogen). Control siRNA or Shc siRNA (Thermo 
Fisher Scientifi c) were transfected into BAECs as described previously ( Liu 
et al., 2005 ). For shear stress experiments, BAECs were plated on appro-
priate matrix proteins (10  μ g/ml FN or 20  μ g/ml Coll I) and allowed to 
grow for 10 h in medium containing 10% FBS or 4 h in 0.5% FBS. Cells 
were then starved overnight in medium containing 0.5% FBS. Slides were 
loaded onto a parallel plate fl ow chamber in 0.5% FBS, and 12 dynes/cm 2  
of shear stress was applied for indicated times. To examine upstream kinases 

in infl ammation associated with atherogenesis ( Orr et al., 2005 ). 

Interestingly, NF � B activation in Shc-attenuated cells closely 

resembles cells plated on CL, whereas cells transfected with 

control siRNA emulate the FN phenotype observed by Orr et al. 

( 2005 ). In addition, the association of Shc with integrins in 

response to fl ow is ECM specifi c ( Fig. 5 ). Taken collectively, 

these data raise the possibility that Shc may function as a mo-

lecular switch to translate ECM specifi city into ECs through its 

regulated interaction with integrin receptors engaged with the 

appropriate ECM. 

 Mutant mice lacking all three Shc isoforms die at embry-

onic day 11.5 due to cardiovascular defects ( Lai and Pawson, 

2000 ), whereas mice selectively missing the p66 ShcA iso-

form are long-lived ( Migliaccio et al., 1999 ) due to the role 

of p66 Shc in oxidative stress signaling ( Pinton et al., 2007 ). 

The exact contribution of each Shc isoform to development and 

signaling is still unclear. Most recently, pioneering work has 

shown that combinatorial differences in ShcA docking inter-

actions may yield multiple signaling mechanisms to support 

diversity in tissue morphogenesis ( Hardy et al., 2007 ). 

 In conclusion, our data provide a molecular description 

of the coordination of mechanochemical signals between cell –

 Figure 8.    Shc is required for the fl ow-induced up-regulation of endothelial adhesion molecules ICAM-1 and VCAM-1 as well as fl ow-induced monocyte 
adhesion.  (A) BAECs were transfected with control siRNA (a and b) or Shc-specifi c siRNA (c and d). 48 h after transfection, cells were exposed to oscil-
latory fl ow for 8 h or left as a static control. Cells were fi xed and stained for adhesion molecules ICAM-1 or VACM-1 as described in the Materials and 
methods. Bars, 50  μ m. (B) Quantitation of the change in staining intensity after shear ( n  = 3; *, P  <  0.05; **, P  <  0.01). (C) BAECs were transfected and 
sheared as in A. THP-1 monocytes prelabeled with CellTracker green were added to BAEC monolayers, and a monocyte binding assay was performed 
as described in the Materials and methods. Bar, 100  μ m. (D) Quantitation of monocyte binding assays in C. The data represent mean  ±  SD for three 
independent experiments (*, P  <  0.05).   
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nologies). To examine the expression levels of adhesion molecules ICAM-1 
or VCAM-1, cells were stained without Triton X-100 permeabilization, and 
the 20 ×  0.75 NA objective on the same microscope was used to acquire 
the images. 

 Leukocyte adhesion assay 
 For each adhesion assay, 1 ×  10 6  THP-1 cells were collected by centrifuga-
tion. Cells were resuspended in serum-free RMPI 1640 medium containing 
1  μ M CellTracker green 5-chloromethylfl uorescein diacetate (CMFDA; Invi-
trogen) and incubated at 37 ° C for 20 min. Cells were then spun down and 
resuspended in RMPI 1640 medium containing 10% FBS. After the ECs 
were sheared for the required times, the prelabeled THP-1 cells were 
added onto the monolayers of ECs and incubated at 37 ° C for 15 min. 
The unbound cells were rinsed off with PBS and the bound cells were fi xed 
with 2% formaldehyde. To quantify the assays, fi ve random fi elds under the 
10 ×  0.30 NA objective on an inverted microscope (DMIRB; Leica) were 
counted for each assay, and representative images were acquired using a 
RETIGA 1300 camera (QImaging). 

 Immunohistochemistry 
 5- μ m serial sections were obtained from paraffi n-embedded mouse aortas. 
After antigen retrieval with antigen unmasking solution, anti – phospho-Shc 
(1:30, Cell Signaling Technology) was applied to the sections. Detection of 
antibody was performed using a Vectastain Elite ABC kit (Vector Labora-
tories), and the epitopes were visualized by DAB reaction. Images were 
acquired using the 10 ×  0.30 NA or 20 ×  0.40 NA objective on a DMIRB 
inverted microscope equipped with a RETIGA 1300 camera and QCap-
ture software (QImaging). 

 Quantifi cation and statistical analysis 
 Band intensity of immunoblots was quantifi ed using the ImageJ program. 
Each experimental group was analyzed using single factor analysis of vari-
ance. P-values were obtained by performing two-tailed Student ’ s  t  test us-
ing Excel (Microsoft). Statistical signifi cance was defi ned as P  <  0.05. 

 Online supplemental material 
 Fig. S1 shows that en face staining of phospho-Shc is enhanced in the 
AP region of the C57BL/6 aorta compared with the AR region. No signifi cant 
differences in total Shc levels were observed as assessed by en face 
staining, immunoblotting of tissue homogenates, and immunohisto chemistry 
staining. Fig. S2 shows that acute onset of oscillatory fl ow induces similar 
responses to those observed with laminar fl ow. Fig. S3 shows that similar 
to laminar fl ow, onset of oscillatory fl ow stimulates Shc phosphorylation, 
Shc translocation to EC junctions, and the formation of the Shc – VE-cadherin – 
VEGFR2 complex; however, over longer periods, the responses are more 
sustained under oscillatory fl ow compared with laminar fl ow. Fig. S4 shows 
that onset of laminar fl ow induces acute Shc association with VE-cadherin 
in ECs plated on LN, which is also observed in cells on FN or CL. Online 
supplemental material is available at http://www.jcb.org/cgi/content/
full/jcb.200709176/DC1. 

required for Shc functions, cells were incubated with 10  μ M of the VEGF 
receptor tyrosine kinase inhibitor VTI or 5  μ M SU6656 (EMD) for 30 min 
at 37 ° C. 

 Oscillatory fl ow 
 To perform oscillatory fl ow, cells were cultured on 2  ×  3 inch slides. After 
cells reached 100% confl uence, the slides were attached to parallel cham-
bers. The chambers were subsequently connected to an NE-1050 bidirec-
tional pump (New Era Pump Systems, Inc.). Cells were sheared at  ± 6.5 
dyne/cm 2 , 1 Hz. 

 Immunoprecipitations, Western blotting, and antibodies 
 Cells were harvested in lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 
1% Triton X-100, and 0.1% SDS) supplemented with 1 mM aprotinin, 
1  μ g/ml leupeptin, 1 mM PMSF, 1 mM Na 3 VO 4 , 10 mM NaF, 1 mM 
sodium pyrophosphate, and 1 mM  � -glycerophosphate. Lysates were 
precleared with 50  μ l protein A/G – Sepharose beads (Santa Cruz Bio-
technology, Inc.) for 1 h at 4 ° C. Supernatants were then incubated with 
30  μ l of protein A/G – Sepharose previously coupled to the primary anti-
bodies for 2 h at 4 ° C with continuous agitation. The beads were washed 
three times with lysis buffer supplemented with protease and phosphatase 
inhibitors, and the immune complexes were eluted in 2 ×  SDS sample 
buffer. Associated proteins were subjected to SDS-PAGE and Western 
blotting using the appropriate primary antibodies and HRP-conjugated 
anti – mouse or anti – rabbit antibodies (Jackson ImmunoResearch Labora-
tories). Immunoreactive proteins were visualized by enhanced chemilumi-
nescence (GE Healthcare). The phospho-Shc (Tyr239/240 or Tyr317), 
phospho-ERK (Thr202/Tyr204), phospho-p38 (Thr180/Tyr182), phos-
pho-p65 (Ser536), and ERK antibodies were obtained from Cell Signaling 
Technology. An anti-Shc phosphoTyr239/240 antibody from BioSource 
(Invitrogen) was tested and generated similar results to the Cell Signaling 
Technology phospho-Shc antibody. VEGFR-2 and p38 antibodies were 
obtained from Santa Cruz Biotechnology. Anti – VE-cadherin was pur-
chased from Qbiogene. Anti-Shc and anti-NF � B (p65) were obtained 
from BD Biosciences. The ICAM-1 and VCAM-1 antibodies were ob-
tained from the Developmental Studies Hybridoma Bank at the University 
of Iowa. FITC-conjugated goat anti – mouse IgG and rhodamine-conjugated 
goat anti – rabbit IgG were obtained from Jackson ImmunoResearch Labo-
ratories and used at 1:200 dilution. 

 Immunofl uorescence microscopy 
 To examine the tyrosine phosphorylation of Shc and the nuclear transloca-
tion of NF � B, cells were fi xed for 20 min in PBS containing 2% formalde-
hyde, permeabilized with 0.2% Triton X-100, and blocked with PBS 
containing 10% goat serum and 1% BSA for 1 h at room temperature. 
Antibody incubations were performed as described previously ( Tzima et al., 
2001 ), and slides were mounted in Vectashield mounting medium (Vector 
laboratories). Images were obtained using the 60 ×  1.40 NA oil objective 
on a microscope (Eclipse E800; Nikon) equipped with a digital camera 
(ORCA-ER; Hamamatsu) and MetaMorph software (MDS Analytical Tech-

 Figure 9.    Coordination of cell – cell and cell –
 matrix fl ow-induced infl ammatory signals 
through Shc.  Shc functions as a molecular 
switch to coordinate signals from cell – cell junc-
tions and cell – matrix adhesions in the regula-
tion of fl ow-induced infl ammatory responses.   
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