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We present a novel and computationally efficient method for the detection of meniscal
tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional
Neural Network (CNN) that operates on complete 3D MRI scans. Our approach detects
the presence of meniscal tears in three anatomical sub-regions (anterior horn, body,
posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM)
individually. For optimal performance of our method, we investigate how to preprocess
the MRI data and how to train the CNN such that only relevant information within a Region
of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We
propose meniscal tear detection combined with a bounding box regressor in a multi-task
deep learning framework to let the CNN implicitly consider the corresponding RoIs of the
menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach
on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative
database. In addition, to show that our method is capable of generalizing to other MRI
sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE)
MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic
(ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI
sequences. For the detection of tears in DESS MRI, our method reaches AUC values
of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM.
For the detection of tears in IW TSEMRI data, our method yields AUC values of 0.84, 0.88,
0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high
accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore,
our method can be easily trained and applied to other MRI sequences.

Keywords: knee joint, meniscal lesions, convolutional neural networks–CNN, residual learning, explainable AI (XAI),
multi-task deep learning, bounding box regression, object detection

1 INTRODUCTION

Menisci are hydrated fibrocartilaginous soft tissues within the knee joint that absorb shocks, provide
lubrication, and allow for joint stability during movement (Markes et al., 2020). In patients with
symptomatic osteoarthritis, meniscal damage is also found very frequently with a prevalence of up to
91% (Bhattacharyya et al., 2003). Meniscal tears are usually caused by trauma and degeneration
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(Beaufils and Pujol, 2017) and might lead to a loss of function,
early osteoarthritis, tibiofemoral osteophytes, and cartilage loss
(Ding et al., 2007; Snoeker et al., 2021). Magnetic Resonance
Imaging (MRI) is commonly used for the noninvasive assessment
of meniscal morphology since MRI provides a three-dimensional
view of the knee joint with high contrast between soft tissues.
Hence, MRI is the recognized screening tool for diagnostic
assessment before performing therapeutic arthroscopy or any
other treatment (Crawford et al., 2007). Among other factors, a
proper treatment concept for meniscal damage depends highly on
the type of tear and its location (Englund et al., 2001; Beaufils and
Pujol, 2017). An appropriate medical intervention can delay
further development of arthritic changes, improve quality of
life, and reduce healthcare expenditures. However, in practice,
the optimal treatment is not always apparent (Khan et al., 2014;
Kise et al., 2016), while an improper procedure might even lead to
an acceleration of osteoarthritis progression (Roemer et al., 2017).
For this reason, an accurate and reliable diagnosis of meniscal
tears in view of their location, type, and orientation is important.

The diagnosis of meniscal tears in MRI is a time consuming
and tedious procedure. These defects are often difficult to detect
due to their small sizes and arbitrary orientations. It is frequently
necessary to go back and forth in the MRI slices and switch view
directions for a thorough assessment of occurrences and spatial
extents of pathological changes. In addition, the meniscal
representation in the image data depends on the chosen MRI
sequence. What appears clearly visible in one sequence may be
barely noticeable in another due to insufficient contrast.
Computer-Aided Diagnosis (CAD) attempts to overcome
some of these limitations. CAD tools can be employed to
increase the sensitivity and specificity of physicians in
detecting and classifying meniscal tears (Bien et al., 2018;
Pedoia et al., 2019; Kunze et al., 2020). Moreover, CAD could
speed up the diagnosis, reduce the number of unintentionally
missed defects, avoid unnecessary interventions (e.g.,
arthroscopic interventions), and lead to fewer treatment
delays. Several CAD approaches for an automated detection of
meniscal tears in MRI data have been proposed in recent years. A
distinction can be made between methods that evaluate the 2D
contents of cross-sectional images often coming from a set of
curated slices (2D approaches) and those that evaluate 3D image
information in the MRI data volume (3D approaches). In the
context of image analysis by means of Convolutional Neural
Networks (CNNs), we distinguish between 2D CNNs and 3D
CNNs. In the case of the 2D approaches, there exists a pseudo-3D
variant in which sets of (neighboring) sectional images are
included in the evaluation. In these pseudo-3D variants, 2D
CNNs are employed to encode 2D slices of a 3D MRI dataset.
Afterwards, the respective 2D encodings are condensed (e.g., by
global max- or average-pooling), concatenated, and passed to a
classifier.

Roblot et al. (2019) proposed amethod to detect meniscal tears
from a curated set of sagittal 2D MRI slices. Their approach is
based on the 2D “faster R-CNN” (Ren et al., 2015) and comprises
three steps: Firstly, the positions of both meniscal horns are
detected; secondly, the presence of a tear is classified; and thirdly,
the respective tear orientation is determined. The method yields

an Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) of 0.92 for the detection of the meniscal
horns’ positions, an AUC of 0.94 for detecting the presence of
meniscal tears, and an AUC of 0.83 for the determination of the
tear orientations. Couteaux et al. (2019) presented a similar
method, also detecting meniscal tears from a curated set of
sagittal 2D MRI slices. They employed a masked region-based
2D CNN (He et al., 2017) to locate the anterior and the posterior
horns of the Medial Meniscus (MM) as well as the Lateral
Meniscus (LM). Their method yields on average an AUC of
0.906 for all three tasks, i.e. the location of the respective region,
the detection of meniscal tears, and the classification of the tear
orientation.

Processing of all MRI slices instead of individually selected
ones was performed by Bien et al. (2018) who proposed a 2D
CNN for the detection of meniscal tears. Their method
achieves an AUC of 0.847. Pedoia et al. (2019) adopted a
method that combined a 2D CNN for meniscus segmentation
with a 3D CNN for detection and severity assessment of
meniscal tears. This approach was able to differentiate
between tears and no tears with an AUC of 0.89. Tsai et al.
(2020) proposed a so-called “Efficiently-Layered Network” for
detection of meniscal tears, reaching an AUC of 0.904 and
0.913 for two different datasets. Azcona et al. (2020)
demonstrated the use of a 2D CNN as a pseudo-3D variant
for detection of torn menisci. Their method relies on transfer
learning while using data augmentation and reaches an AUC
of 0.934. Fritz et al. (2020) presented a deep 3D CNN to detect
tears in MRI data for MM and LM, respectively. Their method
reaches AUC values of 0.882, 0.781, and 0.961 for the detection
of medial, lateral, and overall meniscal tears. Rizk et al. (2021)
also proposed a 3D CNN for meniscal tear detection in MRI
data for MM and LM individually. Their approach yields an
AUC of 0.93 for MM and 0.84 for LM.

A common limitation among many of the methods listed
above is their strong reliance on segmentations of the menisci (or
at least of bounding boxes), which can be challenging to obtain
due to the inhomogeneous appearance of pathological menisci in
MRI data as well as an insufficient contrast to adjacent tissues
(Rahman et al., 2020). Furthermore, some approaches merely
operate on 2D slices. A major limitation of such methods is that
the trained 2D CNNs cannot take whole MRI volumes into
account, thus possibly missing important feature correlations
in 3D space. Besides, an appropriate selection of curated slices
requires expert knowledge. Therefore, the applicability of these
methods to 3D volumes is unclear since they were not trained on
3D data. Finally, none of the presented methods is able to detect
meniscal tears for all anatomical sub-regions of the menisci
individually, i.e., the anterior horn, the meniscal body, and the
posterior horn.

Our motivation is to detect meniscal tears in MRI data more
accurately than previous methods in terms of correctness and
localization. For this purpose, we present a method that detects
tears in anatomical sub-regions of both the MM and the LM. We
design our study in a manner that allows for a comparison of
different possible approaches. Moreover, the study shows our
progression in addressing the task of meniscal tear detection in
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3D MR images. We investigate how to handle best the input data
such that the least pre-processing is required for inference and the
best accuracy is achieved. Furthermore, we show that our
proposed method generalizes well to different MRI sequences.
We employ two ResNet architectures (He et al., 2016; Yu et al.,
2017) to classify meniscal tears in each sub-region of the MM and
the LM, respectively, utilizing three different approaches.

In a first approach (i), we train a 3D CNN on the complete 3D
MRI dataset as input. We call it Full-scale approach within the
remainder of this article.

Since large input data requires a lot of GPUmemory, longer time
for training and inference, and contains image information not
necessarily needed for an assessment ofmeniscal tears, we decided to
crop the data to the Regions of Interest (RoI) of both menisci in an
automated pre-processing step that requires segmentations of
sufficient quality for training and testing (Tack et al., 2018).
Hence, in a second approach (ii), a 3D CNN is trained on these
cropped MRIs detecting meniscal tears more accurately than in our
first approach. We refer to the second approach as BB-crop
approach.

We enhanced the performance of our first approach by adding
a bounding box regression task. Thus, our final approach (iii)
trains a CNN to detect meniscal tears in complete 3D MRI,
combined with an additional bounding box regression task
leading to an auxiliary loss (the BB-loss approach). Framing
the problem of meniscal tear detection in this multi-task
learning setting – simultaneously solving meniscal tear
detection and meniscal bounding box regression – allows our
model to implicitly learn to focus on the meniscal regions.
Furthermore, segmentation masks are only required during
training. Hence, our final approach requires the least data pre-
processing at inference time and achieves the best results.

This study presents a method that detects meniscal tears in 3D
MRI data on a sub-region level, i.e., the anterior horn, the
meniscal body, and the posterior horn for both MM and LM.
Formulating the problem in a multi-task learning setting, by
adding the information of the location of the menisci as an
auxiliary loss to our 3D CNN, state-of-the-art results are
achieved. In order to provide an explanation to our CNN’s
decision, SmoothGrad saliency maps (Smilkov et al., 2017) are
computed and visualized. That way a visual guidance can be given
to the clinical domain experts for confirming the results of our
approach.

2 MATERIALS AND METHODS

In section 2.1 of this chapter, the data to our method is presented.
Thereafter, in sections 2.2 we introduce our data pre-processing
and bounding box generation. Section 2.3 is a description of the
model architectures utilized in our approach and of their
respective components. The particular configuration of our
three approaches is illustrated in detail in sections 2.4, 2.5,
and 2.6, followed by an explanation of our experimental set-
up and training in section 2.7. Finally, a statistical evaluation is
summarized in section 2.8 and a method for saliency maps is
proposed in section 2.9.

2.1 Data from the OAI Database
The publicly available database of the Osteoarthritis Initiative
(OAI)1 was established to provide researchers with resources to
promote the prevention and treatment of knee osteoarthritis. We
use 2,399 sagittal Double Echo Steady-State (DESS) 3D MRI
scans from the OAI database acquired using Siemens Trio 3.0
Tesla scanners (Peterfy et al., 2006). Additionally, 2,396 sagittal
Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans
are investigated for the same patients. The demographics of our
study are shown in Table 1.

The OAI database includes multiple reading studies of
respective osteoarthritis characteristics, which can be assessed
in medical image data. As a gold standard, we utilize labels from
MOAKS (Hunter et al., 2011) image reading studies performed by
clinical experts. In the MOAKS scoring system, the menisci are
divided into three anatomical sub-regions: anterior horn, body,
posterior horn. We consider a sub-region as not containing a tear
if the MOAKS score is “normal” or indicates a signal abnormality
(which is not extending through the meniscal surface and, hence,
is no tear). We considered any other type of abnormality (radial,
horizontal, vertical, etc.) as a meniscal tear (c.f. Supplementary
Table S1). Examples of the MRI sequences, signal abnormalities,
and meniscal tears are shown in Figure 1.

2.2 Data Pre-processing and Localization of
Menisci
In a first step of our pre-processing, the intensities of all MR
images are scaled to a range of [0, 1] using min-max
normalization. Following that, a standardization is applied to
each MR image I i according to:

~I i � I i − μ

σ
, (1)

where μ is the mean intensity and σ is the standard deviation of
the training population of normalized scans. Leveraging meniscal

TABLE 1 |Demographics: In this study, 2,399 DESS and 2,396 IW TSEMRI scans
from the OAI database are analyzed. In these data, slightly more normal than
diseased medial menisci (MM) and lateral menisci (LM) are contained. Here,
normal is defined as no conspicuous features with respect to the MOAKS scoring
system in any sub-region.

DESS IW TSE

Number of MR images 2,399 2,396
In-plane resolution 0.36 mm × 0.36 mm 0.36 mm × 0.36 mm
Usual slice dimension 384 × 384 442 × 448
Slice thickness 0.7 mm 3 mm
Number of slices 160 35 to 43
Side (left; right) 1104; 1295 1104; 1292

Sex (female; male) 1489; 910 1487; 909
Age [years] 61.88 ± 8.87 61.89 ± 8.86
BMI [kg/m2] 29.01 ± 4.79 29.08 ± 4.79

MM (% normal) 60.0% 59.9%
LM (% normal) 80.0% 79.9%

1https://nda.nih.gov/oai/
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segmentations generated by the method of Tack et al. (2018) RoIs
spanning the MM and LM are created for DESS MRI data (see
Figure 2). RoIs are computed by querying the minimum and
maximum position of the menisci along each dimension of the
binary segmentation masks: xmin, xmax, ymin, ymax, zmin, zmax. The
bounding boxes are uniquely defined as the 3D center coordinate

BBcenter �
(xmax − xmin)/2 + xmin

(ymax − ymin)/2 + ymin

(zmax − zmin)/2 + zmin

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ , (2)

and with the respective height (xmax − xmin), width (ymax − ymin),
and depth (zmax − zmin). These values are represented as relative

FIGURE 1 | Examples of normal menisci, signal abnormalities, and subjects with meniscal tears shown for DESS as well as IW TSE MRI data. For a summary of
different types of meniscal tears per sub-region the reader is referred to Supplementary Table S1.
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FIGURE 2 | CNN pipeline for detection of meniscal tears in six sub-regions. Approach Full-scale uses a ResNet50 encoder followed by a classifier head with LBCE

for classification of meniscal tears in 3D MRI data (A). Approach BB-crop reduces the 3D MRI input to the meniscal RoI and uses a DRN-C-26 encoder followed by a
classifier head with LBCE to detect meniscal tears (B). Approach BB-loss uses a ResNet50 encoder followed by a classifier head with LBCE as well as another bounding
box regression head with LL1 and LGIoU in order to predict bounding boxes of the menisci in the 3D MRI data (C). The ResNet50 is made up of an initial
convolutional layer followed by max-pooling before 16 ResNet bottleneck blocks with residual connections are stacked. The DRN-C-26 starts with the same
convolutional layer but is immediately followed by ten residual building blocks and, lastly, two building blocks without a residual connection. After average pooling, the
encoders generate 2048 and 512 features, respectively. Finally, SmoothGrad saliency maps are presented as overlaid heatmaps on top of the respective MR image to
highlight these regions that mostly influenced the detection of tears (bottom right corner).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 7472175

Tack et al. Meniscal Tear Detection in MRI

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


image coordinates. Hence, a bounding box is defined by 6 floating
values: [BBx

center, BB
y
center, BB

z
center, height, width, depth].

For the IW TSE data 600 segmentations are generated in a
semi-automated fashion using Amira ZIB Edition2 (Reddy,
2017). These masks are defined as voxel-wise annotations of
the tissue belonging to the respective meniscus. The method
of Tack et al. (2018) was originally developed and evaluated
on DESS MRI data. Since the DESS and IW TSE MRI
sequences differ significantly in the image resolution
(number of slices), that could pose an issue, we have
decided to train the self-adapting nnU-net framework
(Isensee et al., 2021) on these 600 training datasets. The
nnU-net offers 2D and 3D architectures with 3D
architectures usually yielding better results (Isensee et al.,
2021). For this reason, we have used a 3D variant of the nnU-
net that employs 3D convolutions in an encoder-decoder
framework with skip-connections. For the IW TSE data, the
nnU-net has been automatically configured to have an input
size of 24 × 256 × 256 pixels and seven layers of 3D
convolutions (Isensee et al., 2021). We train the nnU-net
with data augmentation such as random rotations and
random cropping using a dice similarity coefficient loss
(Isensee et al., 2021) until convergence is reached. Hereby,
the dice similarity coefficient is computed between the output
of the nnU-net and the respective hand-labelled target
segmentation masks. Afterwards, the nnU-net is employed
to segment all 2,396 IW TSE MRI scans to yield the respective
meniscal RoIs. In order to achieve this, multiple patches of
the MRI with a size of 24 × 256 × 256 pixels are being
processed by the nnU-net. These patches overlap by half
of the patch size in each dimension. Afterwards, the nnU-net
framework merges all patches to a final 3D segmentation
mask employing a majority voting for every pixel.

2.3 Model Architecture
Two distinct models, which are based on 3D counterparts of
ResNet architectures (He et al., 2016; Yu et al., 2017) are
introduced. ResNets have been widely applied to the
medical domain and provide good properties due to the
employed skip connections. In theory, the residual
connections allow the design of very deep ResNets without
exhibiting problems of vanishing gradients (Ide and Kurita,
2017). We have chosen 3D counterparts of 2D ResNets since
3D convolutions are able to comprehend three-dimensional
context inherently. It has previously been shown in the context
of musculoskeletal MRI analysis that 3D convolutions are
more powerful than concatenation of 2D slices as well as a
provision of multiple 2D slices as input to a CNN that employs
2D convolutions (Ambellan et al., 2019; Tack and Zachow,
2019). We adapt these 3D ResNet architectures to the three
different approaches and their associated input volume sizes.
Each model consists of a ResNet encoder followed by one or
two Multi-Layer Perceptron (MLP) heads. The BB-crop
approach has a dilation ResNet-C-26 architecture with an

MLP head for the multi-label classification. The Full-scale
approach has a ResNet50 encoder with a classifier MLP
head, and the BB-loss approach consists of a ResNet50
encoder with two MLP heads. The performance of the
classification task is improved in the BB-loss approach by
solving additionally a second task, which is to learn a bounding
box regression simultaneously. Again, the first MLP head is
employed for multi-label classification. The second MLP head
is responsible for the bounding box regression task. All
ResNets comprise of a series of convolutional layers, each
followed by batch normalization (Ioffe and Szegedy, 2015) and
a Rectified Linear Unit (ReLU) activation function (Agarap,
2018).

Our approaches that will be presented in the following
sections are designed based on (a selection of) encoders and
MLP heads:

ResNet50 Encoder
He et al. (2016) proposed a residual layer connection as a way to
train deep neural networks without suffering from vanishing
gradients. One of their proposed architectures is the ResNet50,
with a total of 50 convolutional layers (see Figure 2). The network
comprises an initial convolutional layer with kernel size 7 × 7 × 7
followed by a max-pooling layer with kernel size 3 × 3 × 3 and
stride 2. The following residual layers are grouped in so-called
“bottleneck blocks” (see Figure 2), which are constructed of three
convolutional layers. The first and the last are convolutional
layers, with kernel size 1 × 1 × 1, where the first one downsamples
the number of volume features, and the last one applies feature
upsampling. Between these layers, there is a convolutional layer
with kernel size 3 × 3 × 3. The bottleneck blocks are arranged in
four groups of sizes 3, 4, 6, and 3, where each group starts with a
stride of 2 in the first convolutional layer to downsample the
feature volumes’ spatial dimensions. Finally, the residual blocks
are terminated with a global average pooling (Lin et al., 2013) over
the 2048 individual 3D feature volumes coming from the last
layer of the ResNet encoder. Computing the average value of each
feature map via global average pooling results in a 1D tensor with
2048 features.

Dilation ResNet-C-26 Encoder
The DRN-C-26 is a dilated residual CNN architecture with 26
layers introduced by Yu et al. (2017). The original ResNet
downsamples the input images by a factor of 32.
Downsampling our cropped and uneven sized image volumes
by such an amount would result in a loss of information about
small and salient parts caused by less expressive feature maps.
However, simply reducing the convolutional stride restricts the
receptive field of subsequent layers. For this reason, Yu et al.
(2017) presented an approach with which downsampling could
be reduced while sustaining a sufficiently large receptive field and
improving classification results. To construct the DRN-C-26 Yu
et al. (2017) applied the following changes to the ResNet18 (He
et al., 2016) made of so-called ResNet “building blocks” with two
convolutional layers with kernel size 3 × 3 × 3 (see Figure 2).
First, the convolutional stride in the last two groups is replaced by
dilation. Second, the initial max-pooling layer is replaced by two2https://amira.zib.de

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 7472176

Tack et al. Meniscal Tear Detection in MRI

https://amira.zib.de
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


residual building blocks. Lastly, to reduce aliasing artefacts, a
decrease in dilation is added with two final building blocks
without residual connections. Again, the residual blocks of the
DRN-C-26 are followed by a global average pooling over the 512
feature maps of the last ResNet layer, resulting in a 1D tensor with
512 features.

MLP Heads
The features obtained by the respective ResNet encoders are
passed through a simple three-layered feed-forward network, also
known as MLP, to achieve the respective classifications and
regressions. As shown in Figure 2, the MLP input dimension
matches the feature dimensions of the CNN (i.e., 2048 neurons in
case of ResNet50 and 512 neurons for a DRN-C-26). The hidden
layers of all MLP’s consist of 2048 neurons. The classifier head has
six output nodes. In the BB-loss setting, an additional three-
layered MLP with twelve output nodes was added to perform a
bounding box regression.

2.4 Full-Scale Approach: Detection of
Meniscal Tears in Complete MRI Scans
In our first and most straightforward approach, the complete 3D
MRI is provided as input to the CNN. The CNN consists of a
ResNet50 encoder followed by an MLP head. The outputs of the
MLP after a sigmoid activation represent the probabilities for the
six meniscal sub-regions to contain a tear.

The CNN is trained by minimizing the binary cross-entropy
loss LBCE for a given batch of N samples. With a target matrix
Y ∈ ZN×C

2 and an output matrix Ŷ ∈ RN×C for all Cmeniscal sub-
region labels the definition of LBCE is:

LBCE � 1
N

∑C
c�1

∑N
i�1

wc[yi,clog(σ(ŷi,c)) + (1 − yi,c)log(1 − σ(ŷi,c))],

(3)

where wc is an inverse weighting of label frequencies and σ(·) is a
sigmoid activation function. The Full-scale approach is visualized
under A) in Figure 2.

2.5 BB-Crop Approach: Detection of
Meniscal Tears in Cropped MRI Datasets
Cropping 3DMRI data to the meniscal RoI is expected to provide
two desirable properties. First, it provides smaller volumes
reducing the required GPU memory as well as the run time.
Second, the Full-scale 3D MR images can be considered noisy as
they provide additional and unnecessary information about
surrounding anatomical structures. By cropping the data to
the RoI of the menisci, this unnecessary information is
suppressed. Leveraging the RoI generated as described in
section 2.2 the 3D MR images are cropped with a 5% margin
around the menisci. Each cropped image is then resampled with
trilinear interpolation to the closest multiples of 16, given the
biggest bounding box in the training set. Figure 2 visualizes the
cropping and resampling process. Consequently, the cropped and
resampled images have a size of (64, 64, 176) for the DESS data

and (16, 64, 176) for the IW TSE data. BB-crop utilizes a Dilation
Resnet-C-26 encoder followed by an MLP classifier head. The
CNN is trained by minimizing the LBCE as given in Eq. 3. The
framework is visualized under B) in Figure 2.

2.6 BB-Loss Approach: Detection of
Meniscal Tears in Complete MRI Scans
Enhanced by Regression of Meniscal
Bounding Boxes
The BB-crop approach requires segmentation of both menisci (or
at least the determination of a meniscal region) in training and
testing. Since generating segmentations is time-consuming (the
method of Tack et al. (2018) requires approximately 5 min of run
time), it is beneficial to avoid this step. Moreover, this approach
heavily relies on high-quality bounding boxes in training and
inference, which are difficult to obtain and strongly influence the
performance quality. Thus, the motivation for our final BB-loss
approach is to detect meniscal tears in 3D MRI data without
extensive pre-processing requirements such as segmenting the
menisci or computing bounding boxes for meniscal regions.
Instead, the location of the menisci is added as an additional
loss term for the training. The encoder is kept identical to the
Full-scale approach, namely a ResNet-50 encoder. Furthermore,
an identical MLP head is utilized for the meniscal tear detection.
Additionally, we show that the meniscal position information
helps the CNN to focus on these regions in the image yielding
better results. A second MLP head is employed in the BB-loss
approach to regress the coordinates of the meniscal RoI. By
incorporating this knowledge as a loss in the training process,
the locations of the menisci must not be explicitly provided at test
time. The total loss in the BB-loss setting is computed considering
the multi-label classification and the bounding box regression
task. For detection of meniscal tears LBCE is employed (Eq. 3). In
the bounding box regression the outputs of the MLP head are 6
coordinates d for the MM and LM, respectively. Utilizing a
sigmoid activation function, these values are given as relative
positions within the image in a range of [0, 1] of the respective
dimension. For a detailed description of the bounding box
generation procedure, we refer the reader to section 2.2. The
first component of the bounding box loss is an L1-term LL1

defined as

LL1 � ‖B − B̂‖, (4)

with a predicted bounding box B̂ and a target bounding box B that
is derived from the automated segmentation masks. These N × 2d
matrices contain N rows with medial and lateral bounding box
values. Where bn,i and b̂n,i describe the nth element of the batch
and the ith value of the concatenated bounding boxes. With this
formulation the loss is given as

LL1 � 1
N

∑N
n�1

∑2d
i�1

|bn,i − b̂n,i|. (5)

The second component of the bounding box loss is a modified
Intersection over Union (IoU) term, more specifically the
Generalized-IoU (GIoU) LGIoU (Rezatofighi et al., 2019) defined as:
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LGIoU � 1 − IoU + |C \ (B ∪ B̂)|
|C| , (6)

where C is a convex hull enclosing the predicted and the target box.
The operator |·| computes the box volume. The convex hull is the
smallest possible region that encloses both the output and the target
bounding boxes. It can be defined as a bounding box, fully
characterised by the 6 coordinates elaborated above. It is
computed by taking the minimum and maximum extent of both
the target bounding box and the predicted bounding box coordinates
along the x-, y- and z-axis. The numerator of the third term of the
LGIoU is the convex hull volume subtracted by the volume of B and
B̂, and the denominator is the volume of the convex hull. Hence, the
third term of the LGIoU can be considered as the relative volume of
the convex hull not covered by the union of predicted and target
bounding box. The IoU is defined as |B ∩ B̂|

|B ∪ B̂|, that is, the ratio of the
intersecting voxels of B and B̂ to their union. TheLGIoU is computed
for each meniscal RoI and averaged for the given batch. The overall
loss L for the BB-loss approach is given as

L � LBCE + LL1 + LGIoU. (7)

The BB-loss approach is visualized under C) in Figure 2.

2.7 Experimental Setup and Training of
CNNs
The given MRI data of the OAI are randomly split into 50% training
data, 15% validation data and 35% testing data. Hence, our two
experiments have 1200/359/840 and 1197/359/840 training/
validation/testing scans for the DESS data and the IW TSE data,
respectively.We implemented the CNNs of all approaches in PyTorch
1.9. Convolutional weights are initialized using a normal distribution
as in He et al. (2015) tailored towards our deep neural networks with
asymmetric ReLU activation functions. While, batch normalization
weights and biases are initialized constant with 1 and 0. We train our
CNNs on an Nvidia A100 GPU with 40 GB memory. Training our
three ResNets, separate learning rates and dropout probabilities for the
ResNet-encoders and theMLP-heads are introduced. Suitable learning
rate, dropout and batch size hyper-parameters are found using the
validation data of the DESS scans. The learning rate values for all parts
(ResNet encoder, classifier head andbounding box head) are evaluated
in an interval of [1e − 5, 0.01]. Dropout percentages are varied in an
interval of [0.1, 0.9]. Further, the training batch size limited by the
input size is varied from 2 to 64 for the BB-crop approach. Due to a
larger input volume in approach Full-scale and BB-loss batch size was
kept constant at a value of 4. For a complete summary of our hyper-
parameter values, please refer to Supplementary Table S2. Training is
performed using the ADAM optimizer (Kingma and Ba, 2014) with
β1 � 0.9, β2 � 0.999 and ϵ �1e − 08 with a learning rate decay of 0.5
every 50 epochs. Training on the IW TSE sequence is not performed
from scratch, instead, both ResNet encoder andMLPweights are fine-
tuned. In both DRN-C-26 and ResNet50 cases, we use the CNNs that
achieve the lowest validation loss on the DESS sequence.

On-the-fly data augmentation is performed during training.
Specifically, this means, random cropping around the RoI,
horizontal flips, rotations, Gaussian noise, and intensity scaling
are applied with 50% probability. For the Full-scale approach, we

perform random cropping of up to 10% along coronal, 20%
sagittal and 20% axial direction. In the BB-crop approach, random
crops are performed by uniformly cropping within a 20%
margin around the menisci. The BB-loss approach
uniformly samples possible crops around the menisci. All
cropped images are resampled with trilinear interpolation to
attain consistent sizes per approach and dataset. Input images
for the Full-scale and BB-loss approach are sampled for the
DESS sequence data to (160, 384, 384) and for IW TSE images
to (44, 448, 448). The BB-crop approach resamples to (64, 64,
176) and (16, 64, 176), respectively. The added Gaussian noise
is pixel-wise sampled as ϵ ∈ N (0.1, 0.5). The random rotation
is uniformly sampled from U(−5°,+5°) and image intensity is
scaled by a uniformly sampled multiplication factor
b ∈ U(0.9, 1.1).

2.8 Statistical Assessment of Detection
Quality
For all experiments, we plot the true positive rate
(TPR � sensitivity) against the false positive rate (FPR �
1–specificity) at various decision thresholds to create ROC
curves (Brown and Davis, 2006). Additionally, we compute the
ROC AUC to assess the quality of our classifiers. The quality of
our predicted bounding boxes is assessed by computing the IoU
with the target bounding boxes. We consider IoU values over 0.5
as successful localization of the menisci since this is a common
value in object detection tasks (Girshick et al., 2014).

2.9 SmoothGrad Saliency Map
Visualizations for Areas Addressed by
the CNN
Gradient saliency maps (Simonyan et al., 2013) (otherwise called
pixel attribution maps or sensitivity maps) highlight pixel regions
in the input image that mostly influenced a neural network’s
decision. To attain such pixel attributions, one computes the
derivative of the final linear layer in a neural network with respect
to the input via back-propagation. More formally, a gradient
saliency map Sc for a sub-region c for which our neural network f
yields a detection of meniscal tears is calculated as:

Sc(~I i) � zfc(~I i)
z~I i

. (8)

For our two most promising approaches BB-crop and BB-loss,
these maps are computed by applying a slight enhancement to the
original mechanism - the SmoothGrad method (Smilkov et al.,
2017). Similar to the SmoothGrad approach of Smilkov et al.
(2017) we augmented the input image slightly, introducing noise,
such that through averaging, the saliency maps of different noise
levels are smoothed out. We apply Gaussian distributed noise
ϵ ∈ N (0.1, 0.5), random horizontal flips, uniformly sampled
rotations r ∈ U(−5°,+5°) and uniformly sampled pixel
intensity shift with a multiplication factor b ∈ U(0.9, 1.1). Each
image is augmented 20 times with a probability of 50% per
augmentation, and the resulting maps are averaged.
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3 RESULTS

We applied all approaches to DESS as well as IW TSE data from
the OAI database. Each of our approaches detects meniscal tears
for the MM and the LM. In particular, tears are detected in the
three anatomical sub-regions anterior horn, meniscal body, and
posterior horn. All results are presented in this section.

3.1 Detection of Meniscal Tears in DESS
MRI Data
Employing the Full-scale approach, the AUC values are 0.74, 0.84,
0.85 for the anterior horn, body, and posterior horn of the MM.
For the LM, the AUC values are 0.94, 0.92, 0.91. The BB-crop
approach usually yields higher AUC values, being 0.87, 0.89, 0.89
and 0.95, 0.93, 0.91. The BB-loss gives the highest AUC values,
being 0.94, 0.93, 0.93 and 0.96, 0.94, 0.91. The ROC curves
employing all three approaches are shown in Figure 3. In
addition, all ROC AUC results are summarized in Table 2.

3.2 Detection of Meniscal Tears in IW TSE
MRI Data
Employing the Full-scale approach, the AUC values are 0.82, 0.87,
0.82 for the anterior horn, body, and posterior horn of the MM.
For the LM, the AUC values are 0.88, 0.85, 0.85. The BB-crop
approach usually yields higher AUC values, being 0.84, 0.89, 0.86,
and 0.92, 0.90, 0.90. The BB-loss gives similar AUC values, being
0.84, 0.88, 0.86, and 0.95, 0.91, 0.90. The ROC curves of all
approaches are shown in Figure 4. Further, all AUC values are
summarized in Table 3.

3.3 Localization of Menisci via the BB-Loss
Approach
To investigate the bounding box regression quality of the
proposed method we evaluate the distribution of the IoU
values for the predicted bounding boxes (Figure 5). For the
DESS dataset (our primary benchmark), we observed a very high
quality of MM and LM bounding box predictions. With the
values being close to normally distributed around a mean value of
0.71 (95% confidence interval (CI): 0.71–0.72) and standard
deviation of 0.13. With the IoU threshold of 0.5, we conclude
that 95% of the resulted bounding boxes are identified correctly.
Unfortunately, we observed a clear decrease in the object
detection performance in the IW TSE dataset. With a
mean value of 0.58 (95% CI: 0.57–0.59) and a standard
deviation of 0.14. Applying the same detection threshold
as above we testify, that only around 76% of menisci were
detected correctly, with the overall quality of the bounding
boxes being more widely spread.

FIGURE 3 | ROC curves for detection of meniscal tears in DESS MRI data.

TABLE 2 | ROC AUC results for medial menisci (MM) and lateral menisci (LM) in
DESS MRI data.

MM LM

Method Anterior Body Posterior Anterior Body Posterior

Full-scale 0.74 0.84 0.85 0.94 0.92 0.91
BB-crop 0.87 0.89 0.89 0.95 0.93 0.91
BB-loss 0.94 0.93 0.93 0.96 0.94 0.91

The best results for each anatomical sub-region are highlighted in bold.
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3.4 Visualization of Areas Addressed by
the CNN
Figure 6 shows SmoothGrad saliency maps for the BB-crop and
BB-loss approach overlaid to MR images. Examples are shown for
randomly selected test cases, displaying different kinds of meniscal
tears for DESS and IWTSE data. The RoIs for the BB-loss approach
were extracted using predicted bounding boxes and the respective
close-ups are shown. Red arrows point at the location of meniscal
defects. Most saliency maps obtained this way display a plausible
localization of the meniscal tears. The plausibility of these maps
was qualitatively evaluated by their correspondence to the target
labels of the regions in which the tears could also be confirmedwith
the help of visual inspection of the image data. SmoothGrad
saliency maps are capable of highlighting more than just one
affected sub-region, i.e., in the presence of defects in multiple
sub-regions of one meniscus, one similarly observes these being
correctly highlighted. With the Dilation ResNet-C-26 employed in
the BB-crop approach, we observed that this CNN yields smoother
and less noisy SmoothGrad saliency maps. However, in many

cases, ResNet-50 saliency maps targeted the affected region better,
but did not outline this region sharply.

3.5 Detection Performance—Different
Sub-regions and Defect Types
Even though the occurrence of defects varies between
meniscal sub-regions (see Supplementary Figure S2), we
observe only minimal differences between AUC values of

FIGURE 4 | ROC curves for detection of meniscal tears in IW TSE MRI data.

TABLE 3 | ROC AUC results for medial menisci (MM) and lateral menisci (LM) in IW
TSE data.

MM LM

Method Anterior Body Posterior Anterior Body Posterior

Full-scale 0.82 0.87 0.82 0.88 0.85 0.85
BB-crop 0.84 0.89 0.86 0.92 0.90 0.90
BB-loss 0.84 0.88 0.86 0.95 0.91 0.90

The best results for each anatomical sub-region are highlighted in bold.

FIGURE 5 | The distribution of the IoU values for the bounding boxes of
MM and LM in DESS and IW TSE MRI data.
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sub-regions in DESS MRI data (c.f. Table 2). However, we
analyzed the false positive classifications and found that for
all sub-regions, signal abnormalities were more often
misclassified than normal menisci were (see
Supplementary Figure S1). The misclassification rate of
signal abnormalities is highest for the posterior horn of
the lateral meniscus, the region with the least AUC for the
DESS data. Conversely, the lowest signal abnormality
misclassification rate is prevalent in the posterior horn of
the medial meniscus, the sub-region with the highest number
of signal abnormalities (Supplementary Table S1).

The least common types of tears occurring in the data are
radial and vertical tears, amounting to 72 and 69,
respectively. Vertical tears were most challenging for our
method to detect in DESS data and led to the most false
negative results (see Supplementary Figure S2). Radial
meniscal tears were the ones yielding the second highest
rate of misclassifications.

4 DISCUSSION

The primary goal of our work was to develop a method that
provides an efficient, robust and automated way to detect and

better locate meniscal tears in MRI data, that is, the detection of
tears with respect to the anatomical regions in which they occur.
We devised a procedure that utilizes a 3D CNN to process
arbitrary 3D MRI data without the need for any extensive pre-
processing.

Many previously proposed methods already yield a high
accuracy in the detection of meniscal tears. To compare our
results to the related work, we focus our assessment on the results
of our BB-loss approach on the DESS MRI data. Our method
detects meniscal tears in anatomical sub-regions of MM and LM.
However, it has not been explicitly trained for menisci tear
detection in the entire knee as well as the two menisci.
Therefore, to obtain the respected values, we performed max
operations on our CNNs’ outputs. A comparison of the different
approaches with their respective detection AUC is summarized in
Table 4. Our BB-loss approach achieved state-of-the-art results in
detecting meniscal tears in the medial and lateral meniscus with
an AUC of 0.94 and 0.93. For the task of meniscal tear detection
in the entire knee BB-loss approach had an AUC of 0.94 is second
to the approach of Fritz et al. (2020). However, the proposed
methods from the related work still leave a desire for a more
precise spatial assignment of the findings. For instance, localizing
tears per meniscus or in anatomical sub-regions thereof. For tear
detection per meniscus, our method performs better than related

FIGURE 6 | SmoothGrad saliency maps overlaid over DESS MRI data (A) and IW TSE MRI data (B).
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work (Fritz et al., 2020; Rizk et al., 2021). However, the novelty of
our method is the detection of tears for each anatomical sub-
region of the menisci in 3D MRI data, providing an anatomically
more detailed localization.

With AUC values being consistently higher than 0.90 for
DESS MRI data, our approach achieves excellent detection
quality for all meniscal sub-regions using uncropped 3D MRI
volumes. We also show that our method generalizes well to
other MRI sequences, that is, from DESS to IW TSE data. IW
TSE data provides a more challenging setting with a higher
slice thickness in the mediolateral direction. Moreover, for
certain meniscal defects, such as horizontal tears in the
meniscal body, a lower resolution in the acquired MR image
direction significantly reduces the visibility of the features
required for an accurate classification. The result could be
improved by using an input image with an isotropic resolution.
Such an image can be obtained by either upsampling an
existing image or, even better—acquiring a new image, at a
higher resolution.

Signal abnormalities are still a challenge. In cases where menisci
with tears are to be distinguished frommenisci without tears, signal
abnormalities are currently regarded as the latter. A fine-grained
differentiation between tears and signal abnormalities is likewise a
challenge to our method, primarily through the ambiguous image
appearance. Potentially, more training data, as present for the
region with the most signal abnormalities—the MM posterior
horn, would allow our CNN to better learn to distinguish signal
abnormalities from tears.

We expected our model to generalize to all meniscal pathologies
but observed problems detecting vertical and radial tears. However,
these tears were less common in the available training data, and we
believe that more data on such cases would enable our method to
detect vertical and radial tears with higher accuracy. Furthermore,
coronal and axial imaging sequence orientation could provide
additional insights (Bien et al., 2018), possibly improving the
detection of otherwise barely visible tears.

One major limitation that we see is that our method still
requires a localization of the menisci in training. However, other
segmentation approaches or (non-automatic) approaches could
be applied to attain bounding boxes, possibly improving results
by providing more accurate bounding boxes for training.

5 CONCLUSIONS AND FUTURE WORK

We present a method in an efficient and fully automated multi-
task learning setting that accurately detects meniscal tears on a
sub-region level in MM and LM. Our method yields the best
results on sagittal DESS MRI data and generalizes well to sagittal
IW TSE data. Further, visual support for clinical detection of
meniscal tears is provided by SmoothGrad saliency maps
highlighting regions that mainly contributed to the decision.

Future work could comprise an analysis of anomaly detection
(normal vs. signal abnormality vs. torn menisci) or a classification
of different types of tears (horizontal, radial, complex, etc.). Since
some of these types occur only rarely for specific sub-regions,
deep learning-based methods probably require a lot more image
data or data generated with generative models. Also, new issues of
class imbalances will arise for the classification of tear types.

From the method perspective, the choice of an encoder
provides opportunities for improvement. For instance, recent
self-attention mechanisms, so-called “transformer” architectures
(Vaswani et al., 2017; Dosovitskiy et al., 2020) are worth an
investigation. Since transformers typically require a vast amount
of training data, they might not necessarily lead to better accuracy,
but the self-attention maps (Caron et al., 2021) may result in a
more meaningful explanatory power than classical methods of
saliency mapping. Also, generative adversarial networks have been
recently employed for explaining the decision of CNN’s
(Katzmann et al., 2021; Shih et al., 2021). As deep learning
methods become more precise in localizing meniscal tears
coupled with further sophisticated concepts on explainability,

TABLE 4 | Comparison of our results on DESS MRI data to the related work. The “3D data” column indicates whether the method is trained on and applied to complete 3D
MR images. The explainable AI “XAI” column indicates if concepts of saliency maps are employed in order to highlight the areas responsible for the CNNs’ decisions.

Roblot
et al.
(2019)*

Couteaux
et al.
(2019)*

Bien
et al.
(2018)

Pedoia
et al.
(2019)

Tsai
et al.
(2020)

Azcona
et al.
(2020)

Fritz
et al.
(2020)

Rizk
et al.
(2021)

Ours:
Full-
scale

Ours:
BB-
crop

Ours:
BB-
loss

3D data × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
XAI × ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ ✓

Anywhere 0.94 0.906 0.847 0.89 0.904 and
0.913

0.934 0.961 — 0.81 0.89 0.94

Any MM — — — — — — 0.882 0.93 0.79 0.89 0.94
Any LM — — — — — — 0.781 0.84 0.87 0.92 0.93

MM-AH ✓ ✓ — — — — — — 0.85 0.84 0.94
MM-B — — — — — — — — 0.82 0.89 0.93
MM-PH ✓ ✓ — — — — — — 0.78 0.89 0.93
LM-AH ✓ ✓ — — — — — — 0.90 0.95 0.96
LM-B — — — — — — — — 0.86 0.92 0.94
LM-PH ✓ ✓ — — — — — — 0.88 0.91 0.91

*Roblot et al. (2019) and Couteaux et al. (2019) detected meniscal tears in 2D slices for AH and PH, but reported overall results only.
The best methods for the respective task are highlighted in bold.
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CAD tools will become practical for clinical decision support. In
future work, we plan to investigate whether our method better
assists physicians in their diagnostic tasks.
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