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Abstract
Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regula-
tory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of 
inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease. However, potential impacts of 6-MP on 
ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile 
of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. 
Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP 
alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell 
line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family 
under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-
induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further 
work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the 
anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.

Keywords 6-Mercaptopurine · Enteric nervous system · Enteric glial cells · CXC motif ligand chemokines · Inflammatory 
bowel diseases

Introduction

Inflammatory bowel diseases (IBD), such as Crohn’s dis-
ease and ulcerative colitis (UC), are characterized by chronic 
relapsing intestinal inflammation. While the incidence and 
prevalence of IBD are continuously increasing worldwide 
[1, 2], their etiology and pathogenesis still remain largely 
unknown. In recent years, a large body of evidence has 

grown indicating that complex interactions between genetic, 
environmental and microbial factors and the intestinal neuro-
immune system are involved in development and mainte-
nance of IBD [3, 4].

Nowadays, it is widely acknowledged that the release of 
inflammatory mediators, including a broad variety of cytokines 
and chemokines, plays an essential role in IBD by stimulating 
the recruitment and activation of different types of immune 
cells. For example, the chemokine ENA-78/Cxcl5 binds the 
receptor Cxcr2 expressed by neutrophils that contribute to tis-
sue damage in acute inflammation [5, 6]. In chronic inflam-
mation, most tissues show an elevated expression of MIG/
Cxcl9, IP-10/Cxcl10, and of their receptor Cxcr3 expressed 
by T-cells [5, 7]. Interestingly, Cxcl5, Cxcl9, Cxcl10, and their 
receptors have all been involved in the inflammatory processes 
underlying IBD [6–9]. However, despite significant advances, 
further research is needed to identify the cellular actors under-
lying intestinal inflammation and find potential modulators of 
chemokines-related pathways in IBD.
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In recent years, the enteric nervous system (ENS) has been 
identified as an important regulator of inflammatory reactions 
in the intestinal tract [10]. Composed of enteric neurons and 
enteric glial cells (EGC), both cell types respond to inflam-
matory stimuli and participate in the inflammatory response 
by expressing pro- and anti-inflammatory factors [11]. For 
instance, enteric neurons are an important source of the pro-
inflammatory cytokine TNF-α in the gut [12]. EGC are simi-
larly involved in the regulation of inflammatory processes 
in the gastro-intestinal tract [13]. Indeed, EGC response to 
inflammatory insults is characterized by altered expression 
of enteric glial markers, e.g. S100β and GFAP, in acute and 
chronic intestinal inflammatory disorders [14–18]. Further-
more, EGC contribute to the regulation of intestinal inflam-
matory status via production of the polyunsaturated fatty acid 
metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) in 
IBD patients [19] and release pro-inflammatory cytokines, 
including IL-6 [20] and IL-8 [21], under inflammatory condi-
tions. Despite these important findings, little is known about 
the profile of inflammatory mediators expressed by the ENS 
or therapeutic agents potentially mitigating ENS response to 
inflammatory stress.

Currently, there is no cure for IBD and treatment relies on 
symptom management and immunomodulatory drugs such 
as 6-mercaptopurine (6-MP) [22, 23]. 6-MP is a cytostatic 
agent that is metabolized through complex mechanisms to 
6-thioguanine nucleotides, which inhibits DNA synthesis by 
acting as a purine analogue [22, 24]. Recent evidences have 
been provided in support of direct anti-inflammatory functions 
of 6-MP, occurring independently of its cytostatic activity. 
Indeed, 6-MP has been shown to promote T-cell cycle arrest 
and apoptosis in the Jurkat human T lymphocyte cell line [25]. 
Furthermore, 6-MP regulates the transcriptional activities of 
the orphan nuclear receptors NR4A1-3, which are involved in 
the regulation of inflammatory reactions and neoplasia [26, 
27]. Recently, 6-MP has been shown to inhibit the response of 
microglia to LPS-induced inflammation through PI3K/Akt/
mTOR signaling-mediated translational regulation, suggesting 
potential anti-inflammatory effects in glial cells [28]. However, 
potential anti-inflammatory properties of 6-MP on the ENS 
have not been yet evaluated.

In the present study, we first aimed to characterize the 
transcriptional response of the ENS and EGC to inflam-
matory stimuli and second, to evaluate the potential anti-
inflammatory effects of 6-MP on these cell types.

Material and Methods

Primary Cultures of ENS

Experiments were performed in the Sox10flox mouse line 
[29] in agreement with the local Ethics Committee (V 

242-70056/2015(91-7/15)) and in accordance with the 3R 
principles (Replacement, Reduction and Refinement) to 
reduce the global number of animals sacrificed at our insti-
tute. Genetic modification of this mouse line was not relevant 
for the study. Murine primary cultures of ENS, composed 
of mixed cell population containing enteric neurons and 
EGC, were established based on previously published pro-
tocols for rat [12, 30] and mouse [31], with minor modifica-
tions. Briefly, removed gut segments of e12.5–e14.5 mouse 
embryos were dissected under a stereomicroscope using fine 
forceps. Tissue was mechanically minced using a chirurgi-
cal scalpel, placed in suspension in 2 ml DMEM/HAM F12 
(1:1, Pan Biotech) medium and digested with 0.1% trypsin 
(Sigma-Aldrich) for 15 min at 37 °C. Cells were then treated 
with 0.01% DNase I (Sigma-Aldrich) for 15 min at 37 °C. 
Reaction was stopped by addition of DMEM/HAM F12 
(1:1) medium supplemented with 10% v/v fetal calf serum 
(FCS, Pan-Biotech). Cells were seeded at a density of 4 ×  105 
cells per well on 24-wells Cell + plates (Sarstedt). After 24 h, 
the medium was replaced by FCS-free DMEM/HAM F12 
(1:1) supplemented with N2 (Pan Biotech). Primary cultures 
were composed of about 14–30% EGCs, and 4–10% enteric 
neurons (personal observation, determined by immunohis-
tochemistry). Cells were allowed to grow for further 24 h 
before treatment. Cells were incubated with 10 or 50 µM 
6-MP (Sigma-Aldrich) for 16 h before treatment with LPS 
(10 ng/ml, Sigma-Aldrich) for further 6 h.

Enteric Glial Cell Line

The EGC line JUG2, which derives from rat ENS primary 
culture, was used for this study [32]. Cells were maintained 
in DMEM medium supplemented with 10% v/v FCS (Pan-
Biotech). Cells were seeded at 3 ×  105 cells per well in 
12-wells plates (Sarstedt). Cells were incubated with 10 or 
50 µM 6-MP (Sigma-Aldrich) for 16 h before treatment with 
LPS (10 ng/ml, Sigma-Aldrich) or combination of TNF-α 
and IL1β (T + I, 100 ng/ml respectively, Immunotools) for 
further 24 h. Analyses were performed on at least five inde-
pendent experiments.

RNA Isolation and Real‑Time Quantitative PCR

Total RNA extraction was performed using Nucleo-
zol (Macherey–Nagel) and extracted RNA was stored at 
− 80 °C until further processing. Reverse transcription 
was performed on 1 µg of total RNA using the Revert Aid 
reverse transcription kit (Thermo-Fisher Scientific) accord-
ing to manufacturer’s recommendations. Quantitative PCR 
(qPCR) was performed on 5 ng cDNA using the Evagreen 
Supermix (Solis biodyne) or the qPCR Master Mix Plus 
(Eurogentec) on an ABI Prism 7500 fast Real-Time PCR 
cycler (Life Technologies). The housekeeping genes RPS6 
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or HPRT were used for normalization. Primer sequences 
are listed in Supplementary Table 1. Relative quantitation 
to control conditions was performed using the ΔΔCt method 
and normalization to inflammatory conditions (LPS or T + I, 
respectively, set to 100%) was done.

Microarray Analysis

Genome-wide expression analysis was performed on 100 ng 
total RNA obtained from three independent experiments 
using Clariom S arrays (Thermo-Fisher Scientific) accord-
ing to manufacturer’s recommendations. Data were analyzed 
using the Transcriptome Analysis Console v4.0.1.36 and are 
available at the GEO database (GSE171308). Results were 
considered statistically significant for p-value < 0.05 and fold 
change ≥  ± 2.

Comparison to Human Data‑Set

Genome-wide expression data-sets GSE92415 [33] and 
GSE87466 were obtained from the Gene expression omnibus 
(GEO) database. Gene expression in colon mucosal tissue of 
healthy controls was compared to UC patients (GSE92415 
control vs. UC patients placebo group, n = 21 and n = 52 
respectively and GSE87466 control vs. UC patients, n = 21 
and n = 27 respectively) using the GEO2R online tool. Venn 
Diagram and analysis of most significant overlapping differ-
entially expressed genes (DEG, fold-change > 4 and FDR-
p-value < 0.05) between data-sets was performed using the 
online tool Venn (http:// bioin forma tics. psb. ugent. be/ webto 
ols/ Venn/).

Gene Ontology and Pathways Analysis

Pathways and disease association analyses were performed 
using the online tools DAVID (Version 6.8) and Toppgene 
respectively. Gene network analysis was performed using 
Cytoscape (Version 3.8.2) running the plugin GeneMania 
[34].

ELISA

Cytokine concentrations in cell culture supernatants were 
measured employing enzyme-linked immunosorbent assay 
(ELISA) kits for rat and mouse TNF-α (Thermo-Fisher 
Scientific), rat and mouse IL-6 (Thermo-Fisher Scientific), 
mouse CXCL1 (Peprotech), mouse CXCL2 (Peprotech), 
mouse CXCL5 (Sigma-Aldrich), mouse CXCL9 (Sigma-
Aldrich), mouse CXCL10 (Peprotech), rat CXCL5 (Sigma-
Aldrich), rat CXCL9 (Thermo-Fisher Scientific) and rat 
CXCL10 (Peprotech). Assays were performed according to 
manufacturer’s instructions. The absorbance was measured 
at 450 nm.

Statistical Analyses

Statistical analyses were performed using the Prism soft-
ware (Graphpad Version 8.4.2). Student t-test was used to 
perform comparison between two groups. Normality testing 
was performed using D’Agostino and Pearson test. In case of 
parametric distribution, ANOVA followed by Tukey’s post-
test was performed to compare three groups or more and 
Friedman’s test followed by Dunn’s posttest was performed 
otherwise. Results were considered significant for p < 0.05.

Results

LPS Induces a Complex Profile of Inflammatory 
Mediators in ENS Primary Cultures

In order to gain better understanding of ENS involvement 
in intestinal inflammation, we performed microarray-based 
gene expression profiling comparing LPS-treated ENS pri-
mary cultures to untreated controls. Differential transcrip-
tional regulation was observed for 628 genes, including 456 
up-regulated and 90 down-regulated genes (Fig. 1a and Sup-
plementary Table 2).

More particularly, expression of the pro-inflammatory 
cytokines TNF-α, IL-6 and IL-1β was clearly induced after 
LPS stimulation (Fig. 1a, b and Supplementary Table 2). 
Interestingly, a large set of chemokines of the CXC-motif 
family were also significantly up-regulated after LPS treat-
ment for 6 h, with the chemokines Cxcl1, Cxcl2, Cxcl5, 
Cxcl9 and Cxcl10 showing more than 100 fold upregula-
tion (Fig. 1b and Supplementary Table 2). Gene ontol-
ogy analyses confirmed the induction of main inflam-
matory pathways, as well as the activation of cytokine 
and chemokine pathways (Fig.  2a–c, Supplementary 
Table 3). In particular, cytokine activity appeared as the 
most significantly affected molecular pathway with a set 
of 38 cytokines showing altered expression (GO:0005125, 
Fig. 2c, Supplementary Table 4). Chemokine activity was 
found to be the second most significant module related 
to gene ontology molecular functions, with a set of 17 
chemokines being enriched in ENS primary cultures 
after stimulation with LPS (GO:0008009, Supplementary 
Table 4). The LPS-induced differentially expressed genes 
were significantly associated with transcriptomic pro-
files observed in intestinal inflammatory disorders such 
as colitis (C0009319) and IBD (C0021390, Fig. 2b, Sup-
plementary Table 5). We then compared the differential 
transcriptomic profile induced by LPS in ENS primary cul-
tures to the transcriptomic profiles observed in intestinal 
tissue of UC patients (GSE92415 and GSE87466, control 
vs. UC). Overlap was observed for a total of 20 genes 
when comparing most significantly DEG between the 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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different data-sets (Fig. 3a). In particular, genes related to 
chemokine activity, including Cxcl1, Cxcl2, Cxcl5, Cxcl9 
and Cxcl10 were significantly enriched amongst the over-
lapping hits (Fig. 3b, Supplementary Table 6). 

6‑MP has Limited Impact on LPS‑Induced 
Transcriptomic Profile in ENS Primary Cultures

As observed in principal component analysis, 6-MP treat-
ment had low impact per se on the transcriptomic profile 
of ENS primary cultures in comparison to control condi-
tions (Fig. 4a, compare 6-MP to control group, Supple-
mentary Table 7). Under LPS-stimulation, based on their 
transcriptomic profile, cells pre-treated with 6-MP formed 
an individual cluster, which was clearly distinct from con-
trol or LPS conditions (Fig. 4a). This distinct transcrip-
tomic profile relied on co-altered expression of 60 genes 
between LPS-treated ENS primary cultures and cultures 
treated with LPS and 6-MP in combination, although sin-
gle differential expression of these genes did not remain 
significant after FDR-correction (Fig. 4c, d, Supplemen-
tary Table 8). As indicated in the Venn diagram, amongst 
these 60 genes, only 15, including the chemokines Cxcl5 
and Cxcl9, also belonged to the group of genes upregu-
lated by LPS, (Fig. 4b, Supplementary Table 9).

6‑MP has Limited Impact on LPS‑Induced Expression 
of Chemokines in ENS Primary Cultures

Quantitative PCR was used to validate the results of the 
genome-wide expression analysis, with a particular focus 
on TNF-α, IL-6 and the chemokines Cxcl1, Cxcl2, Cxcl5, 
Cxcl9 and Cxcl10. LPS stimulation resulted in upregula-
tion of TNF-α and IL-6 expression by 53.8 ± 15.2 and 
55.0 ± 15.4-fold respectively after 6 h (Fig. 5a). Similarly, 
expression of the chemokines Cxcl1 and Cxcl2 increased 
by 107.1 ± 20.8 and 208.0 ± 81.0-fold respectively. Cxcl5, 
Cxcl9 and Cxcl10 mRNA expression in primary culture of 
ENS were upregulated by 112.6 ± 18.6, 728.8 ± 177.7, and 
251.2 ± 61.5-fold respectively, confirming the results of the 
microarray (Fig. 5a). Pre-treatment with 10 or 50 µM 6-MP 
did not affect the LPS-induced mRNA expression of TNF-α 
and IL-6 (Fig. 5b, c). LPS-induced TNF-α protein release 
was significantly reduced after pre-treatment with 50 µM 
6-MP (Fig. 5d). LPS-induced IL-6 protein production was 
not significantly inhibited by pre-treatment with 50 µM 
6-MP, as determined by ELISA (Fig. 5e). Pre-treatment of 
ENS primary cultures with 6-MP showed hardly any effects 
on the LPS-induced mRNA expression of Cxcl1, Cxcl2, 
Cxcl5, Cxcl9 and Cxcl10 (Fig. 6a–e). Pre-treatment with 
50 µM 6-MP inhibited the LPS-induced protein produc-
tion of Cxcl5 by 22.9% (Fig. 6h) but had no impact on the 

Fig. 1  Impact of LPS treatment on the transcriptome of ENS primary 
cultures. ENS primary cultures were incubated with LPS at 10 ng/ml 
for 6 h, results for three independent experiments are shown. a Vol-
cano plots showing the differential gene expression between control 
and LPS conditions. Red and green dots represent significant up- and 

down-regulated genes respectively (fold change >  ± 2 and FDR-p-
value < 0.05). b Hierarchical clustering of the main differentially 
expressed genes (fold change > 100 or <  − 2) between control and 
LPS-treated ENS primary cultures
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release of the chemokines Cxcl1, Cxcl2, Cxcl9 and Cxcl10 
(Fig. 6f–j).

Chemokines Expression is Upregulated by TNF‑α 
and IL‑1β in EGC

To address whether EGC may represent a potential source 
of inflammatory mediators, we analyzed the expres-
sion of TNF-α, IL-6, and the chemokines Cxcl1, Cxcl2, 

Cxcl5 and Cxcl10 in an EGC line (referred thereafter as 
JUG2) in response to inflammatory stimuli. LPS treatment 
failed to induce the expression of any of the cytokines 
or chemokines analyzed (Fig. 7a). Since the JUG2 cell 
line was not responsive to LPS, JUG2 cells were treated 
with TNF-α and IL-1β in combination (T + I), in presence 
or absence of 6-MP. At mRNA level, expression of IL-6 
was induced by 160.0 ± 49.6-fold by treatment with T + I 
for 24 h, whereas expression of TNF-α was induced by 

Fig. 2  Gene ontology (GO) analyses of LPS-treatment on ENS pri-
mary cultures. Primary cultures of ENS were incubated with LPS at 
10 ng/ml for 6 h. a Top 15 GO-molecular pathways fold enrichment 
in LPS-treated ENS primary cultures in comparison to control. b 
Gene counts present in the top15 most significant diseases associated 

with the altered transcriptomic profile observed in LPS-treated ENS 
primary cultures. c Interaction network of cytokines and chemokines 
hits (GO:0005125) significantly induced by LPS in ENS primary 
cultures.*FDR-p-value < 0.05
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Fig. 3  Overlap between LPS-induced ENS primary cultures and 
ulcerative colitis (UC) transcriptomic profiles. a Venn diagram show-
ing overlapping differentially expressed genes (DEGs) observed in 
LPS-treated ENS primary cultures (control vs. LPS) in comparison 

to DEGs observed in mucosal tissues of UC patients (GSE92415, 
GSE87466, control vs. UC, for fold-change > 4 and FDR-p-
value < 0.05). b Interaction network of overlapping DEGs observed in 
a 
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13.2 ± 2.7-fold. The expression of the chemokines Cxcl1, 
Cxcl2, Cxcl5 and Cxcl10 was induced by 238.3 ± 66.1, 
7333.0 ± 2521.0, 536.8 ± 104.9 and 15.1 ± 2.7-fold 
respectively by T + I after 24 h treatment in JUG2 cells 
(Fig. 7b). Pre-treatment of JUG2 cells with 50 µM 6-MP 

inhibited the T + I-induced mRNA expression of TNF-α 
by 67.7 ± 6.6% (Fig. 7c). Pre-treatment with 6-MP did not 
affect the T + I-induced IL-6 expression neither at mRNA 
nor at protein level (Fig. 7d, e).

Fig. 4  Impact of 6-MP on LPS-induced transcriptomic alterations in 
ENS primary cultures. Primary cultures of ENS were incubated with 
LPS at 10  ng/ml for 6  h after pre-treatment for 16  h with 6-MP at 
50 µM and compared to untreated control conditions. Principal com-
ponent analysis (a) showing the differential gene expression between 
primary ENS cultures in control condition or treated with LPS and 
6-MP alone or in combination in three independent experiments. Axis 
1, 2 and 3 represent 61.6, 8.3 and 5.7% of the total observed variance 
respectively. Venn diagram (b) representing the number of genes dif-

ferentially expressed and overlapping in LPS vs. control (blue) and 
in LPS vs. LPS + 6-MP (yellow) conditions. Volcano plots showing 
the differential gene expression between LPS and LPS + 6-MP con-
ditions (c). Red and green dots represent up- and down-regulated 
genes respectively (fold change >  ± 2 and p-value < 0.05). d Hier-
archical clustering of the main differentially regulated genes (fold 
change > 2.2 and <  − 2.2) for ENS primary cultures co-treated with 
LPS and 6-MP
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Fig. 5  Impact of 6-MP on LPS-
induced expression of selected 
cytokines and chemokines in 
ENS primary cultures. LPS 
at 10 ng/ml for 6 h induced 
the mRNA expression of the 
inflammatory mediators TNF-α, 
IL-6, Cxcl1, 2, 5, 9 and 10, 
as determined by qPCR (a, 
n = 9–11, data were normalized 
to control expression). Impact 
of pre-incubation with 6-MP 
at 10 and 50 µM for 16 h on 
LPS-induced mRNA expression 
of TNF-α (b) and IL-6 (c) was 
determined by qPCR (n = 7–11). 
Data were normalized to LPS 
conditions. ELISA was used to 
measure the impact of 6-MP at 
10 and 50 µM on LPS-induced 
protein production of TNF-α (d) 
and IL-6 (e, n = 11). Data were 
normalized to LPS conditions. 
*p < 0.05 in comparison to 
control. $p < 0.05 in comparison 
to LPS



1789Neurochemical Research (2021) 46:1781–1793 

1 3

6‑MP has Limited Impact on the Expression 
of Chemokines Induced by TNF‑α and IL‑1β in EGC

T + I-induced mRNA expression of Cxcl1 and Cxcl2 was 
reduced respectively by 24.2 ± 7.3 and 59.2 ± 5.1% by 
treatment with 50 µM 6-MP (Fig. 8a and b). T + I-induced 
mRNA expression of Cxcl5 was inhibited by pre-treatment 
with 10 µM and 50 µM 6-MP by 50.3 ± 8.1 and 53.8 ± 7.6% 
respectively (Fig. 8c). However, no impact of 6-MP pre-
treatment at either concentration was observed on Cxcl5 
protein production (Fig. 8d). Similarly, pre-treatment with 
10 µM and 50 µM 6-MP inhibited the T + I-induced mRNA 
expression of Cxcl10 by 62.2 ± 8.9% and 75.4 ± 2.6% respec-
tively but did not altered T + I-induced Cxcl10 protein 
release (Fig. 8e, f). Of note, no induction of Cxcl9 protein 
was detected after combined T + I treatment in JUG2 cells 
(data not shown).

Discussion

Increasing evidences indicate that the ENS is an important 
regulator of intestinal inflammation. Over the last decades, 
several independent research groups have demonstrated that 
both enteric neurons and EGC constitute a source of inflam-
matory cytokines and chemokines [20, 21, 35]. In line with 

these results, we demonstrate that the ENS expresses a com-
plex profile of inflammatory mediators in response to inflam-
matory stimuli. In particular, inflammatory stress in ENS 
primary cultures, as well as in EGC, induces the expression 
of a broad profile of chemokines, including Cxcl1, Cxcl2, 
Cxcl5, Cxcl9 and Cxcl10, extending the known inflamma-
tory portfolio of these cell populations.

Enteric neuro-immune interactions are key mechanisms 
in IBD and induction of chemokine pathways by inflamma-
tory stimuli within the ENS may play an important role in 
recruiting immune cell populations, such as T-lymphocytes 
[36], mast cells [37], or macrophages [38] in the intestinal 
wall. Rat ENS primary cultures have revealed as a suitable 
model to study ENS functions under inflammatory stress 
[12]. In our study, using mouse ENS primary cultures, ontol-
ogy association analyses indicated that the observed LPS-
induced inflammatory expression profile was significantly 
related to the transcriptomic profiles observed in colitis or 
IBD. This assumption was confirmed by comparing our 
results to intestinal transcriptomic profiles of UC patients, 
supporting the rational to use ENS primary cultures to study 
chemokines activation under inflammatory stress. Most 
particularly, these results support the involvement of broad 
chemokine pathways in the inflammatory active phases of 
IBD and are in line with recent data of the literature based 
on the analysis of additional publicly available genome-wide 

Fig. 6  Impact of 6-MP on LPS-induced expression of chemokines 
Cxcl1, 2, 5, 9 and 10 in ENS primary cultures. Impact of pre-incu-
bation with 6-MP at 10 and 50 µM for 16 h on LPS-induced (10 ng/
ml, 6 h) mRNA expression of Cxcl1 (a), Cxcl2 (b), Cxcl5 (c), Cxcl9 
(d) and Cxcl10 (e) was determined by qPCR (n = 9–11). Data were 

normalized to LPS conditions. Protein production of Cxcl1 (f), Cxcl2 
(g), Cxcl5 (h), Cxcl9 (i) and Cxcl10 (j) was determined by ELISA 
(n = 10). *p < 0.05 in comparison to control. $p < 0.05 in comparison 
to LPS
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data-sets of UC patients [39]. In support of this data, expres-
sion of Cxcl1 [9] and Cxcl2 [40, 41] has also been shown to 
be increased in intestinal mucosal biopsies of IBD patients 
in additional independent studies. Similarly, Cxcl9 expres-
sion is up-regulated in UC [9], and Cxcl5 is one of the main 
chemokines expressed in intestinal tissue of Crohn’s disease 
patients [42]. Moreover, increased expression of Cxcl10 and 
its receptor Cxcr3 has been confirmed in intestinal biopsies 
of IBD patients [43].

Importantly, using the EGC cell line JUG2, we dem-
onstrated that EGC themselves represent an important 
source of chemokines under inflammatory stress. In par-
ticular, although the JUG2 cell line remained insensitive 
to LPS stimulation, our data clearly indicates that Cxcl1, 
Cxcl2, Cxcl5 and Cxcl10 belonged to the main chemokines 
induced by inflammatory stress in EGC, although induced 
Cxcl10 production remained at relatively low levels in JUG2 
cells. In line with our results, induced Cxcl2 and Cxcl10 

expression has been previously demonstrated in primary cul-
tures of human EGC after combined stimulation with LPS 
and interferon-γ [44]. Induced expression of Cxcl5 has also 
been observed in EGC-derived gliospheres after stimulation 
with LPS [35]. Interestingly, inflammation-induced expres-
sion of Cxcl5 has been observed in intestinal epithelial cells 
in IBD patients, as well as in the caco-2 cell line, but con-
tribution of the ENS as a potential source of inflammatory 
mediators was not addressed in these early studies [45–47]. 
Although it remains unclear to which extend the ENS con-
tributes to chemokines release in IBD patients, our results 
clearly indicate that ENS cell populations and in particular 
EGC may constitute a significant source of chemokines of 
the CXCL-family in intestinal tissues under inflammation.

6-MP has been widely used for the clinical treatment of 
IBD [23] and recent studies have given evidences for direct 
anti-inflammatory properties of 6-MP [25, 28, 48]. In par-
ticular, 6-MP was shown to inhibit the induced expression of 

Fig. 7  Impact of 6-MP on TI-induced expression of selected 
cytokines and chemokines in JUG2 cells. Impact of 10 ng/ml LPS (a) 
and combination of TNF-α and IL-1β (TI), 100  ng/ml respectively, 
for 24 h on mRNA expression of TNF-α, IL-6, Cxcl1, Cxcl2, Cxcl5 
and Cxcl10, as determined by qPCR (b, n = 4–6, data are normalized 
to untreated control expression). Impact of pre-incubation with 6-MP 

at 10 and 50 µM for 16 h on TI-induced mRNA expression of TNF-
α (c) and IL-6 (d) was determined by qPCR (n = 6). Data were nor-
malized to TI conditions. ELISA was used to measure the impact of 
6-MP at 10 and 50 µM on TI-induced protein production of IL-6 (e, 
n = 6, data are normalized to TI conditions). *p < 0.05 in comparison 
to control. $p < 0.05 in comparison to TI
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TNF-α, IL-6 and Cxcl1 in airway epithelial cell lines under 
inflammatory stress [48]. Similarly, LPS-induced mRNA 
and protein expression of TNF-α is inhibited by 6-MP in 
microglia in a process involving the NF-κB pathway [28].

In our study, potential direct anti-inflammatory proper-
ties of 6-MP were rather limited both in EGC, as well as 
in ENS primary cultures. Indeed, in ENS primary cul-
tures, protein expression of TNF-α and Cxcl5 were in 

part inhibited by pre-treatment with 6-MP, without any 
alterations of mRNA expression. These results suggest 
that 6-MP may lead to substantial post-transcriptional 
alterations of TNF-α and Cxcl5 release, without interfer-
ing directly with NF-κB transcriptional activity in this 
complex cellular model. On the opposite, 6-MP inhi-
bition of inflammation-induced mRNA expression of 
Cxcl5 and Cxcl10 was not associated with any reduction 
of chemokines release in the JUG2 cell line. Although 
intriguing, the observed differences between primary cul-
tures and JUG2 cells may rely on the differential activity 
of 6-MP in these models. For instance, anti-inflammatory 
effects of 6-MP observed in ENS primary cultures might 
rely on post-translational mechanisms involving gasdermin 
C (GSDMC), as gasdermins have been shown to regulate 
cytokines release at the plasma membrane [49]. Addi-
tionally, the mixed cell composition of ENS primary cul-
tures may mitigate the effects of 6-MP by yet unidentified 
mechanisms. Characterization of the enzymatic machinery 
expressed by ENS cell population should bring important 
information on this aspect in future studies.

Until now, little is known about the molecular pathways 
involved in the mediation of direct anti-inflammatory effects 
of 6-MP. In microglia, decreased TNF-α production by 
6-MP has been proposed to rely in part on orphan nuclear 
receptor Nur77-mediated transcriptional inhibition and con-
comitant translational repression involving the PI3K/Akt/
mTOR pathways [28]. Noteworthy, neither increased expres-
sion of Nur77 nor activation of mTOR signaling pathways 
were observed in our transcriptomic analysis, suggesting that 
alternative cellular mechanisms are involved in the media-
tion of 6-MP effects in the ENS. However, further experi-
ments are required to fully evaluate the potential involve-
ment of these pathways in our model.

Taken together, our results suggest that the direct anti-
inflammatory effects of 6-MP observed on the ENS in vitro 
may rather play a limited therapeutic role. Despite these 
limitations, our study supports the involvement of the ENS, 
and more particularly of EGC, as an important source of 
inflammatory mediators in the gut. Targeting of chemokine 
pathways has offered promising results for the treatment 
of IBD in pre-clinical studies [50–52] and further work is 
required to fully evaluate the contribution of ENS-derived 
inflammatory mediators in chronic and acute intestinal 
inflammatory disorders. This characterization may help to 
develop novel therapeutic strategies by targeting the ENS-
mediated inflammatory response in IBD and other intestinal 
inflammatory disorders.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11064- 021- 03324-y.

Fig. 8  Impact of 6-MP on TI-induced expression of the chemokines 
Cxcl1, Cxcl2, Cxcl5 and Cxcl10 in JUG2 cells. Impact of pre-incu-
bation with 6-MP at 10 and 50  µM for 16  h on JUG2 cells treated 
with TNF-α and IL-1β in combination (TI), 100 ng/ml respectively, 
for 24  h. Expression of Cxcl1 (a), Cxcl2 (b), Cxcl5 (c) and Cxcl10 
(e) was determined by qPCR (n = 5–6). Data were normalized to TI 
conditions. Protein production of Cxcl5 (d) and Cxcl10 (f) was deter-
mined by ELISA (n = 6). *p < 0.05 in comparison to control. $p < 0.05 
in comparison to LPS
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