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Abstract

A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of 

all land plants, providing essential protection from desiccation and other stresses. We have 

determined the enzymatic basis of cutin polymerization through characterization of a tomato 

extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-

dihydroxyhexadecanoyl)glycerol (2-MHG). CD1 has in vitro polyester synthesis activity and is 

required for cutin accumulation in vivo, indicating that it is a cutin synthase.

Fossil evidence suggests that evolution of a hydrophobic cuticle was essential for terrestrial 

colonization by plants, ~400 million years ago1. As the primary interface between the plants 

and their above-ground environment, the cuticle is critically important in limiting water loss 

and plays additional key roles in defense against pests and pathogens, as well as establishing 

organ boundaries during development2. The cuticle consists of an insoluble polyester of 
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hydroxy fatty acids, known as cutin, which is covered and infiltrated with a variety of 

waxes. While the generic composition of the cutin polymer is known, the mechanism and 

site of cutin polymerization have remained long standing questions3,4.

Cutin is typically exceptionally abundant in the fruit cuticles of tomato (Solanum 

lycopersicum); however we previously identified several tomato mutants with dramatic 

deficiencies in cutin5. One of these, cutin deficient 1 (cd1), has approximately 5–10% levels 

of fruit cutin compared with the wild type (M82) genotype, an extremely thin cuticle and 

increased sensitivity to water loss and pathogen susceptibility (Fig. 1a, b; ref. 5). Fine 

mapping of the cd1 mutation revealed it to lie within a five-exon gene (CD1; Supplementary 

Results, Supplementary Fig. 1) that is predicted to encode a member of the GDSL motif 

lipase/hydrolase (GDSL) family of proteins (Supplementary Fig. 2). GDSLs collectively 

exhibit diverse functions and substrate specificities6 and a broad taxonomic distribution, 

including prokaryotes and eukaryotes. In plants they are present as large gene families7 and, 

based on their expression patterns, it has been speculated that GDSLs may play a role in 

cuticle biosynthesis8–12.

The cd1 mutant has a point mutation introducing a stop codon upstream of two of the three 

predicted catalytic amino acid residues (Supplementary Fig. 1b, Supplementary Fig. 2). In 

the mutant, cd1 transcript levels are reduced (Supplementary Fig. 3a) but the CD1 protein 

was not detected (Supplementary Fig. 3c,d), indicating that it is a null mutant. 

Complementation of the cd1 mutant with the wild type gene driven by the constitutive 

Cauliflower Mosaic Virus 35S promoter rescued the phenotype (Supplementary Fig. 4a,b), 

confirming that the mutation in CD1 is responsible for the cutin deficiency.

An analysis of the spatial distribution of CD1 proteins or transcripts showed that expression 

is highest in expanding organs, which require rapid cuticle synthesis to accommodate 

growth13, but is undetectable in roots, which have no cuticle (Supplementary Fig. 3b–d). 

Additionally, we used laser-capture microdissection of various pericarp tissues from young 

fruit to show that CD1 transcript levels are highest in the outer and inner epidermal cell 

layers (Supplementary Fig. 5; ref. 9), both of which are responsible for cuticle synthesis9. 

Thus, CD1 expression parallels spatial and temporal patterns of cuticle deposition at several 

levels.

Immunolocalization of CD1 in M82 fruits indicates that the protein is almost exclusively 

localized in the cuticle (Fig. 1c, Supplementary Fig. 6). More specifically, labeling density 

follows the contour of the cuticle over both the periclinal and anticlinal cell walls (Fig. 1d). 

This localization pattern suggests a role for CD1 late in the cutin biosynthetic pathway, 

leading us to investigate whether CD1 is directly involved in cutin polymerization.

Several enzymes have been shown through analysis of Arabidopsis thaliana mutants to be 

required for formation of the cutin polymer, including glycerol phosphate acyltransferase 

enzymes (GPATs)4. Recently, biochemical characterization of GPAT4 and GPAT6 showed 

them to possess both glycerol-3-phosphate acyltransferase activity specific to the sn-2 

position, and phosphatase activity14. This may indicate a structural role for 2-

monoacylglyceryl esters (2-MAGs) in the cutin polymer, as these were identified in small 
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quantities in the products of partially depolymerized cutin15. Alternatively, the 2-MAG 

products of GPAT4 and GPAT6 may act primarily as acyl donors for the polymerization 

reaction. If this is true, and CD1 is indeed a cutin polymerase, we would expect that 2-

MAGs would accumulate as free lipids in the surface tissues of the cd1 mutant fruit, but not 

in the M82 wild type genotype.

Soluble surface lipids, collectively termed cuticular waxes, can readily be extracted from 

plants by brief immersion of intact organs in organic solvents16. In tomato fruits, these 

waxes consist primarily of a mixture of high melting-point alkanes and triterpenoids, while 

the cutin, a polyester of principally 10,16-dihydroxyhexadecanoic acid, is insoluble under 

these conditions. Although soluble 2-MAGs can be found in the waxes associated with 

suberin, they are not observed in cuticular waxes17. GC-MS analysis identified the 2-MAG 

species 2-mono(10,16-dihydroxyhexadecanoyl)glycerol (2-MHG, 1) in soluble surface 

lipids from cd1 fruits at the rapidly expanding stage, when CD1 is normally most highly 

expressed (Supplementary Fig. 3c), but not in equivalent extracts from M82 fruit (Fig. 2). 

While chromatographic resolution was incomplete, the coincident single ion chromatograms 

of diagnostic fragments clearly show the specific accumulation of 2-MHG in the mutant 

(Fig. 2a). An additional, later-eluting trace peak of these ions likely corresponds to the 

thermodynamically favored 1-mono(10,16-dihydroxyhexadecanoyl)glycerol (1-MHG) 

isomer. The identity of the larger of the two peaks as representing the 2-isomer is confirmed 

by its earlier elution and the absence of the M-103 = 547 ion produced by α-cleavage 

between the 2- and 3- carbon in 1-MHG (Fig. 2b; ref. 15). Despite the clear accumulation of 

2-MHG in the cd1 mutant and not M82, the amount detected was relatively low (on the 

order of 0.1 µg·cm−2, based on comparison to wax compound abundance), possibly due to 

feedback regulation of the upstream biosynthetic pathway or the relatively polar nature of 2-

MHG compared with other surface soluble lipids.

We propose a model for cutin polymerization wherein CD1 transfers the hydroxyacyl group 

of 2-MHG to either another molecule of 2-MHG, or the growing cutin polymer itself (Fig. 

3a). Experiments involving partial depolymerization of tomato cutin have identified 

oligomers primarily consisting of directly coupled 10,16-dihydroxyhexadecanoic acid 

monomers18,19. This, combined with the observation that glycerol is quantitatively a minor 

component of tomato cutin15, suggests that the principal linkage in tomato cutin is between 

the carboxylic acid and hydroxyl groups of 10,16-dihydroxyhexadecanoic acid. The 

detection of small amounts of 2-MHG in the cutin polymer15 may therefore reflect the 

presence of 2-MHG ’primers‘ remaining in the polymer. The presence of polymerized 1-

MHG could be a consequence of spontaneous acyl migration accelerated by the alkaline 

conditions used for in vitro depolymerization. To test our hypothesis that CD1 acts as an 

acyltransferase, we purified recombinant tomato CD1 protein following expression in 

Nicotiana benthamiana (Supplementary Fig. 7). Racemic 2-MHG was synthesized in six 

steps from monobenzyl-protected decane-1,10-diol (Supplementary Methods, 

Supplementary Scheme 1), and used as a substrate for in vitro polymerization assays. Lipid 

products of the assay were extracted with ethyl acetate and analyzed by MALDI-TOF mass 

spectrometry. A major series of ions separated by m/z = 270.2 was observed, consistent with 

the expected masses of sodium and potassium adducts of polyester oligomers with a glycerol 
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end group and up to seven 10,16-dihydroxyhexadecanoyl monomers (Fig. 3b). A control 

assay was performed using the S32A variant of CD1, prepared by site-directed mutagenesis. 

As expected, mutation of the conserved catalytic serine of CD1 to an alanine eliminated 

acyltransferase activity (Supplementary Fig. 8).

In vivo ester synthesis via transesterification of acyl glycerol by a lipase-like enzyme is not 

without precedent. For example, in animals, the extracellular acylation of cholesterol by 

transesterification of lecithin is catalyzed by lecithin cholesterol acyltransferase (LCAT). In 

the absence of cholesterol as an acyl acceptor, LCAT has acyl esterase activity20. The 

unique feature necessary for this transesterification reaction is the action of the enzyme at 

the lipid-aqueous interface of high density lipoproteins. Here, cholesterol concentrations are 

high enough to favor the resolution of the acyl-enzyme intermediate by transesterification 

rather than hydrolysis. We propose that CD1 acts through a similar mechanism at the 

interface between the aqueous environment of the plant cell wall and the lipid phase of the 

nascent cuticle. Thermodynamically, the aqueous solubility of 2-MHG and insolubility of 

the polyester product would further drive the reaction towards polyester synthesis.

In vitro incorporation of fatty acids into the cutin polymer by crude plant enzyme 

preparations was first reported more than thirty years ago21. Moreover, recent molecular 

genetic characterization of cutin polymer synthesis has identified several intracellular 

acyltransferases that are involved in biosynthesis of presumed cutin precursors4,22. 

However, the molecular basis of cutin polymerization following secretion of the precursors 

into the cell wall has remained a mystery. Here we show that CD1 is an extracellular 

enzyme that localizes in the developing cuticle and is required for cutin biosynthesis. We 

detected accumulation of 2-MHG, the corresponding 2-MAG of the major cutin monomer of 

tomato, in the cutin deficient cd1 mutant and showed that recombinant CD1 catalyzes the 

successive transesterification of 2-MHG to yield polyester oligomers in vitro. Taken 

together, these results lead us to propose that CD1 is the principal catalyst of cutin 

polymerization and that the polymerization process is extracellular, at the site of cuticle 

deposition. Furthermore, a survey of protein sequences reveals CD1 homologs in widely 

diverse species (Supplementary Fig. 9), and it has been reported that silencing the 

expression of two Arabidopsis thaliana homologs of CD1 resulted in phenotypes similar to 

other cutin deficient mutants23, suggesting an evolutionarily conserved and ubiquitous 

mechanism of cutin biosynthesis in land plants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CD1 is a GDSL-motif lipase/hydrolase family protein that localizes to the nascent 
cuticle
(a) Fruits of the M82 wild type tomato cultivar and the cd1 mutant on the day of harvest at 

the fully ripe stage and 14 days after storage at room temperature. Scale bars = 1 cm. (b) 
Light microscopy showing the cuticle of M82 and cd1 ripe fruit stained with Sudan Red 7b. 

Scale bars = 50 µm. (c–d) TEM immunolocalization of CD1 in the cuticle of 15 days post-

anthesis (DPA) M82 fruits, over the periclinal cell wall of an epidermal cell (c) and in the 

anticlinal peg of cuticle between two adjacent epidermal cells (d). Scale bars = 500 nm. Cut, 

cuticle; Cyt, cytoplasm; ACW, anticlinal cell wall; PCW, periclinal cell wall; PM, plasma 

membrane; Vac, vacuole. Gold particles are highlighted with yellow circles in the cuticle or 

red circles elsewhere, and magnified areas of each image are shown in the right panels.
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Figure 2. The identification of 2-MHG in the soluble surface lipids of cd1 fruit
(a) GC-MS chromatograms of the cd1 mutant and M82 wild type TMS-derivatized extracts. 

The total ion chromatograms and several single ion chromatograms corresponding to 

characteristic fragments of 2-MHG are shown. Inset is an enlargement of the region 

surrounding the 2-MHG peak. For reference, several of the wax compounds common to both 

mutant and wild type are labeled. (b) Mass spectrum from the 2-MHG peak found in the cd1 

extract, with interpretation of the spectrum inset. The spectrum of synthetic 2-MHG is 
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shown in Supplementary Fig. 10. For more detailed discussion of the spectrum of 2-MHG, 

see ref. 15.
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Figure 3. Acyltransferase activity of CD1
(a) Proposed model for CD1 catalyzed cutin biosynthesis by transfer of the hydroxyacyl 

group from 2-MHG to the growing polymer. For simplicity, ester linkage via the primary 

hydroxyl is shown, although linkage via the secondary hydroxyl can also occur in cutin18. 

(b) MALDI-TOF positive ion spectra of lipid products from in vitro assays with 2-MHG 

substrate and purified recombinant CD1 enzyme.
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