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Statistical distributions play a prominent role in applied sciences, particularly in biomedical sciences. The medical data sets are
generally skewed to the right, and skewed distributions can be used quite effectively to model such data sets. In the present study,
therefore, we propose a new family of distributions to model right skewed medical data sets. The proposed family may be named as
a flexible reduced logarithmic-X family. The proposed family can be obtained via reparameterizing the exponentiated
Kumaraswamy G-logarithmic family and the alpha logarithmic family of distributions. A special submodel of the proposed family
called, a flexible reduced logarithmic-Weibull distribution, is discussed in detail. Some mathematical properties of the proposed
family and certain related characterization results are presented. The maximum likelihood estimators of the model parameters are
obtained. A brief Monte Carlo simulation study is done to evaluate the performance of these estimators. Finally, for the illustrative
purposes, three applications from biomedical sciences are analyzed and the goodness of fit of the proposed distribution is

compared to some well-known competitors.

1. Introduction

The statistical analysis and modeling of lifetime phenomena
are essential in almost all areas of applied sciences, partic-
ularly, in biomedical sciences. A number of parametric
continuous distributions for modeling lifetime data sets have
been proposed in literature including exponential, Rayleigh,
gamma, lognormal, and Weibull, among others. The ex-
ponential, Rayleigh, and Weibull distributions are more
popular than the gamma and lognormal distributions since
the survival functions of the gamma and the lognormal
distributions cannot be expressed in closed forms and hence
both require numerical integration to arrive at the mathe-
matical properties. The exponential and Rayleigh distribu-
tions are commonly used in lifetime analysis. These

distributions, however, are not flexible enough to counter
complex forms of the data. For example, the exponential
distribution is capable of modeling data with constant failure
rate function, whereas the Rayleigh distribution offers data
modeling with only increasing failure rate function. The
Weibull distribution, also known as the super exponential
distribution, is more flexible than the aforementioned dis-
tributions. The Weibull distribution offers the characteristics
of both the exponential and Rayleigh distributions and is
capable of modeling data with monotonic (increasing, de-
creasing, and constant) hazard rate function. Unfortunately,
the Weibull distribution is not capable of modeling data with
nonmonotonic (unimodal, modified unimodal, and bath-
tub-shaped) failure rate function. In some medical situa-
tions, for example, neck cancer, bladder cancer, and breast
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cancer, the hazard rate is shown to have unimodal or
modified unimodal shape. The hazard rates for neck,
bladder, and breast cancer recurrence after surgical removal
have been observed to have unimodal shape. In the very
initial phase, the hazard rate for cancer recurrence begins
with a low level and then increases gradually after a finite
period of time after the surgical removal until reaching a
peak before decreasing. Another example of the unimodal
shape is the hazard of infection with some new viruses,
where it increases in the early stages from low level till it
reaches a peak and then decreases; for detail, see [1]. In view
of the importance of unimodal failure rate function in
biomedical sciences, a series of papers have been appeared to
propose new distributions capable of modeling medical data
with unimodal failure rate function [2-8]. In the recent
years, the researchers have shown a trend in proposing new
families of distributions to obtain more flexible models. In
this regard, [9] introduced the Marshall-Olkin generated
(MOG) family by introducing an extra parameter to the
Weibull distribution. The cumulative distribution function
(cdf) of the MOG family is given by

F(x;8)
1-(1-0)(1-F(x;8)

where 0 is an additional parameter and F (x; &) is the cdf of
the baseline model which may depend on the parameter
vector &. [10] proposed another method of constructing new
lifetime distributions known as alpha power transformation
approach via cdf

G(x;0,8) = 0>0, xR, (1)

(Xf(m,f) ~1

G(x; Ocl,f) = 7_1,

>0, #1, xe R (2)
&

Using (2), [10] and [11] introduced the alpha power
exponential (APE) and alpha power transformed Weibull
(APTW) distributions, respectively. We further carry this
branch of distribution theory and introduce a new flexible
class of distributions which can be used in modeling uni-
modal medical care data sets. Tahir and Corderio [12]
proposed the exponentiated Kumaraswamy G-logarithmic
(EKuGL) class of distributions given by the cdf:

tog(1-(1-p[1-{1- (1~ Fex:97'}])
log(p)

G(x)=1- , X€ER,

(3)

where a,b,0>0 and p € (0,1). For the EKuG-L family of
distributions, the parametric space of p is restricted to (0, 1).
Due to this relation, the EKuG-L family may not be flexible
enough to counter complex forms of data. Furthermore, the
EKuG-L family has four additional parameters. Note that the
expression (3) is not true for p = 1. Furthermore, due to the
higher number of parameters, the estimation of the pa-
rameters as well as the computation of many distributional
characteristics becomes very difficult. Therefore, in this
paper, an attempt has been made to propose a more flexible
class of distributions, called flexible reduced logarithmic-X
(FRL-X) family via reparameterizing (3). The new family is
introduced for a=b=60=1 (to reduce the number of
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parameters to avoid the difficulties in computation of
mathematical properties) and reparameterizing p=1+o0
(to relax the upper limit of the parametric space of p), where
0>0. In view of unrestricted upper bound, the proposed
distribution would be quite flexible in modeling complex
forms of data. Thus, the motivation for proposing the FRL-X
family is to reduce the number of parameters as well as to
relax the boundary conditions of the parametric values to
bring more flexibility in the shape of the hazard rate function
than the classical monotone behavior. Also, to improve the
description which calls for complexity by adding the pa-
rameters in the class of distributions, this gives us more
information about the behavior of the hazard rate function
in the tail end. A random variable X is said to have the FRL-X
distribution, if its cdf is given by

log{l + 0 — oF (x; &)}

Glx 08 =1- log(1 + o)

, 0>0, x € R,

(4)

where F(x;€&) is cdf of the baseline random variable
depending on the parameter &, and ¢ is an additional pa-
rameter. The expression (4) is also true for o = 1. The
probability density function (pdf) corresponding to (4) is
given by

of (x;8)
log(1+0){1+0—0F(x;&)}

g(x;0,8) = xeR. (5)

The new pdf is most tractable when F (x; &) and f (x; &)
have simple analytical expressions. Henceforth, a random
variable X with pdf (5) is denoted by X ~FRL — X (x; 0, &).
Furthermore, for the sake of simplicity, the dependence on
the vector of the parameters is omitted and G(x) =
G (x;0,&) will be used. Moreover, the key motivations for
using the FRL-X family in practice are

(1) A very simple and convenient method of adding an
additional parameter to modify the existing
distributions

(2) To improve the characteristics and flexibility of the
existing distributions

(3) To introduce the extended version of the baseline
distribution having closed forms for cdf, sf, and hrf

(4) To provide better fits than the competing modified
models

(5) To introduce new distributions having non-
monotonic shaped hazard rate functions

(6) To provide best fit to unimodal medical care data sets
The FRL-X family can also be obtained via repar-
ameterizing the alpha logarithmic family (ALF) proposed by
[13]. The cdf of the ALF family is given by
log{ar — (a = )F (x; §)}
log («)

G(x;a,f):l—( >, a>0, a1, x e R.
(6)

The problem with ALF family is that « = 1, and con-
sequently, the parametric space of « is restricted. The RFL-X
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addressed this problem via reparameterizing « as & = 0 + 1.
The advantage of the FRL-X family over the ALF is that o = 1
acceptable, and its parametric space is not restricted. Fur-
thermore, for o = 1, the FRL-X reduces to the logarithmic
transformed family of [14] given by

log{2 — F (x; §)}

G(x;8)=1- g2

x, & eR. (7)

The survival function (sf) and hazard function of the
FRL-X family are given, respectively, by

log{l + 0 — oF (x; &)}

S(x;0,8) = log(1+0) xeR
- ) af (x;8)
h(x;0,8) = 1+0_oF(x:Dllogll +0—oF(x; 9] ¢ *
(8)

The rest of this article is organized as follows. In Section
2, a special submodel of the proposed family is discussed.
Some mathematical properties are obtained in Section 3. The
characterizations results are presented in Section 4. Maxi-
mum likelihood estimates of the model parameters are
obtained in Section 5. A comprehensive Monte Carlo
simulation study is conducted in Section 6. Section 7 is
devoted to analyzing three real-life applications. Further
framework is discussed in Section 8. Finally, concluding
remarks are provided in the last section.

2. SubModel Description

This section offers a special submodel of the FRL-X family,
called the flexible reduced logarithmic-Weibull (FRL-W)
distribution. Let F(x;&) and f (x;&) be cdf and pdf of the
two-parameter Weibull distribution given by F(x;§) =
1-e™, x20,a,y>0, and f(x;€) =apx*'e?, re-
spectively, where & = (a,y). Then, the cdf of the FRL-W
distribution has the following expression:

Glx) = 1_log{l to-o(l-e"™)}

, x20,0,a,9>0.

log(1 + o)
)
The density function corresponding (9) is given by
a—1,-yx*
g(x) = Ty x>0. (10)

log(1+0){1+0—0a(1-er)}

Plots of the pdf of the FRL-W distribution are sketched
in Figure 1 for selected values of the model parameters.
3. Basic Mathematical Properties

In this section, some statistical properties of the FRL-X
family are derived.

3.1. Quantile Function. Let X be the FRL-X random variable
with cdf (4), the quantile function of X, say Q (u), is given by

_ Llog(1+0) (1-u)
x:Q(u):G‘l(u)=F‘1(l+" e ) (11)

o

where u € (0, 1). From the expression (11), it is clear that the
FRL-X family has a closed form solution of its quantile
function which makes it easier to generate random numbers.

3.2. Moments. Moments are very important and play an
essential role in statistical analysis, especially in the appli-
cations. It helps to capture the important features and
characteristics of the distribution (e.g., central tendency,
dispersion, skewness, and kurtosis). The ™ moment of the
FRL-X family is derived as

/= J x'g(x;0,&)dx. (12)
Using (5) in (12), we have
<y of (x;8)
= d 5
Hr Jloox log(1+ 0){1+0—0F(x;&)} X
o1 ( 0 )J‘x’ o f(x:9) .
b log(l+ )\1+0/) ) 0 (1= (0E(x; D1+ 0)}
(13)
Using the series representation
[ 2 N
m—1+x+x +---—;x, for0<x<1. (14)

For x = (0/1 + 0)F (x; &) in (14), we arrive at
1 o0

- S o (AR VY
1_(0/1+0)F(X;£)—1+x+x +..._Z( )F(x,&),

= 1+o0

(15)
Using (15) in (13), we obtain

/= 1 OO< o >i+1 4
Hr 10g(1+0); 1+0) Mo (16)

where 1, = [7 %" f (x; OF (x; §)'dx,
Furthermore, a general expression for the moment
generating function (mgf) of the RFL-X family is given by

1 x o i+1t",1 .
M, (t) = £
<) log(1 +0) r;0<1+0> r! (17)

3.3. Residual and Reverse Residual Life. The residual life
offers wider applications in reliability theory and risk
management. The residual lifetime of FRL-X, denoted by
Ry, is

(£)

S(x+1t)
R(t)(x) = Sx(t) >
(18)
Ry (x) = log{l + 0 — oF (x + t;E)}) xR

0g{l + 0 — oF (x; &)}
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FiGure 1: Different plots for the pdf of the FRL-W distribution.

Additionally, the reverse residual life of the FRL-X
random variable, denoted by R ,), is
= S(x-1)
WS
(19)
= log{l +0-0F(x-t;8)}

= X R.
® log{l + 0 — oF (x; &)} x€

4. Characterization Results

This section is devoted to the characterizations of the FRL-X
distribution based on a simple relationship between two
truncated moments. It should be mentioned that for this
characterization the cdf is not required to have a closed
form. The first characterization result employs a theorem
due to [15]; see Theorem 1 below. Note that the result holds
also when the interval H is not closed. Moreover, as shown in
[23], this characterization is stable in the sense of weak
convergence.

Theorem 1. Let (Q, F, P) be a given probability space and let
H = [d,e] be an interval for some d<e (d =-00 e =00
might as well be allowed). Let X: Q — H be a continuous
random variable with the distribution function G and let q,
and q, be two real functions defined on H such that

E(qZ(X) |X2x) = E(q1 (X) |X2x)11(x), x € H,
(20)

Is defined with some real function 1. Assume that
q1-9, € C', 1 € C* and G is twice continuously differentiable
and strictly monotone function on the set H. Finally, assume that
the equation 1q, = q, has no real solution in the interior of H.
Then G is uniquely determined by the functions q,,q,, and 1,
particularly

x /

1 (u) |

G(x) = J C| exp(—s(u))du, (21)
@7 Trta, g 0|

where the function s is a solution of the differential equation

s (u) =n'qi/nq, — q, and C is the normalization constant,
such that ?HdF =1

Remark. The goal in Theorem 1 is to have 7 as simple as
possible.

Proposition 1. Let X: Q — R be a continuous random
variable and let q,(x)=1+0-0F(x;§) and g,(x) =
q; (x)F (x; &) for x € R. The random variable X has pdf (5)
if and only if the function n defined in Theorem 1 is of
the form

n(x) = %{1 +F(x;8)}, xeR. (22)

Proof. Let X be a random variable with pdf (5), then
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(1-G(x)E(q,(X)| X=x) = m{l -F(x;)), xeR,
[0
(I—G(X))E(%(X”sz):m{l—F(x7g)2}’ xER,
(23)
and finally
1(x)q; (x) — g (x) = —qlT(x) (1-F(x;&))>0, forxeR.
(24)
Conversely, if 7 is given as above, then
/
r 1 (x)q; (x) f(x;8)
= = , eR, (25
T R am TRy R )
and hence
s(x) = -log{l1 - F(x;8)}, xeR. (26)

Now, in view of Theorem 1, X has density (5).

Corollary 1. Let X: Q — R be a continuous random
variable and let q, (x) be as in Proposition 1. The random
variable X has pdf (5) if and only if there exist functions q, (x)
and 1 (x) defined in Theorem 1 satisfying the following dif-
ferential equation:

() 7 (g (x)  f(x8)

n(x)q, (x) =g, (x)  [1-F(x;6)]

xeR. (27)

Corollary 2. The general solution of the differential equation
in Corollary 1 is

n(x) ={1 - F(x; )" H Fx:8)(q,(x) q, (0)dx + D),
(28)

where D is a constant. We like to point out that one set of
functions satisfying the above differential equation is given in
Proposition 1 with D = 1/2. Clearly, there are other triplets
(41> 492> 1) which satisfy conditions of Theorem 1.

5. Estimation

In this section, the method of maximum likelihood esti-
mation is used to estimate the model parameters. Fur-
thermore, the robustness is also discussed.

5.1. Maximum Likelihood Estimation. In this subsection, the
maximum likelihood estimators (MLEs) of the parameters &
and & of RFL-X family from complete samples are derived.
Let X, X,, ..., X, be a simple random sample from RFL-X
family with observed values X, X,, ..., X). The log-likeli-
hood function for this sample is

log L(x; 0,&) = nlog (o) + Zlogf(xi; &) —log(log(1 + 0))
izl
—log{l + 0 — oF (x;; &)}
(29)
Obtaining the partial derivatives of (29), we have

0 . _n_ 1 B 1-F(x;¢)
%logL(og 0.8 = o log(l+0)(1+0) {l+0-0F(x;&)}

2 . B n af(xi;f)/af

>

OF (x;;¢)/0¢
M+o-oF(x; O
(30)
Setting  (0/do)log L(x;0,&) and (9/0é)log L (x; 0, &)

equal to zero and solving numerically these expressions
simultaneously yields the MLEs of (o, ).

5.2. M-Estimator as a Robust Estimation. Robust statistics
are statistics with good performance for the data drawn from
a wide range of probability distributions, especially for
nonnormal distributions. Robust statistical approach has
been developed for many common problems, such as es-
timating location, scale, and regression. One motivation is to
produce statistical methods that are not unduly affected by
outliers. Another motivation is to provide methods with
good performance when there are small departures from the
parametric distribution. For example, robust methods work
well for mixtures of two normal distributions with different
standard-deviations; under this model, nonrobust methods
like a t-test work poorly. Historically, several approaches to
robust estimation were proposed, including R-estimators
and L-estimators. However, M-estimators now appear to
dominate the field as a result of their generality, high
breakdown point, and their efficiency. M-estimators are
generalization of the maximum likelihood estimators
(MLEs). What we try to do with MLE’s is to maximize
[T~, f (x;) or, equivalently, minimize Y, —log(f (x;)) [16]
proposed to generalize this to the minimization of
Y, p(x;), where p is some function. MLEs are therefore
special case of M-estimators. Minimizing Y-, p(x;) can
often be done by differentiating p and solving Y, ¢ (x;)
where ¢(x) = dp(x)/0x; for further detail, we refer the
interested readers to [17, 18].

6. Monte Carlo Simulation Study

This section offers a comprehensive simulation study to
assess the behavior of the MLEs. The FRL-X family is easily
simulated by inverting (4). The expression (4) can be used to
simulate any special submodel of the FRL-X family. Here, we
consider the FRL-W distribution to assess the behavior of
the MLEs of the proposed method. We simulate the FRL-W
distribution for two sets of parameters (Set 1: «a =0.7,
0=13, y=04, and Set 2:a = 1.4, 0= 1.6, y = 1.2). The
simulation is performed via the statistical software R
through the command mle. The number of Monte Carlo
replications made was 1000. For maximizing the log-



likelihood function, we use the L-BFGS-B algorithm with
optimum function. The evaluations of the estimators were
performed via the following quantities for each sample size.
The empirical mean squared errors (MSEs) are calculated
using the R package from the Monte Carlo replications. The
MLEs are determined for each piece of simulated data, say,
(a;,9;,0;) fori=1,2,...,1000; and the biases and MSEs are
computed by

1 1000

2 (@; -~ w),

Bi -
fas (W) = 7900

(31)
1 1000

MSE (w) = 1000 Z (; - w)”.

i=1

For w = a,y, 5, we consider the sample sizes at n =25,
50, 100, 200, 400, 600, 800, 900, and 1000. The empirical
results are given in Tables 1 and 2. Corresponding to
Tables 1 and 2, the simulation results are graphically
displayed in Figures 2-5. From the simulation results, we
conclude that

(i) Biases for all parameters are positive
(ii) The parameters tend to be stabilized

(iii) Estimated biases decrease when the sample size n
increases

(iv) Estimated MSEs decay toward zero when the sample
size n increases

7. Comparative Study

In this section, we illustrate the flexibility of the proposed
model via three biomedical data sets. We also compare the
proposed model with the other well-known models. The
distribution functions of the competitive models are

(i) Weibull
Glx;ay)=1-¢e,

x20, a,y>0. (32)

(i) APTW distribution

(1)

x20, 00 %1, a,>0.
o -

(33)

(iii) Marshall-Olkin Weibull (MOW) distribution

(1-e7")
o+ (1-0)(1—-er*y

G(x;a,9,0) = x>0, a,y,0>0.

(34)

To determine the optimum model, we compute
Cramer-Von Messes (CM) test statistic,
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TaBLE 1: Simulation results for the FRL-W distribution.

Set 1: «=0.7, 0 = 1.3, and y = 0.4.

n
Parameters MLEs MSEs Biases
o 0.73230 0.02214 0.03230
25 o 2.27575 3.38670 0.97575
Y 0.55680 0.18358 0.15680
o 0.72369 0.03247 0.02369
50 o 2.02097 2.45251 0.72097
Y 0.50925 0.14881 0.10925
o 0.71358 0.00752 0.01358
100 o 1.65810 1.07306 0.35810
Y 0.44796 0.05757 0.04796
o 0.70610 0.00352 0.00610
200 o 1.43857 0.32454 0.13857
y 0.41998 0.02678 0.01998
o 0.70723 0.00154 0.00723
400 o 1.33560 0.06391 0.03560
Y 0.40108 0.01086 0.00108
o 0.70439 0.00079 0.00439
600 o 1.30650 0.01328 0.00650
Y 0.39626 0.00504 -0.00373
o 0.70437 0.00054 0.00437
800 o 1.30093 0.00771 0.00093
Y 0.39418 0.00343 -0.00581
o 0.70369 0.00046 0.00369
900 o 1.30177 0.00623 0.00177
y 0.39688 0.00316 -0.00311
a 0.70168 0.00032 0.00168
1000 o 1.30632 0.00533 0.00632
Y 0.40068 0.00248 0.00068

Anderson Darling (AD) test statistic, and Kol-
mogorov Simonrove (KS) test statistics with
corresponding p values. These values are cal-
culated as follows:

(iv) The AD test statistic

1 n
AD= - ; (2i-1)[logG(x;) +log(1-1og G (x,_i11))]>
(35)

where 7 is the sample size and x; is the i™ sample,
calculated when the data is sorted in ascending order.

(v) The CM test statistic

CM—i+i[2i_l+G( )2 36
C12n L 2n i (36)
(vi) The KS test statistic

KS = sup[G, (x) + G(x)], (37)

where G, (x) is the empirical cdf, and sup, is the
supremum of the set of distances. A distribution with
lower values of these measures is considered a good
candidate model among the applied distributions for
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TaBLE 2: Simulation results for the FRL-W distribution.

Set2: a=14,0=16,and y =1.2.

Parameters MLEs MSEs Biases
« 1.31799 0.15082 —0.08200
25 o 2.88652 3.78920 1.28652
y 1.49688 0.30417 0.29688
o 1.32352 0.10232 -0.07647
50 o 2.53513 2.56035 0.93513
y 1.39342 0.18134 0.19342
« 1.36510 0.05251 —0.03489
100 o 2.03725 0.98667 0.43725
y 1.30355 0.08545 0.10355
« 1.38677 0.03109 —-0.01322
200 o 1.84218 0.60026 0.24218
y 1.24274 0.03853 0.04274
« 1.40246 0.01610 0.00246
400 o 1.65938 0.18038 0.05938
y 1.21117 0.01882 0.01117
o 1.39853 0.01378 —0.00146
600 o 1.64008 0.09977 0.04008
y 1.20870 0.01429 0.00870
o 1.40399 0.00915 0.00399
800 o 1.61715 0.06442 0.01715
y 1.20592 0.01063 0.00592
o 1.40783 0.00784 0.00783
900 o 1.60754 0.05594 0.00753
y 1.20124 0.00877 0.00123
o 1.40750 0.00765 0.00750
1000 o 1.60425 0.04333 0.00425
Y 1.19986 0.00839 0.00013
3.0
25 4 , @
€20 b |‘
: y $
= N g
15 o = \
IS ©800060660000006000006000006600 |
<
g 1.0 - &
2 14 0®
Ge 50660660000 o \\
0.5 4 O%Oeeeeoooeeeeoooeeeeooeeeeoooeeeeoooee m75’\
XY
Q,
0.0 0 Seoea GQ%QMA
T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
n n
— a=07 — a =07
-———0=13 -———0=13
--- y=04 ---y=04
(a) (b)

FIGURE 2: Plots of estimated parameters and MSEs for « = 0.7, ¢ = 1.3, and y = 0.4. (a) Plot of estimated parameters vs 7. (b) Plot of MSE vs n.

the underlying data sets. By considering these sta- competitors since the values of all selected criteria of
tistical tools, we observed that the FRL-W distri- goodness of fit are significantly smaller for the
bution provides the best fit compared to the other proposed distribution.
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FIGURE 4: Plots of the parameters and MSEs for a = 1.4, 0 = 1.6, and y = 1.2. (a) Plot of estimated parameters vs #. (b) Plot of MSEs vs n.

7.1. Data 1: The Remission Times (in Months) of a Random
Sample of 128 Bladder Cancer Patients. The first data set
represents the remission times (in months) of a random
sample of 128 bladder cancer patients; see [19]. The FRL-W
and the considered distributions are applied to this data set.
The maximum likelihood estimates of the models for the
analyzed data are presented in Table 3, whereas the goodness
of fit measures of the proposed and other competitive
models are provided in Table 4. Form Table 4, it is clear that
the proposed distribution has lower values than the other

models applied in comparison. The box plot and Time Scale
TTT plot of the first data set are presented in Figure 6. The
fitted pdf and cdf of the proposed model are plotted in
Figure 7, whereas the PP and Kaplan-Meier survival plots of
the proposed model for the first data set are sketched in
Figure 8. From the Time Scale TTT plot (Figure 6), we can
see that the first data set possess unimodal behavior. Also,
from box plot in Figure 6, we can easily observe that the
bladder cancer patient’s data set is positively skewed. From
Figure 7, it is clear that the proposed model fits the estimated
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TaBLE 3: Estimated values of the parameters with standard errors (in parentheses) of the competing models.

Dist. & ¥ G ) a
FRL-W 1.3269 (0.0815) 0.003 (0.0005) 12.978 (3.4361)

Weibull 1.047 (0.0675) 0.093 (0.0190)

APTW 0.014 (0.0865) 0.016 (0.0064) 0.014 (0.0216)
MOW

1.2684 (0.1308)

0.877 (0.5205)

11.829 (11.2869

TaBLE 4: Estimated values of the proposed and other competitive

models.

Dist. CM AD KS p value
FRL-W 0.026 0.168 0.041 0.981
Weibull 0.131 0.786 0.069 0.558
APTW 0.042 0.255 0.045 0.949
MOW 0.150 0.884 0.075 0.451

pdf and cdf very closely. From Figure 8, we can easily detect
that the proposed model is closely followed the PP-plot
which is an empirical tool for finding a best candidate model.

7.2. Data 2: The Survival Times of Neck Cancer Patient Data.
The second data set consists of 44 observations taken from [20]
represents the survival times of a group of patients suffering
from head and neck cancer and treated using a combination of
radiotherapy. This data set also used by [21]. We also applied
the FRL-W and the other selected distributions to the second
data set. Again, we observe that the proposed model outclasses
the other competitors. Corresponding to data 2, the values of
the model parameters are presented in Table 5. The analytical
measures of the proposed and other competitive models are
provided in Table 6. The box plot of the second data set and the

corresponding Time Scale TTT plot of FRL-W are presented in
Figure 9. The estimated pdf and cdf are sketched in Figure 10,
which shows that proposed distribution fit the estimated pdf
and cdf plots very closely, whereas the PP-Plot and
Kaplan-Meier survival plots are presented in Figure 11. From
the Time Scale TTT plot (Figure 9), we can see that the second
data set possess the unimodal behavior. Also, from box plot in
Figure 9, we can easily observe that the neck cancer data set is
positively skewed. The proposed model also provides best
fitting to the neck cancer data (see Table 6) and the proposed
distribution fit the estimated pdf, cdf, and Kaplan-Meier
survival plots very closely.

7.3. Data 3: The Guinea Pigs Infected Data. The third data set
consists of 72 observations taken from [22] representing the
guinea pigs infected with virulent tubercle bacilli. Again, the
FRL-W and other competitors are applied to this data set.
Analyzing the third data set, we observe that the proposed
model provides the better fit than the other competitors.
Corresponding to data 3, the values of the model parameters
are presented in Table 7. The analytical measures of the
proposed and other competitive models are provided in
Table 8. The box plot of the third data set and the corre-
sponding Time Scale TTT plot of the FRL-W are presented in
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TaBLE 5: Estimated values of parameters of the proposed and other competitive models.
Dist. a y G @,
FRL-W 0.832 (0.1033) 0.013 (0.0112) 0.511 (0.0093)
Weibull 0.940 (0.2755) 0.060 (0.0278)
APTW 1.012 (0.1532) 0.003 (0.0044) 0.426 (0.5078)
MOW 0.908 (0.07328) 0.037 (0.0105) 1.029 (1.0359)
TaBLE 6: Estimated values of the parameters with standard errors (in parentheses) of the competing models.
Dist. CM AD KS p value
FRL-W 0.075 0.627 0.093 0.871
Weibull 0.141 0.823 0.130 0.406
APTW 0.121 0.713 0.107 0.653
MOW 0.108 0.704 0.905 0.721
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FIGURE 9: Box plot and Time Scale TTT plot of the second data set.
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Figure 10: Estimated pdf and cdf of the FRL-W distribution for the second data set.
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Figure 11: PP and Kaplan-Meier survival plots of the FRL-W distribution for the second data set.
TaBLE 7: Estimated values of the parameters with standard errors (in parentheses) of the competing models.
Dist. a y G @,
FRL-W 1.799 (0.127) 0.423 (0.002) 0.005 (1.418)
Weibull 1.814 (0.079) 0.004 (0.001)
APTW 1.856 (0.077) 0.003 (0.001) 0.856 (1.048)
MOW 1.037 (0.279) 0.126 (0.152) 8.461 (9.153)
TaBLE 8: Goodness of fit measures of the proposed and other competitive models.
Dist. CM AD KS p value
FRL-W 0.130 0.705 0.081 0.438
Weibull 0.161 0.952 0.097 0.500
APTW 0.159 0.940 0.099 0.473
MOW 0.192 1.108 0.120 0.247
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FIGURE 12: Box plot and Time Scale TTT plot of the third data set.
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FiGure 14: PP and Kaplan-Meier survival plots of the FRL-W distribution for the third data set.

Figure 12. The estimated pdf and cdf are sketched in
Figure 13, whereas the PP and Kaplan-Meier survival plots
are provided in Figure 14. Figures 12-14 reveal that the
FRL-W distribution provides the superior fits to the guinea
pigs infected data.

8. Discussion and Future Frame Work

Statistical decision theory addresses the state of uncertainty
and provides a rational framework for dealing with the
problems of medical decision-making. The medical data
sets are generally skewed to the right, and the positively
skewed distributions are reasonably competitive when
describing unimodal medical data. The traditional distri-
butions are not flexible enough to counter complex forms
of data such as medical sciences data having nonmonotonic
failure rate function. In view of the importance of statistical

distributions in applied sciences, a number of papers have
been appeared in the literature aiming to improve the
characteristics of the existing distributions. However,
unfortunately the number of parameters has been increased
and the estimation of the parameters and derivation of
mathematical properties becomes complicated. Further-
more, due to the restricted parametric space, some dis-
tributions may not be flexible enough to provide adequate
fit to many real data sets. To provide a better description of
the medical sciences data, in this study, an attempt has been
made to introduce a new family of statistical distributions
by reducing the number of parameters and reparamete-
rizing the existing distributions to relax the boundary
conditions of the additional parameter. A special submodel
of the proposed family offers the best fitting in data
modeling with nonmonotonic hazard rate function. The
maximum likelihood method is adopted to estimate the
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model parameters and a comprehensive Monte Carlo
simulation study is done to evaluate the behavior of the
estimators. To show the usefulness of the proposed method
in medical sciences, three real-life examples are discussed.
The very first example about bladder cancer patient data set
is considered. The second data set represents the neck
cancer data and third data set representing the guinea pigs
infection. Analyzing these three real-life examples, it
showed that the proposed model performs much better
than the other competitive distributions. From the above
discussion, it is obvious that the researchers are always in
search of new flexible distributions. Therefore, to bring
further flexibility in the proposed model, we suggest to
introduce its extended versions. The proposed method can
be extended by introducing a shape parameter to the
model.

(i) A random variable X is said to follow the extended
version of the FRL-X family, if its cdf is given by

log{l +0—0F (x; f)e}
log(1+0)

G(x;6,0,8)=1- , 0,0,6>0, x € R,

(38)

where 0 is the additional shape parameter. For 0 = 1,
the expression (38) reduces to (4). The new proposal
may be named as a flexible reduced logarithmic
exponentiated-X (FRLE-X) family. For the illustrative
purposes, one may consider its special case may be
named as flexible reduced logarithmic exponentiated-
Weibull (FRLE-W) distribution defined by the cdf:

log{l +o-0o(l- e"”‘“)e}

G(x:6,0,0) =1~ log(1+0)

, x20,6,0,E>0.

(39)

Due to the introduction of the of additional shape pa-
rameter, the suggested extension may be much flexible in
modeling data in medical sciences and other related fields.

(ii) Another extension of the FRL-X family is given by

log{l + 0 — oF (x; &)}

1
> 1,0,6>0, R,
log (1 + o) ) mo:6>0, x €

G(x;n,0,8) :1—(
(40)

where 7 is the additional shape parameter. For s = 1 the
expression (40) reduces to (4). The model defined in
(40) may be named as the extended flexible reduced
logarithmic-X (EFRL-X) family.

(iii) Another generalized version of the FRL-X can be
introduced via

log{1+ 0 - oF (x;£)°}"
g{_(,f)})) 10,0,6>0, x € R,

G(x;q,@,a,f):17< log(1+0)

(41)
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where 0 and 7 are the additional shape parameters. Clearly,
for # = 1, the expression (41) reduces to (38). For 6 = 1, the
expression (41) reduces to (40), whereas for 0 = 5 = 1, the
expression (41) reduces to (4). The model introduced in (41)
may be named as the extended flexible reduced logarithmic
exponentiated-X (EFRLE-X) family.

9. Concluding Remarks

In this study, we introduced a new family of continuous
distributions called the flexible reduced logarithmic-X family.
Some mathematical properties of the proposed family are
obtained. The maximum likelihood method used to estimate
the unknown model parameters. Three applications to the
real-life medical data sets are given to illustrate empirically the
flexibility of the proposed model. The comparison of the
proposed method is made to some well-known lifetime
distributions such as Weibull, Marshall-Olkin Weibull, and
alpha power transformed Weibull distributions. The com-
parison is made on the basis of well-known goodness of fit
measures including Cramer-Von Messes test statistic,
Anderson Darling test statistic, and Kolmogorov-Simonrove
test statistics with corresponding p values. Empirical findings
indicate that the proposed model provide better fits than the
other well-known competitive models.

Data Availability

This work is mainly a methodological development and has
been applied on secondary data related cancer patients, but if
required, data will be provided.
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