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Organophosphates (also known as organophosphate esters, OPEs) have in recent
years been found to be significant pollutants in both aerobic and anaerobic activated
sludge. Food waste, such as kitchen garbage and agricultural residues, can be used
as co-substrates to treat the active sludge in sewage treatment plants (STPs). We
investigated the biodegradability of nine OPEs derived from kitchen garbage biomass
and agricultural residues under different conditions. Under anaerobic conditions, the
rate of removal of triphenyl ester OPEs was significantly higher than that of chloride and
alkyl OPEs. The addition of FeCl3 and Fe powder increased the rate of degradation
of triphenyl ester OPEs, with a DT50 for triphenyl ester OPEs of 1.7–3.8 d for FeCl3
and 1.3–4.7 d for Fe powder, compared to a DT50 of 4.3–6.9 d for the blank
control. Addition of an electron donor and a rhamnolipid increased the rate of removal
of chlorinated OPEs, with DT50 values for tris(2-carboxyethyl)phosphine) (TCEP) and
tris(1,3-dichloroisopropyl)phosphate (TDCPP) of 18.4 and 10.0 d, respectively, following
addition of the electron donor, and 13.7 and 3.0 d, respectively, following addition of
the rhamnolipid. However, addition of an electron donor, electron acceptor, surfactant,
and Fe powder did not always increase the degradation of different kinds of OPEs,
which was closely related to the structure of the OPEs. No treatment increased the
removal of alkyl OPEs due to their low anaerobic degradability. Tween 80, a non-ionic
surfactant, inhibited anaerobic degradation to some degree for all OPEs. Under aerobic
conditions, alkyl OPEs were more easily degraded, chlorinated OPEs needed a long
adaptation period to degrade and finally attain a 90% removal rate, while the rates of
degradation of triphenyl ester OPEs were significantly affected by the concentration of
sludge. Higher sludge concentrations help microorganisms to adapt and remove OPEs.
This study provides new insights into methods for eliminating emerging pollutants using
activated sludge cultured with kitchen garbage biomass and agricultural residues.
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INTRODUCTION

Sewage treatment plants (STPs) are the major secondary sources
of emerging pollutants, which may not be completely removed
or degraded (Styszko et al., 2020). Many pollutants pass through
STPs owing to their persistence or continuous release or to the
inefficient operation of STPs (Saxena et al., 2021).

The aerobic and anaerobic biodegradation of these pollutants
are the major removal mechanisms employed in STPs. However,
many full-scale STPs operate with low efficiencies, due to an
unbalanced nutrient ratio, deficiencies in essential elements, an
accumulation of volatile fatty acids, and the presence of process
inhibitors (Tonanzi et al., 2020).

To overcome these problems, food waste, such as kitchen
garbage with a high C/N ratio, is generally used as a co-
substrate with municipal waste activated sludge. This method
can overcome the difficulties associated with treating nutrient-
deficient activated sludge, to adjust its unbalanced C/N ratio, and
to increase buffer capacity, dilute toxic compounds, and adjust
micro- and macro-nutrient availability (Z.-l. Zhang et al., 2013).

Organophosphoric acid esters (OPEs), one of the most
commonly used organophosphorus flame retardants (Eede
et al., 2012), have been used as plasticizers and flame
retardants in plastics, electronic equipment, furniture,
textiles, construction, and transport (Martínez-Carballo
et al., 2007). Table 1 lists the various types of OPEs and
specific information related to them. OPEs have been
confirmed to possess both acute and chronic toxicities,
including eye and skin irritation, neurotoxicity, reproductive
toxicity, endocrine disruptive effects, carcinogenicity
(Castro-Jimenez et al., 2014), and environmental biological
toxicity and risk (Kai, 2005). OPEs from urban, industrial,
agricultural, street-flushed sewage, and atmospheric
dry and wet depositions (Tappe et al., 2002; Ratola
et al., 2012; O’Brien et al., 2015; Saini et al., 2016) all
eventually end up in STPs.

Kim et al. (2017) compared the entry of OPEs into U.S. STPs
with reported production and showed that the mass loads of
triphenyl phosphate (TPHP), tris(1-chloro-2-propyl) phosphate
(TCIPP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), and
tri(n-butyl) phosphate (TNBP) in STPs were 1.3–2.8% of the
annual output. Anneli et al. (2005) showed that 15% of domestic
OPE usage in Sweden is discharged into STPs. Therefore, the

study of OPE biodegradation in both aerobic and anaerobic
processes in STPs is vitally important.

There are few studies that have examined the best conditions
of oxygen availability for OPE degradation, and most have
focused mainly on the investigation of the rate of removal of
OPEs from STPs. Only a few studies have pointed out that
the degradation of non-chlorine OPEs occurs mainly in aerobic
aeration tanks. In addition, there was no obvious removal
of alkyl OPEs under anaerobic conditions (Kawagoshi and
Fukunaga, 1994). The study of suitable oxygen conditions for
the degradation of different OPEs has practical significance for
guiding the clean-up and maintenance of STPs.

The addition of electron donors and electron acceptors is also
important for the biodegradation of organophosphate pollutants
(Kieft et al., 1999; Gou et al., 2019). The biodegradation of
chemicals depends largely on the availability of electron receptors
and their respective energy yields. The removal of chemical
substances can be improved by electron receptor species such
as O2, Fe3+, CO2, CO, NO3, NO2, NO, N2O, SO4

2−, and S
(Häggblom and Young, 1999; Amend and Shock, 2001; Wu et al.,
2017). In aerobic environments, microorganisms generally use
oxygen as an electron receptor to accelerate the biodegradation
process. In anaerobic degradation, however, because of the lack of
oxygen as electron acceptor, microorganisms must use alternative
electron receptors such as sulfate, nitrate, and trivalent iron,
which are usually supplied more economically than oxygen
(Varjani and Upasani, 2017).

In addition to the need for electron acceptors, methanogens
rely on electron donors and matrixes to degrade these complex
organic chemicals, such as H2, Fe2+, H2S, sulfide minerals, CH4,
various mono- and dihydroxyl carboxylic acids, alcohols, amino
acids, and complex organic substrates (Grishchenkov et al., 2000).
Electron donors, also known as co-matrixes, are added primarily
as nutrients for anaerobic treatment, contaminants are generally
removed by co-metabolism, sufficient nutrient substrates are
made available, and anaerobic sludge can produce sufficient
enzymes to degrade organic pollutants (Wei et al., 2010; Cao et al.,
2012).

Zero-valent iron and surfactants can also be added to the
anaerobic environment to promote anaerobic biodegradation.
Because of its high reduction activity, zero-valent iron is often
used to treat all kinds of pollutants in water. Zero-valent iron
can provide electrons for microorganisms and keep the redox

TABLE 1 | Physicochemical properties of nine types of OPEs.

Compound Abbreviation CAS number Chemical formula Molecular weight lg Koc lg Kow

Tripropyl phosphate TPrP 513-08-6 C9H21O4P 224.23 2.58 1.87

Tri-isobutyl phosphate TiBP 126-71-6 C12H27O4P 266.31 3.14 3.60

Tributyl phosphate TBP 126-73-8 C12H27O4P 266.31 3.37 4.00

Tris(2-chloroethyl) phosphate TCEP 115-96-8 C6H12Cl3O4P 285.49 2.58 1.44

Tris(1,3-dichloro-2-propyl) phosphate TDCP 13674-87-8 C9H15Cl6O4P 430.9 4.04 3.65

Triphenyl phosphate TPhP 115-86-6 C18H15O4P 326.28 3.47 4.59

Tri-o-cresyl phosphate o-TTP 78-30-8 C21H21O4P 368.36 4.67 5.11

Tri-mtolyl phosphate m-TTP 563-04-2 C21H21O4P 368.36 4.64 6.43

Tri-p-tolyl phosphate t-TTP 78-32-0 C21H21O4P 368.36 4.20 6.34
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potential of the anaerobic environment low (Völker et al., 2017).
Studies have shown that the presence of iron chips (1 g·L−1)
in water can significantly increase the anaerobic degradation of
Chlorpyrifos and Bisphenol A (Shi et al., 2019b; Yang et al., 2019).
Iron is also a major protein cofactor that is essential for most
organisms and increases the production of degrading enzymes
(Beauchene et al., 2015). Because of its advantages in accelerated
hydrolysis, fermentation, and anaerobic digestion, zero-valent
iron increases the abundance of methanogens and promotes
methane production (Wei et al., 2018; Pan et al., 2019).

Surfactants can also increase the rate of degradation of
organic pollutants, which can overcome the diffusion limitation
of substrates to cells, reduce the tension and viscosity of the
water interface effectively, and increase bioavailability. There
are many kinds of surfactants, including biological, anionic,
and non-ionic surfactants. Biosurfactants are produced mainly
by microorganisms, which contribute to the desorption of soil
pollutants and their migration to microbial cells, resulting in the
reconstruction of their surfaces and a change in bioavailability
of biodegradable compounds (Zdarta et al., 2018). The non-
ionic surfactant Tween 80 and the rhamnolipid biosurfactant
both enhance the enzyme activities of amylase, carboxymethyl
cellulase, and xylanase effectively (Zeng et al., 2006), improving
enzyme stability and increasing the enzymatic reaction rate
(Mo et al., 2008).

Most studies in this area have examined the removal of
emerging pollutants in unconditioned active sludge from STPs.
However, there is a lack of information regarding the role of
active sludge cultured with kitchen garbage and agricultural
residues. In this study, the biodegradability of nine OPEs in
both aerobic and anaerobic activated sludge derived from kitchen
garbage biomass and agricultural residues was investigated
under different conditions, including oxygen availability and
addition of electron donors, electron acceptors, or surfactants,
etc. The results were compared in order to determine the
optimal degradation conditions, which will provide a new
perspective on the effect of activated sludge cultured with kitchen
garbage and agricultural residues to enable the elimination of
emerging pollutants.

MATERIALS AND METHODS

Chemicals
The OPE standard substances, including trimethyl phosphate
(TMP), tripropyl phosphate (TPrP), tri-isobutyl phosphate
(TiBP), tributyl phosphate (TBP), Tris(2-chloroethyl) phosphate
(TCEP), tris(1,3 dichloropropyl) phosphate (TDCPP), triphenyl
phosphate (TPhP), o-trimethylphenol phosphate (o-TT), tri-m-
cresyl phosphate (m-TTP), tri-p-cresyl phosphate (p-TTP), were
purchased from Balinway Chemical Reagent Co., Ltd. (China).
The physicochemical properties of the nine kinds of OPEs are
listed in Table 1.

HPLC-grade n-hexane (Hex), ethyl acetate (EtAc),
and acetone (ACE) were provided by Merck & Co.
(Darmstadt, Germany).

NaSO4 (AR), NaCl (GR), KH2PO3 (GR), Na2HPO4·12H2O
(AR), NH4Cl (GR), NaNO3 (AR), CaCl2·2H2O (GR),
MgCl2·6H2O (AR), Fe powder, Tween 80, FeCl3 (GR), NaHCO3
(GR), rhamnolipid, FeCl2·4H2O (AR), Na2S·9H2O (GR), HgSO4
(GR), and resazurin (C12H7NO4) were purchased from China
National Pharmaceutical Group Corporation (Sinopharm,
Beijing, China).

Sample Collection
Both aerobic and anaerobic activated sludges were collected from
aerobic and anaerobic ponds of the Nanjing Chengdong STP.
The treatment process was A2/O and the volume of sewage was
350,000 m3, serving approximately 500,000 people.

The kitchen garbage and agricultural residues obtained
from school canteens were composed of rice, meat, and small
quantities of vegetables. The garbage was chopped and then
diluted to 82.75 g L−1 with tap water. A substrate blend of waste
activated sludge and kitchen garbage was prepare in a ratio of 5:1
by volume. The blended sludges was cultivated under aerobic and
anaerobic conditions at room temperature.

Biodegradation Experiments
The medium was prepared with deionized water, to which
was added 0.27 g·L−1 anhydrous potassium dihydrogen
phosphate (KH2PO4), 1.12 g·L−1 disodium hydrogen phosphate
dodecahydrate (Na2HPO4·12H2O), 0.53 g·L−1 ammonium
chloride (NH4Cl), 0.075 g·L−1 calcium chloride dihydrate
(CaCl2·2H2O), and 0.10 g·L−1 magnesium chloride hexahydrate
(MgCl2·6H2O).

The aerobic and anaerobic sludge cultures were dispersed in
the medium so as to prepare sludge suspensions whose pH was
adjusted to 7 with NaOH.

OPE Volatilization Experiments
A 3 L wash bottle was loaded with 1.5 L of deionized water.
Nine types of OPEs listed in Table 1 were added to a wash bottle
to a final concentration of 1 mg·L−1. The air inlet of the wash
bottle was connected to an aeration device set at a flow rate of
500 ml·min−1. The outlet of the aeration device was connected
to a wash bottle containing methanol to absorb the volatile OPEs.

Aerobic Biodegradation
An OPE stock solution was added to an Erlenmeyer flask to a
concentration of 0.5 mg·L−1 and the flask was placed in a fume
hood to volatilize the acetone to dryness. The sludge suspension
was added so that the sludge concentration was 1 g·L−1 for the
low sludge concentration treatment and 10 g·L−1 for the high
sludge concentration treatment, with 10 parallel treatments for
each concentration. After the addition was complete, the rubber
plug was covered and kept aerated and placed on a shaker for
culture at 30◦C. Samples were collected and analyzed intervals.

Anaerobic Biodegradation
The OPE stock solution was added to the prepared anaerobic
fermentation bottle, the concentration was adjusted to
0.5 mg·L−1, and the bottle was then placed under the ventilation
cabinet until the acetone was volatilized to dryness. The
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configured medium was subjected to eight different treatments,
designated b, c, d, e, f, g, h, and i. Then, the sludge and additional
agents were added to each treatment, as given in Table 2
(reducing iron powder, which is insoluble in water, was added
separately to 12 vials). Each treatment had 12 bottles and a
final volume of 100 mL. Following filling of each anaerobic
fermentation bottle, nitrogen was blown through each one for
5 min to remove all traces of oxygen. Following this treatment,
0.04 g·L−1 ferrous chloride (FeCl2·4H2O) and 0.20 g·L−1

nine-water sodium sulfide (Na2S·9H2O) were added to each
vial, and then 0.002 g·L−1 resazurin was added as an oxygen
indicator. Under abiotic control, the medium was heated to
100◦C. Then, 1 g·L−1 mercury sulfate was added after cooling
to kill the microorganisms in the medium. All of the anaerobic
fermentation bottles were then placed in an incubator at
35◦C and shaken 1–2 times a day to release the gas produced
by anaerobic fermentation. Samples were taken at regular
intervals for analysis.

Analytical Methods
Samples of water (10 mL) were taken in the volatility
experiments, to which were added 0.5 g of sodium chloride
and 10 mL of organic solvents (n-hexane and ethyl acetate
1:1). The samples were then shaken for 3 min. The cap on the
bottle was opened and the water and organic phases allowed
to settle out. The upper organic phase was then sampled
(10 mL) with a pipette, dehydrated with anhydrous sodium
sulfate, and finally filtered through filter paper. Following
filtering through a 0.22 µm microporous filter membrane, the
samples were analyzed on a TSQTM 9000 Triple Quadropole

TABLE 2 | Test treatments.

Group Treatment Symbol Sludge
(g·L−1)

Addition of substances

Anaerobic Biological
control

b 3 –

Electron
donor

c 3 Sodium acetate: sodium
propionate: sodium butyrate:
sodium lactate = 1:1:1:1
(200 mmol·L−1)

Electron
receptor

d 3 NaNO3 = 20 mM

e 3 Na2SO4 = 20 mM,
NaHCO3 = 20 mM

f 3 FeCl3 = 20 mM,
NaHCO3 = 20 mM

Surfactants g 3 Tween 80, CMC = 0.010 mM

h 3 Ribose glycolipid,
CMC = 0.5 mM

Reducing iron i 3 Reducing iron powder
= 2 g·L−1

Aerobic Low sludge
concentration

1 g·L−1 0.1 –

High sludge
concentration

10 g·L−1 1 –

Abiotic
control

– AC – Mercury sulfate = 1 g·L−1

GC-MS/MS System (Thermo Fisher Scientific, Waltham, MA,
United States). The methanol receiving tail gas was also analyzed
by similar means.

The samples of aerobic and anaerobic biodegradation were
poured into a separate funnel, to which 3 g of sodium chloride
was added, and extracted twice with 20 mL of solvent (n-hexane
and ethyl acetate 1:1). Following dehydration with anhydrous
sodium sulfate and filtration through filter paper, the organic
phase was adjusted to 50 mL with n-hexane. The sample was then
analyzed by GC-MS/MS.

The chromatographic column was a HP-5MS
(30 m × 0.25 mm × 0.25 µm). The heating procedure was
as follows: the starting temperature was set at 50◦C and
maintained for 2 min, then heated to 150◦C at a rate of 20◦C
min−1 and maintained there for 4 min, then heated to 250◦C at
25◦C·min−1, maintained there for 1 min, then heated to 280◦C
at rate of 5◦C·min−1 and maintained there for 3 min. Electron
collision ionization (EI) sources and selected reaction monitoring
(SRM) were employed. The carrier gas was high-purity helium
gas, using pulse no shunt injection. The linear correlation
between the standard curves of the nine OPEs was good, with an
R2 value above 0.993. The detection limits of the OPEs were in
the range 0.01–1.5 µg·L−1, and the quantitative limits were in
the range 0.01–4.6 µg·L−1.

Statistical Analyses
The data were collected and analyzed using Microsoft Excel 2010
(Microsoft Corporation, Redmond, WA, United States).

RESULTS

In the abiotic treatment, the OPE concentration remained
basically unchanged, and degradation basically did not occur.

OPE Volatility Experiments
The volatility test results are shown in Figure 1. Under aeration
conditions, the different types of OPEs in water showed different
volatilities. The triphenyl ester OPEs (TPhP, m-TTP, o-TTP, and
p-TTP) had a certain volatility, reaching 10–20% volatilization at
120 h. Alkyl and chlorinated OPEs were almost non-volatile.

Anaerobic Treatment
Resazurin was added as an oxygen indicator in the anaerobic
treatment. During the test, none of the anaerobic fermentation
bottles showed any color, so they met the conditions of complete
anaerobic fermentation. When gas was released each day, a large
volume of methane was released, which also indicated that the
microorganisms were metabolically active and growing normally.

Degradation of Triphenyl Ester OPEs
Four triphenyl ester OPEs showed similar patterns of removal
in the different treatments (Figure 2). Removal occurred mainly
within 21 days of the start of the experiment. The rate of removal
tended to be stable after 21 days. The triphenyl ester OPEs had
high removal rates in the different treatments at 21 days; that
for TPhP was 83–93%, that for m-TTP was 70–88%, that for
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FIGURE 1 | OPE concentrations in water and absorbent.

o-TTP was 55–75%, and that for p-TTP was 68–86%. When FeCl3
(treatment f) and Fe (treatment i) were added, the degradation
rate was increased compared with other treatments, and the
final removal rate was also significantly higher than for the
other treatments.

Kinetic curves for first-order degradation were used to fit the
removal rates of the OPE (Table 3). The R2 value was in the
range 0.74–0.98. The DT50 values of the triphenyl ester OPEs with
added FeCl3 (treatment f) were in the range 1.7–3.8 days, and
with added Fe powder (treatment i) were 1.3–4.7 days, compare
to a DT50 of 4.3–6.9 days for the blank control (treatment
b). The addition of either FeCl3 or Fe powder increased the
rate of degradation significantly. However, the other treatments
did not have a significant effect on the degradation of the
triphenyl ester OPEs.

Degradation of Chlorinated OPEs
Compared with the triphenyl ester OPEs, the degradation of
chlorinated OPEs in the different treatments was slower under
anaerobic conditions, and the removal of chlorinated OPEs failed
to reach 80% even after 60 days. The results of these treatments
are shown in Figure 3. Different treatments had significant
positive or negative effects on the degradation of chlorinated
OPEs. Among them, the final rate of degradation for TCEP and
TDCP in rhamnolipid (treatment h) was increased by about 10%

compared to the control (treatment b). The removal rate of TCEP
and TDCP was also significantly increased in treatment c of the
electron donor (sodium acetate + sodium propionate + sodium
butyrate + sodium lactate). At 60 days, the removal rate of
TCEP was increased by 28%, and the removal rate of TDCP was
increased by 31%. The effect of adding Na2SO4 (treatment e)
on the removal of the two chlorinated OPEs was different: the
removal rate of TCEP was increased by approximately 30%, but
the removal of TDCP was inhibited.

First-order kinetic curves were used to fit the rates of
degradation of chlorinated OPEs, and the results are given in
Table 4. These results show that R2 was in the range 0.84–0.99.
In the blank control (treatment b), the DT50 values of TCEP
and TDCP were 38.2 and 12.3 days, respectively. In treatment
c, the DT50 value of TCEP and TDCP were reduced to 18.4
and 10.0 days, respectively. In treatment h, the DT50 values of
TCEP and TDCP decreased to 13.7 and 3.0 days, respectively. The
results showed that the addition of an electron donor (treatment
c) and rhamnolipid (treatment h) significantly increased the rate
of degradation of chlorinated OPEs.

The addition of Na2SO4 (treatment e) had different effects on
the two chlorinated OPEs. The DT50 of TCEP was reduced to
33.9 days, while that of TDCP was increased to 33.3 days. Other
treatments, including NaNO3 as electron receptor (treatment
d) and FeCl3 as electron receptor (treatment f), non-ionic
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TABLE 3 | Degradation rates and DT50 values of triphenyl ester OPEs.

Treatment TPhP m-TTP o-TTP p-TTP Promoting effect

k (d−1) R2 DT50 (d) k (d−1) R2 DT50 (d) k (d−1) R2 DT50 (d) k (d(-1) R2 DT50 (d)

b 0.16 0.74 4.3 0.11 0.77 6.0 0.15 0.87 4.8 0.10 0.78 6.9 /

c 0.21 0.89 3.4 0.13 0.92 5.3 0.05 0.94 14.2 0.11 0.77 6.3 ±

d 0.20 0.84 3.4 0.11 0.89 6.2 0.10 0.94 6.9 0.11 0.93 6.1 ±

e 0.24 0.80 2.8 0.16 0.96 4.3 0.09 0.97 7.9 0.13 0.93 5.5 ±

f 0.40 0.98 1.7 0.22 0.92 3.1 0.26 0.86 2.6 0.18 0.86 3.8 +

g 0.15 0.81 4.6 0.18 0.83 3.9 0.13 0.91 5.4 0.13 0.79 5.2 ±

h 0.20 0.97 3.4 0.14 0.93 5.1 0.14 0.97 5.0 0.08 0.90 9.2 ±

i 0.55 0.96 1.3 0.24 0.98 2.9 0.25 0.98 2.7 0.15 0.98 4.7 +

surfactants (treatment g), and reduced Fe powders (treatment
i), all inhibited the degradation of chlorinated OPEs, which was
very pronounced.

Degradation of Alkyl OPEs
The degradation curves of the three alkyl OPEs subjected to
different treatments are shown in Figure 4. At the end of the
test (100 days), the removal percentage of the three alkyl OPEs
were below 78%. The removal percentage in the blank control
(treatment b) was 67–75%, while the removal percentage in the
electron donor (treatment c) and electron acceptor (treatments

d, e, and f) were 24–74%. Therefore, all of the treatments with
addition of electron donor and electron acceptor inhibited the
removal of alkyl OPEs.

First-order kinetic curves were used to fit the degradation
rates of the alkyl OPEs, and the results are given in Table 5. The
values of R2 were in the range 0.79–0.97. In the blank control
(treatment b), the DT50 of TiBP, TBP, and TPrP were 11.8, 8.4,
and 9.7 days, respectively. The removal of alkyl OPEs under
the different treatments was more complicated, and all of the
treatments failed to significantly improve the degree of removal.
Treatment c (sodium acetate + sodium propionate + sodium
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FIGURE 3 | Degradation curves of chlorinated OPEs.

butyrate+ sodium lactate), treatment d (NaNO3), and treatment
e (Na2SO4) had an inhibitory effect on the removal of alkyl
OPEs. The addition of FeCl3 (treatment f) had an inhibitory
effect on the removal of TiBP and TBP, but no inhibition of TPrP
was observed. Tween 80 (treatment g) significantly inhibited the
removal of TBP and TPrP, and the DT50 increased to 36.7 and
43.7 days, respectively. However, the addition of the biological
surfactant rhamnolipid (treatment h) had no significant effect on
OPE removal. The addition of Fe powder (treatment i) inhibited
the removal of TBP, increasing the DT50 from 8.4 to 20.4 days,
while Fe powder increased the removal of TiBP and TPrP slightly,
reducing the DT50 of TiBP from 11.8 to 6.8 days and that of TPrP
from 9.7 to 5.8 days.

Aerobic Treatments
During the aerobic treatment, aeration was vigorous and the
dissolved oxygen concentration was greater than 3 mg·L−1,
which met the requirements of aerobic degradation.

Aerobic Treatment of Triphenyl Ester OPEs
Figure 5 shows that the triphenyl ester OPEs were removed
satisfactorily under aerobic conditions. The removal percentages
of four OPEs were greater than 80% for both treatments at
35 days. The removal rate of OPEs in a sludge concentration

TABLE 4 | Degradation rates and DT50 values of chlorinated OPEs.

Treatment TCEP TDCP Promoting
effect

k (d−1) R2 DT50 (d) k (d−1) R2 DT50 (d)

b 0.02 0.89 38.2 0.06 0.85 12.3 /

c 0.04 0.99 18.4 0.07 0.92 10.0 +

d 0.01 0.93 66.8 0.03 0.92 21.4 −

e 0.02 0.99 33.9 0.02 0.94 30.3 ±

f 0.02 0.96 43.7 0.01 0.86 65.4 −

g 0.01 0.97 49.0 0.05 0.94 14.9 −

h 0.05 0.84 13.7 0.23 0.95 3.0 +

i 0.01 0.93 59.1 0.02 0.99 31.6 −

of 1 g·L−1 was always higher than in a sludge concentration
of 10 g·L−1 up to 28 days. The removal of OPEs in a sludge
concentration of 1 g·L−1 was significantly greater than in a
concentration of 10 g·L−1, which may have been attributed to
volatilization of the triphenyl ester OPEs. The higher sludge
concentration resulted in more triphenyl ester OPEs being
absorbed, and the removal by volatilization in the water phase
was slowed down. With increasing hydrophobicity (sorption) of
the OPE, the fraction of freely dissolved OPE present in the
water phase available for degradation decreases, and therefore the
overall rate constant should also decrease (Hansen et al., 2017).

In contrast, the removal percentage increased rapidly in the
sludge concentration of 10 g·L−1 after 28 days, and the removal
percentage was higher than that in the sludge concentration of
1 g·L−1. This may have been due to the fact that, after a period of
adaptation, a high sludge concentration adapts to triphenyl ester
OPEs faster than a low sludge concentration.

Aerobic Treatment of Chlorinated OPEs
The degradation curves of chlorinated OPEs in aerobic sludge
are shown in Figure 6. The removal percentages of TCEP
and TDCP were different from those of triphenyl esters OPEs.
In the treatment of a sludge concentration of 1 g·L−1, the
removal percentages of the two chlorinated OPEs were low, with
almost no removal occurring. In the sludge with 10 g·L−1, there
was almost no removal after 16 days. Thereafter, the residual
concentration began to decrease, and the removal percentage
reached 90% by 35 days, indicating that sludge acclimation had
been completed and chlorinated OPEs had begun to biodegrade.

Aerobic Treatment of Alkyl OPEs
The degradation curves of the alkyl OPEs in aerobic sludge
are shown in Figure 7. All of the alkyl OPEs showed similar
removal behavior, and the aerobic sludge was able to remove
alkyl OPEs efficiently. The degree of removal of the three alkyl
OPEs reached 90% in the 10 g·L−1 sludge concentration after
35 days. The removal percentages in the sludge concentration of
1 g·L−1 were slightly lower, namely, 84% for TiBP, 76% for TBP,
and 51% for TPrP.
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TABLE 5 | Degradation rates and DT50 values of alkyl OPEs.

Treatment TiBP TBP TPrP Promoting effect

k (d−1) R2 DT50 (d) k (d−1) R2 DT50 (d) k (d−1) R2 DT50 (d)

b 0.06 0.95 11.8 0.08 0.87 8.4 0.07 0.83 9.7 /

c 0.02 0.94 32.1 0.02 0.93 46.0 0.02 0.93 38.4 −

d 0.05 0.97 14.7 0.06 0.86 11.8 0.03 0.87 26.2 −

e 0.04 0.97 19.7 0.03 0.95 21.5 0.02 0.96 39.4 −

f 0.02 0.88 34.1 0.02 0.91 37.8 0.09 0.79 7.8 −

g 0.06 0.88 11.7 0.02 0.94 36.7 0.02 0.91 43.7 −

h 0.06 0.89 11.9 0.07 0.94 9.7 0.11 0.91 6.4 ±

i 0.10 0.93 6.8 0.03 0.96 20.4 0.12 0.88 5.8 ±

DISCUSSION

Comparison of the Results Under
Aerobic and Anaerobic Conditions
Under anaerobic conditions, the removal percentage of triphenyl
ester OPEs was significantly higher than that of chlorinated and
alkyl OPEs, indicating that triphenyl ester OPEs were more prone
to anaerobic biodegradation. Facultative or specific anaerobes

can couple various electron receptors to mineralize aromatic
compounds through anaerobic respiration and fermentation,
with higher degrees of removal (Carmona et al., 2009;
Grishchenkov et al., 2000). Margot et al. (2015)’s studies have
also pointed out that triphenyl ester OPEs can be successfully
removed (>70%) by anaerobic degradation in STPs. The removal
percentage of chlorinated OPEs was low, which may have been
due to the strong electron absorption effect of chlorine atoms,
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FIGURE 6 | Aerobic degradation of chlorinated OPEs with different sludge concentration.

which reduced the electrophilic properties of relevant enzymes
(Pang et al., 2018). Studies have also shown that TCPP and
TCEP in chlorinated OPEs are non-degradable and persistent
in underground aquifers (Regnery et al., 2011). Kawagoshi and
Fukunaga (1994) have also pointed out that there was no
significant removal of alkyl OPEs under anaerobic conditions.

The removal percentages of the three types of OPEs in
aerobic sludge were significantly higher than those in anaerobic

sludge, which may have been due to the easier removal of
OPEs under aerobic reactions. Fries and Puttmann (2003)
pointed out that aerobic removal of OPEs is greater than
that of anaerobic removal. The most rapid and complete
degradation of most pollutants is achieved under aerobic
conditions (Mezzanotte et al., 2003; Fritsche and Hofrichter,
2005). The rate of degradation of chemicals under aerobic and
anaerobic conditions is related mainly to enzymes and their
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reactions. For example, under aerobic conditions, oxygenase
activity is higher, and oxidation reactions occur more easily.
Under anaerobic conditions, the enzyme activities of reductase
and protease are 40–75% higher than under aerobic conditions,
and dehydrogenase activity is about 40–60% higher, which is
prone to hydrolysis and reduction (Goel et al., 1998). The removal
of OPEs under aerobic conditions is greater than that under
anaerobic conditions, probably because OPEs can be removed
by volatilization under the former, while an anaerobic bottle
is a sealed environment in the anaerobic treatment and OPEs,
therefore, cannot be removed by volatilization.

Electron Donors
Addition of electron donors significantly increased the removal
of chlorinated OPEs. Reduction dehalogenation is an important
anaerobic biodegradation mechanism. Electron donors increase
the reduction dehalogenation of chemical substances (Futagami
et al., 2010), so the addition of electron donors to sludge may
also increase the degradation of chlorinated OPEs. Moreover,
organic pollutants can be removed by co-metabolism. For
example, adding acetic acid as a co-substrate can increase the
bacterial metabolism of triphenyl phosphate (TPP) (Hou et al.,
2019), and adding lactic acid can significantly improve the
efficiency of anaerobic removal of naphthalene (Cao et al.,
2012). As a result, when the intermediate products, including

acetate + propionate + butyrate + lactate, are added as a co-
matrix, the degradation of chlorinated OPEs is increased by
co-metabolism. Studies have also shown that the addition of a
common matrix increases the volume of methane production,
while methanogenic organisms play an important role in the
biodegradation of organic matter and increase the degradation
of pollutants (Nazaries et al., 2013).

The removal of triphenyl ester OPEs in anaerobic sludge
is relatively fast, so the addition of electron donors does not
significantly increase their removal. Microorganisms need time
to adapt to electron donors, the adaptation process needs to
go through a lag period (Fischer and Majewsky, 2014), and the
triphenyl ester OPEs are removed before the end of the lag period.

The addition of electron donors has an inhibitory effect on the
removal of alkyl OPEs, which may be due to the fact that the
metabolic pathway for removal of alkyl OPEs does not involve
co-metabolism, but rather other degradation pathways. Studies
of the anaerobic degradation of sediment have also shown that
the addition of either acetic acid or lactic acid inhibited the rate
of degradation of non-ylphenol (Chang et al., 2004).

Electron Acceptors
The rates of degradation of triphenyl ester OPEs were slightly
accelerated by adding FeCl3, but those of other OPEs were not
significantly increased. Thus, the mechanism by which FeCl3 acts
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as an electron acceptor for OPEs is unclear. Moreover, FeCl3 is
also a flocculant, which can reduce the toxicity of wastewater and
improve its biodegradability (Karthik et al., 2008). Flocculation
can also increase the contact area between sludge and organic
pollutants in sewage and accelerate the rate of degradation and
increase the percentage removal of triphenyl ester OPEs.

Usually, NaNO3 and Na2SO4 are added as electron receptors
to increase pollutant degradation. The presence of NaNO3
and Na2SO4 results in higher bacterial abundance and greater
enrichment of functional genes during the nitrogen, carbon,
sulfur, and phosphorus cycles (Dou et al., 2008; Xu et al., 2014;
Zhang et al., 2019). In river sediments, the presence of nitrate
and sulfate was found to accelerate the degradation of polycyclic
aromatic hydrocarbons (PAHs) (Yang et al., 2020). However,
due to the different reactions of different substances to electron
acceptors (Schmidt et al., 2017), we came to different conclusions
in our experiments. In this study, NaNO3 and Na2SO4 did not
significantly improve the anaerobic removal of triphenyl OPEs,
and they inhibited the removal of chlorinated and alkyl OPEs.
The concentration of added electron acceptors used in this study
has been proven not to inhibit microorganisms (Dou et al., 2008;
Guerrero-Barajas et al., 2014; Gou et al., 2019). Therefore, the
inhibition of the removal of chlorinated and alkyl OPEs may
have been due to the production of toxic intermediate products,
which requires further study. Zhang et al. (2011) have also
proposed that sulfate can stimulate sulfate-reducing bacteria to
compete with methanogenic bacteria for electron utilization to
produce sulfides that are toxic to microorganisms (Vogel et al.,
1987). Nutrient salts such as magnesium sulfate and ammonium
nitrate in the medium also negatively affect the biodegradation
of chlorophenol (Sahoo et al., 2010). Nitrate can also reversibly
block the metabolism of trimethyltrinitramine (Beller, 2002).

Surface-Active Agents
When organic matter is hydrophobic, adding surfactant can
overcome the diffusion limitation of organic matter to cells,
reduce the tension and viscosity of the water interface effectively
(Zdarta et al., 2018), increase bioavailability, and thus increase the
rate of removal (Varjani and Upasani, 2017). The biosurfactant
rhamnolipid and the non-ionic surfactant Tween 80 can both
usually increase the contact between microbial cells and the
matrix. Previous studies have shown that rhamnolipid can
significantly increase the rate of removal of phenanthrene, diesel,
and pyrene. The addition of Tween 80 can also significantly
increase the biodegradation ratio of phenanthrene (Burgess and
Pletschke, 2008; Kang et al., 2019). Rhamnolipid and Tween
80 can also increase fungal biomass, the decomposition of
hemicellulose and cellulose, and the rate of decomposition
by 8.0 and 11.6%, respectively. They can also significantly
affect the rate of carbohydrate and amino acid metabolism
(Yin et al., 2019). In addition, they can also increase the
maximum speed of enzyme reactions (Mo et al., 2008).
However, the effect of surfactants on enzymes is not always
positive (Veronika et al., 2018). Zeng et al. (2006) have
pointed out that Tween 80 and rhamnolipid can increase the
enzyme activity of amylase and xylanase, but have a negative
effect on protease.

Addition of rhamnolipid had no significant effect on OPEs
removal in this study, except for chlorinated OPEs. Tween 80 has
an inhibitory effect on OPE degradation, possibly due to its ability
to interact with microbial proteins and manipulate them to alter
enzyme conformation, thereby altering enzyme activity, stability,
and specificity, as well as its potential toxicity to microorganisms
(Van Hamme et al., 2006; Tiehm and Schmidt, 2011).

Reduction of Fe Powder
Fe powder can significantly increase the rate of removal of
OPE triphenyl esters. Zero-valent iron can provide electrons for
microorganisms, and it has a high reduction activity that can
maintain a low redox potential in the anaerobic environment
(Völker et al., 2017) and significantly increase the anaerobic
biodegradation of chlorpyrifos to reduce water poisoning (Shi
et al., 2019a). Adding zero-valent iron can also increase
anaerobic digestion in STPs as well as methane production (Wei
et al., 2018). Fe can also significantly alter the bacterial and
methanogenic community structure (Pan et al., 2019), is also an
important protein cofactor (Kleemann and Meckenstock, 2011),
and is essential for most organisms (Beauchene et al., 2015).
Feng et al. (2014) have also pointed out that zero-valent iron as
a reducing material is expected to enhance anaerobic processes,
including hydrolytic acidification, which can help accelerate and
improve anaerobic acid production and create good conditions
for subsequent treatment (Liu et al., 2012).

Treatments of Different Aerobic Sludge
Concentrations
A comparative study of the removal of OPEs from 1 to 10 g·L−1

sludge concentrations revealed that the removal percentages of
OPEs were not proportional to the sludge concentration. In
the early stages of the experiment, triphenyl ester OPEs had
significantly higher removal percentages in 1 g·L−1 than in
10 g·L−1 sludge concentration, which may have been due to
the greater contribution from the removal of triphenyl ester
OPEs by volatilization. When the sludge concentration was
high (10 g·L−1), the adsorption of OPEs was greater, which
reduced the degree of removal in the early stage. After 16 days,
the removal percentages of the three types of OPEs in the
higher concentration of sludge (10 g·L−1) exceeded that of the
low concentration (1 g·L−1), mainly because the higher sludge
concentration ensured the diversity of microorganisms made the
microorganisms more resistant to toxic pollutants. Currently, the
European Union (ECHA, 2017) proposes the use of enhanced
biodegradability tests to assess the biodegradability potential of
chemicals, that is, by increasing the sludge concentration or
increasing the volume of the test solution to ensure the test error
caused by the heterogeneity of the dominant species when the
sludge is added is reduced as much as possible.

CONCLUSION

The biodegradability of nine OPEs in both aerobic and anaerobic
activated sludge derived from kitchen garbage biomass and
agricultural residues under different conditions was investigated.
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Under anaerobic conditions, the removal percentages of
triphenyl ester OPEs were significantly higher than those of
chlorinated and alkyl OPEs. The addition of electron donors,
electron acceptors, surfactants, and Fe powder did not always
increase the rate of degradation of the different kinds of
OPEs, which is closely related to the structure of the OPEs.
The addition of FeCl3 and Fe powder increased the rate
of degradation of triphenyl ester OPEs, with the DT50 of
triphenyl ester OPEs being in the range 1.7–3.8 days when
FeCl3 was added and 1.3–4.7 days when Fe powder was
added, compared to a DT50 of 4.3–6.9 days for the blank
control. Addition of electron donors and rhamnolipid increased
the removal of chlorinated OPEs, with the DT50 values of
TCEP and TDCP being 18.4 and 10.0 days, respectively, after
electron donors were added, and 13.7 and 3.0 days, respectively,
after rhamnolipid was added. No treatment increased the
removal of alkyl OPEs as their low anaerobic degradability
prevented that occurring.

The biodegradation rates of OPEs under aerobic conditions
were significantly higher than those under anaerobic conditions.
The sludge with the higher concentration had a lower rate of
degradation for highly adsorbent chemicals at the beginning
of the test. However, the sludge with the higher concentration
helped the microorganisms present in the sludge to adapt and
remove OPEs by the end of test.

These results will provide a new perspective on the effect
of activated sludge cultured with kitchen garbage biomass and
agricultural residues in eliminating emerging pollutants.

DATA AVAILABILITY STATEMENT

The original contributions generated for this study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

LZ and ZZ proposed the idea. XY and WG did the experiments.
JL, LS, and GJ analyzed the results. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the National Key Research and
Development Program of China (No. 2018YFC1801504) and the
Central Scientific Research Projects for Public Welfare Research
Institutes (GYZX200102).

REFERENCES
Amend, J. P., and Shock, E. L. (2001). Energetics of overall metabolic

reactions of thermophilic and hyperthermophilic Archaea and Bacteria.
FEMS Microbiol. Rev. 25, 175–243. doi: 10.1111/j.1574-6976.2001.tb0
0576.x

Anneli, M., Barbro, A., and Peter, H. (2005). Organophosphorus flame retardants
and plasticizers in Swedish sewage treatment plants. Environ. Sci. Technol. 39,
7423–7429. doi: 10.1021/es051013l

Beauchene, N. A., Myers, K. S., Chung, D., Park, D. M., Weisnicht, A. M., Keleş,
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