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The Contribution of Somatic Expansion
of the CAG Repeat to Symptomatic
Development in Huntington’s Disease:
A Historical Perspective
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Abstract. The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation
for a number of inherited human disorders, including Huntington’s disease (HD), opened up a new era of human genetics and
provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited
and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation
for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also
revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are
now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms
of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems,
somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism
involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking
about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention.
Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
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THE FELLOWSHIP OF THE REPEAT
DISORDERS

An unexpected discovery: unstable DNA in
fragile X syndrome

In May 1991, a remarkable series of papers began
to appear that revealed an “unstable region of DNA”
that was increased in size in individuals with fragile
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X syndrome (FXS) [1, 2] (see Fig. 1 for a timeline of
events). Within a matter of a few weeks, this unstable
region was further revealed as containing a polymor-
phic CGG repeat [3] that mapped precisely to the
position of the larger genomic DNA restriction frag-
ments observed in FXS patients [4]. These data were
particularly exciting as they provided potential expla-
nations for two particularly unusual features of FXS
and revealed previously unimagined genetic insta-
bility in humans. Firstly, as evidenced by its name,
FXS had long been defined by the association of
intellectual disability with a fragile site on the X-
chromosome [5]. The fragile site presents as a region
near the tip of the long arm of the X-chromosome that
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fails to condense during metaphase in cultured cells,
particularly when the cells are grown under condi-
tions of reduced folate [6]. The presence of a CGG
repeat, and associated changes in the methylation
patterns in the region, suggested that chromosomal
fragility in the region was in some way directly
associated with the unusual sequence nature and epi-
genetic consequences of the CGG repeat expansion.
Secondly, and of more direct relevance to Hunt-
ington’s disease (HD) and other inherited human
disorders, it was also revealed that the enlarged region
was highly unstable with different sizes present in
individuals from the same family, consistent with
intergenerational instability [1, 2, 7]. This intergen-
erational instability was of particular interest, as it
also offered a potential explanation for the unusual
inheritance patterns observed in FXS. Even in the first
description of the sex-linked nature of FXS by Martin
and Bell in 1943, the authors noted there were two
males, that by their position within the pedigree, were
obligate carriers of the mutant X-chromosome, but
did not present with FXS, but could nonetheless trans-
mit the disease to affected grandsons through their
carrier daughters [8]. The existence of these so called
normal transmitting males were confirmed in multi-
ple additional families [9, 10]. Additionally, it was
shown that the penetrance of the disease increased in
successive generations, with the penetrance appear-
ing to be in some way associated with the number
of female transmissions relative to a normal trans-
mitting male [9, 10]. The existence of these unusual
inheritance patterns were received with a good deal
of skepticism and the phenomena became known as
the Sherman paradox [11, 12]. The Sherman para-
dox was thus resolved, when it was demonstrated
that: affected FXS males inherited a full mutation
expansion of greater than approximately 210 CGG
repeats from their carrier mothers; that normal trans-
mitting males carried non-penetrant premutations of
50 to 200 CGG repeats; and that such premutations
were biased toward expansion in subsequent gen-
erations when transmitted by carrier females [7].
The increasing penetrance thus being a product of
the fraction of mutant X-chromosomes that expand
intergenerationally from premutations to full muta-
tions. Notably, the intergenerational mutation rate
of premutation FXS alleles was near an astonishing
100%. At the time such mutation rates were unprece-
dented in human genetics. Up until that point the
most unstable sequences that had been detected were
the hypervariable minisatellite tandem repeats, that
were first described in 1980 [13] and subsequently

exploited as key genetic markers in DNA profiling
and DNA fingerprinting [14, 15], and that had inter-
generational mutation rates in the order of 1 to 5%
[16]. Even these minisatellite “hypermutation” fre-
quencies of 1 to 5%, were still orders of magnitude
greater than anything else previously observed in the
human germline.

Two is company: spinal and bulbar muscular
atrophy is also caused by a repeat expansion

At about the same time these electrifying develop-
ments in FXS were reported, a short paper in Nature
in July 1991 [17] described “androgen receptor (AR)
gene mutations in X-linked spinal and bulbar mus-
cular atrophy.” Specifically, the paper described the
presence of an “enlargement of the CAG repeat” of
40 to 52 repeats in spinal and bulbar muscular atro-
phy (SBMA) patients, “roughly double” the 17 to 26
repeats observed in unaffected controls. The authors
further speculated that “enlargement of the polyg-
lutamine repeat may prevent the androgen receptor
from performing an important regulatory activity in
motor-neurons, thereby leading to the degeneration
of these cells which is characteristic of the disease.”
Of note however, the SBMA AR CAG expansion was
not initially revealed as genetically unstable. Indeed,
the SBMA AR CAG is only moderately unstable in
the germline and this was only revealed a year or two
later [18, 19]. Nonetheless, the existence of a sec-
ond trinucleotide repeat expansion mediating another
inherited human disorder, established repeat expan-
sion as a novel mechanism of inherited disease in
humans.

The shadow of the past: anticipation and
eugenics

Whilst it is easy now to imagine unstable DNA as
explaining a variety of different phenomena, such as
for instance anticipation, it is important to remember
that right up until the point at which the disease-
causing mutations were identified, the very existence
of anticipation as a genuine biological observation
was not yet firmly established. The phenomena of
antedating, or as it later became known anticipation,
earlier age at onset observed in successive genera-
tions, was first proposed to occur in the mid-19th
century [20, 21]. Unfortunately, these ideas were
taken up by some, most notably, Frederick Mott,
within the burgeoning eugenics movement of the
early part of the 20th century who proposed antic-
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Fig. 1. Timeline of some of the key events establishing anticipation as a genuine biological phenomenon and somatic expansion as contributing
toward HD pathology.

ipation to apply to “mental illness” and “insanity” in
general and used this as justification for proposals to
limit the reproductive rights not just of the “insane”,
but also the “higher grade imbeciles” who continue
to provide “fresh tainted stocks” [22]. Despite being
an ardent eugenicist himself, Karl Pearson (an early
pioneer of mathematical statistics and originator of
the Pearson correlation coefficient) [23], and Pear-
son’s student, David Heron [24], noted the potential
“fallacy” in the interpretation of the pedigree data
used to support the existence of anticipation; namely,
that disease-dependent effects on reproductive suc-
cess would inevitably lead to the identification of a
greater average age at onset in affected parents rela-
tive to their children. Notably, some descriptions of
the inheritance of HD in the early part of the 20th cen-
tury reported that this disorder also appeared to occur
earlier in successive generations [25–27]. Nonethe-
less, it was recognised by Charles Davenport, another
prominent eugenicist and advocate of the sterilisa-
tion of HD individuals, that the “law of anticipation”
in HD might be “partly, if not wholly, illusory” due
to the ascertainment biases as previously outlined by
Pearson and Heron [28]. Around the same time antic-
ipation was also noted in myotonic dystrophy type 1
(dystrophia myotonica, DM1) when apparently unre-
lated individuals with the adult onset form of the
disease with a primarily neuromuscular presentation,
were shown to be connected by prior generations with
often cataracts as their only symptom [29]. Over the
next few decades the existence of anticipation in DM1
appeared to be supported by additional family studies
(e.g., [30, 31]) in some of which the authors at least
partially considered the issue of ascertainment bias

(e.g., [32–34]). Following the atrocities of the second
world war, and the backlash against the eugenic ideals
of the early 20th century, Lionel Penrose published
a paper in 1947 in which he described in detail the
many potential biases that could account for appar-
ent anticipation in ascertained families [35]. Penrose
considered the evidence for anticipation in a num-
ber of disorders, including HD, and concluded, that
even in DM1 for which the apparent evidence was
strongest, the confounding effects of several different
ascertainment biases could not be excluded as having
yielded the level of apparent anticipation observed.
For a more detailed discussion of the history of antic-
ipation and the eugenics movement see the works
by Harper et al. [36] and Judith Friedman [37]. Pen-
rose’s publication was widely interpreted, somewhat
erroneously, as having proved that anticipation did
not occur, and enhanced by the absence of a plausi-
ble genetic mechanism that could yield anticipation,
the existence of anticipation as a genuine biological
phenomena was widely dismissed. Indeed, as late as
1989 a paper describing a detailed analysis of the
inheritance patterns in DM1 was entitled “Antici-
pation in myotonic dystrophy: fact or fiction?” and
conservatively concluded “that anticipation may be
inherent in the transmission of myotonic dystrophy”
[38]. In this study, all of the potential, and very real,
biases described by Penrose, were carefully taken
into account and corrected for, and still evidence for
striking anticipation of 20 to 30 years per genera-
tion persisted. The neurologist, Chris Höweler, who
conducted most of this work for his PhD, recounts
how difficult it was finding two external examin-
ers who would approve his thesis, with one expert
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apparently commenting “I’m not going to read it,
that’s bull****, I’m not going to spend my time read-
ing about bull***” [39]. Even the two examiners
who eventually approved the thesis commented “‘we
don’t know whether you are right, but you have good
arguments”. Notably, Höweler et al. considered sev-
eral possible explanations for how anticipation might
occur, even suggesting that “a gradual change of the
mutation itself in successive generations might be
assumed” [38].

A short cut to the mutation: unstable DNA as an
explanation for anticipation?

Even prior to the identification of the disease caus-
ing mutations, the concept that the anticipation in
DM1 might be analogous to the increasing pene-
trance observed in FXS was posited [38, 40]. Thus,
building on the observations of extreme genetic insta-
bility observed in FXS and how this could resolve
the Sherman paradox, it was quickly suggested that
the anticipation observed in DM1 could possibly be
explained by an unstable DNA fragment increasing
in length from one generation to the next [41].

A mutation unmasked: a CTG repeat expansion
in myotonic dystrophy type 1

With the discovery of the FXS mutation, the lack of
a genetic mechanism to explain anticipation evapo-
rated. Moreover, the presence of a putative expansion
provided a rapid route toward identification of the
causative mutation; cloned fragments from the criti-
cal region delineated by traditional linkage mapping
could be used as probes on Southern blot hybridis-
ation analyses of restriction digested genomic DNA
in the absence of any knowledge of their sequence or
gene content. And, within months of the reports of the
identification of the FXS mutation, reports appeared
in February 1992 of the presence of unstable DNA
in DM1 [42–44], which was quickly confirmed as
the expansion of a CTG repeat in the DMPK gene
[45–47]. The size of the CTG repeat inherited was
shown to be inversely correlated to age at onset, and
highly unstable and biased toward expansion in the
germline, providing a simple molecular explanation
for anticipation [36].

The old chestnut: anticipation in HD?

As alluded to above, HD had long been posited to
display anticipation [25–27, 35]. By the molecular

era of human genetics in the 1980s, it was broadly
accepted that the juvenile form of HD was strongly
associated with paternal transmission of the muta-
tion [48–51]. Various explanations for the excess of
transmitting fathers of juvenile HD were posited,
including mitochondrial effects, the existence of X-
linked modifiers, or genomic imprinting of the HD
locus or modifier genes [50, 52–56]. Of note, in reject-
ing a mitochondrial DNA effect and positing instead
the action of an imprinted modifier gene, Irwin et
al. noted in 1989 that, even before the HTT gene
had been identified, “The identification of a puta-
tive modifying gene that might be altered to retard
disease onset is appealing as a possible therapeutic
stratagem” [57]. Nonetheless, at this point the evi-
dence for a broader degree of anticipation operating
more generally within HD families was largely dis-
counted as attributable to the very real biases detailed
by Penrose [48–50, 58, 59]. However, by mid 1992
with three disorders now associated with the expan-
sion of trinucleotide repeats, and the molecular basis
for anticipation in DM1 established, there was much
speculation that other disorders, especially those with
unusual inheritance patterns, were likely to share a
similar genetic basis. Indeed, with anticipation sud-
denly a fact, many of the old arguments were put
aside and anticipation in HD was assumed to be real
and direct predictions were made that it would be
explained by the expansion of a trinucleotide repeat
[36, 60].

Farewell to ignorance: HD is caused by a repeat
expansion and anticipation is real

Contrary to expectations, the large expansions of
hundreds of repeats that facilitated the identification
of the mutations in DM1 and FXS were not found in
HD. Nonetheless, within the year the predictions of
unstable DNA in HD were borne out with the iden-
tification of the HD causing polyglutamine encoding
CAG repeat expansion in the HTT gene in March
1993 [61]. The initial report of the identification of the
CAG expansion immediately revealed that the num-
ber of CAG repeats was inversely associated with
age at onset, and that the repeat was intergenera-
tionally unstable with a bias toward expansions [61].
These insights were quickly verified in additional
cohorts, and it was rapidly established that antici-
pation was a genuine biological observation in HD
and was particularly associated with expansions in
the male germline [62–66].
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In from the cold: anticipation legitimised

With the discovery of unstable DNA as the basis
for the conspicuous anticipation observed in DM1,
the concept of anticipation was very much “legit-
imised” as a genuine biological phenomenon [67]. A
striking consequence of this apparent liberation from
the shackles of Penrose’s deconstruction of the con-
cept of anticipation, was that over the next few years
apparent anticipation was reported in numerous con-
ditions. Whilst some of these did indeed later pan out
to be associated with unstable DNA (e.g., [68–70])
(see below), many, including claims for anticipation
in, for example, rheumatoid arthritis [71], uni- and bi-
polar affective disorder [72, 73], schizophrenia [74],
rolandic epilepsy and speech dyspraxia [75], familial
primary pulmonary hypertension [76], and Meniere
disease [77], have not (or have not yet) been unequiv-
ocally associated with expanded simple sequence
repeats. It thus seems likely that many of these reports
of apparent anticipation, were indeed artefacts of
the very real ascertainment biases first delineated by
Pearson [23] and later expounded upon by Penrose
[35]. Indeed, even after the discovery of unstable
DNA, a lively debate ensued about how to fully cor-
rect for these ascertainment biases, in particular with
regard to reports of anticipation in bi-polar affective
disorder and schizophrenia (e.g., [78–85]). Of course,
it also remains possible that there are other causes of
genuine anticipation, such as for instance might be
mediated by time dependent changes in environmen-
tal exposures, as has been proposed to account for
the apparent anticipation observed in familial amy-
loidotic polyneuropathy type I for which the mutation
is known to be a very static missense variant in the
transthyretin gene [86]. Whilst there are many lessons
to be learned from the convoluted history of genetic
anticipation, some that may be of particular relevance
to unravelling the role of somatic expansion in HD
are that: i) we should follow where the data leads
with an open mind and consider alternative explana-
tions, even when they challenge our preconceptions
or nominally established facts and mechanisms; and,
most directly, ii) unstable DNA can explain previ-
ously unexplained phenomena.

Inside information: polyglutamine encoding
CAG repeat expansions cause an array of
inherited neurological disorders

In contrast to the large non-coding expansions
of hundreds of repeats observed in DM1 and FXS,

HD was found to be associated with a more mod-
erate polyglutamine encoding expansion mostly in
the range of 40 to 50 CAG repeats, similar to that
observed in SBMA. Following the series of remark-
able breakthroughs in FXS, DM1, SBMA and HD,
and using the insights gained to accelerate the search
for the causative mutations, over the next few years
additional similarly moderately sized genetically
unstable polyglutamine encoding CAG repeat expan-
sions were detected in spinocerebellar ataxia type 1
(SCA1) (1993) [87], Machado Joseph disease/SCA3
(1994) [88, 89], dentatorubral pallidoluysian atro-
phy (1994) [90, 91], SCA2 (1996) [92, 93], SCA7
(1997) [94] and SCA17 (2001) [95]. In addition to
a likely shared pathogenic mechanism mediated by
a gain of function of the expanded polyglutamine
containing protein [96], in each disorder there is an
inverse relationship between inherited repeat length
and age at onset, and in each case the repeats are
intergenerationally unstable, particularly during male
transmission. These factors combined with an inter-
generational expansion bias, leads to anticipation in
each disorder, very similar to that observed in HD.
The SCA8 mutation was identified in 1999 as the
expansion of a CTG•CAG repeat [97]. Interestingly,
the SCA8 repeat is expressed as a polyglutamine
encoding CAG tract on one strand, and as a CUG
repeat as part of a non-coding transcript on the other
strand, suggesting pathology may involve gain-of-
function at both the protein and RNA levels [98].
SCA8 is also unusual in that disease-causing expan-
sions are typically larger than observed in the other
polyglutamine encoding CAG repeat disorders (∼
80 to 250 repeats), yet expanded alleles show vari-
able penetrance and are observed at relatively high
frequency in the general population and/or are asso-
ciated with atypical phenotypes (e.g., [97, 99–103]).
Additionally, although expanded alleles are prone to
expansion in the female germline, they are heav-
ily biased toward contraction in the male germline
[97, 101, 104] and consequently anticipation is not a
prominent feature of SCA8 families.

Many repeats: expanded simple sequence repeats
cause a variety of disorders

Over the ensuing decade additional disorders were
associated with genetically unstable expanded trin-
ucleotide repeats, including: a CCG expansion in
fragile X E (FRAXE) (1993) [105]; a GAA expansion
in Friedreich ataxia (FA) (1996) [106]; a non-coding
CAG expansion in SCA12 (1999) [107]; and a CTG
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repeat expansion in an alternatively spliced exon of
the JPH3 gene in Huntington disease like 2 (HDL2)
(2001)[108, 109]. The expansion of unstable sim-
ple sequence repeats in disease was also shown to
extend beyond triplets including: a CCCCGCCC-
CGCG dodecamer repeat in progressive myoclonus
epilepsy (1997) [110]; an ATTCT pentanucleotide
expansion in SCA10 (2000) [111]; and, a CCTG
tetranucleotide expansion in myotonic dystrophy
type 2 (DM2) (2001) [112]. More latterly, at least
partially facilitated by whole genome sequencing,
additional disease-associated expansions have been
discovered, including: a TGGAA pentanucleotide in
SCA31 (2009) [113]; a GGGGCC hexanucleotide
in frontotemporal dementia and amyotrophic lateral
sclerosis (2011) [114, 115]; a GGCCTG hexanu-
cleotide in SCA36 (2011) [116]; a CTG in Fuchs
corneal dystrophy (2012) [117]; a CCCTCT hexanu-
cleotide in X-linked dystonia-parkinsonism (2017)
[118]; an ATTTC pentanucleotide in SCA37 (2017)
[119]; a GGC expansion in Baratela-Scott syn-
drome GGC (2019) [120]; a GGC expansion in
neuronal intranuclear inclusion disease-related dis-
orders (2019) [121]; an AAGGG pentanucleotide
in cerebellar ataxia, neuropathy, vestibular areflexia
syndrome (2019) [122]; and, TTTCA/TTTTA pen-
tanucleotide expansions in at least six different
genes in benign adult familial myoclonic epilepsy
(2018–2020) [123–127]. All of these disorders are
associated with intergenerational instability of the
repeat expansions, and many display associated atyp-
ical inheritance patterns such as anticipation.

At the sign of the fuzzy band: somatic mosaicism
in fragile X syndrome and myotonic dystrophy
type 1

In addition to intergenerational instability, it was
noted in the primary FXS and DM1 studies, before the
repeat expansion had even been characterised, that in
many affected individuals, the enlarged fragment in
blood DNA presented not as a discrete band on the
Southern blot hybridisations of restriction digested
DNA used to reveal the presence of the mutation,
but rather as broad “fuzzy”, “smeary” or “blurred”
bands [1, 2, 42–44]. These observations suggested
that the intergenerationally unstable region of DNA
was also somatically unstable and varied in length
between cells within the individual. Indeed, in FXS,
many individuals present with two or more relatively
discrete pre- or full-mutation alleles (in addition to
a small non-disease associated allele in females),

that are present in multiple tissues, consistent with
very early embryonic mutation events [7]. Indeed, it
would appear that the FXS full mutation is somati-
cally unstable during very early development, but is
then somatically stabilised, likely as a result of methy-
lation of the region [128–132]. In DM1, however, it
was quickly established that there were differences
in repeat size not just within tissues, but even more
dramatically between tissues [133–136]. Highly con-
sistent with a possible role for somatic expansion
in contributing toward the tissue specificity of the
symptoms, it was rapidly established (1993–1994)
that the repeat length observed in skeletal muscle was
often thousands of repeats longer than that observed
in blood DNA [133–136]. Moreover, in further con-
trast to FXS, whilst there is evidence for embryonic
instability in DM1, this is usually only observed in
congenital cases inheriting very large expansions, and
in most individuals, the repeat appears to be rela-
tively stable during embryogenesis with most somatic
expansions arising postnatally [134, 135, 137–145].
Indeed, there is clear evidence that somatic expan-
sions in blood DNA continue to accrue throughout
the lifetime of the individual [141, 146–149]. Given
that larger alleles are associated with earlier onset
and more severe disease in DM1, it seems logical to
assume that somatic expansion contributes towards
the disease process. Indeed, it is now apparent that
the individual-specific rate of somatic expansion is
associated with both disease severity and progres-
sive DM1 phenotypes (i.e. individuals in whom the
repeat expands more rapidly somatically, have an ear-
lier onset and more rapid disease course) [148, 150,
151].

A pattern mirrored: somatic mosaicism in HD?

Possible evidence for somatic instability was like-
wise reported in the primary study defining the CAG
expansion in HD, with the authors noting a “dif-
fuse fuzzy PCR product” in the blood DNA of at
least one HD patient [61]. However, early follow-
up studies using polyacrylamide gel electrophoresis
analysis of radiolabelled PCR products revealed that
in contrast to clear differences between blood and
sperm DNA, the length of the primary PCR prod-
uct derived from the mutant HD chromosome did
not change in lymphoblastoid cell lines and pri-
mary blood DNA samples collected many years apart,
between a limited number of peripheral tissues, or
between different regions of the brain, leading to pre-
mature claims of “mitotic stability” and “gametic, but
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not somatic instability” [65, 152]. Although repeat
length variation around the primary allele was noted,
these variants were conservatively interpreted as most
likely representing the PCR “chatter” that is well
known to generate repeat length heterogeneity even
for small non-disease associated alleles [65, 152].
Whilst retrospectively it is possible to point to a
greater spread of larger fragments above the primary
disease associated allele in the striatal samples in par-
ticular, these data highlighted that the very large shifts
in modal repeat length observed in the somatic tis-
sues of FXS and DM1 patients were not replicated
in the majority of HD patients inheriting moderately
sized expansions (40 to 50 CAG repeats) [65, 152].
The following year however, a more detailed anal-
ysis of possible somatic variation was undertaken
by Telenius et al. and came to a very different con-
clusion providing compelling evidence for “somatic
mosaicism in HD which is seen predominantly in the
basal ganglia and other regions of the brain selectively
involved in HD” [153]. Using a wide array of periph-
eral tissues and different brain regions from five adult
onset HD patients, the authors convincingly demon-
strated that whilst a tail of PCR slippage products
smaller than the primary PCR product was detected
for both disease and non-disease associated alleles,
a tail of larger fragments, up to approximately +5
CAG repeats, was only prominently observed in spe-
cific brain regions for the disease associated allele
[153]. Notably, these putative somatic expansions
were observed at a much lower level in the cere-
bellum and peripheral tissues and were likewise not
observed using a cloned PCR template. Even more
convincingly, the authors demonstrated that in two
juvenile HD cases the modal length was 13 CAG
repeats bigger in other brain regions relative to the
cerebellum (78 versus 65 CAGs repeats respectively
in one case with onset at 6 years, and 86 versus 78
CAGs repeats respectively in a second case with onset
at 4 years). Unfortunately, blood DNA was not avail-
able to help identify the inherited progenitor allele
length and thus determine if the HTT CAG repeat
was particularly prone to expansions in most brain
regions and/or was simply stable or actively prone to
contraction in the cerebellum. Nonetheless, these data
confirmed that somatic expansions were observed in
the affected brain regions and were observed at a
much lower level in the cerebellum, a brain region
that is relatively spared from degeneration in adult-
onset HD, at least in early in the disease course.
This study thus provided the first direct evidence that
somatic expansion represented a very plausible expla-

nation for at least some of the regional specificity of
downstream neuropathology in HD. However, whilst
the authors noted that these observations were con-
sistent with somatic expansion contributing toward
regional selectivity of neuronal loss, they themselves
noted that they were not able to ascertain in which
cell types (e.g., neurons versus glia) that the expan-
sions occurred and noted that it remained possible
that somatic expansions occurred predominantly in
glia as a secondary by-product of neuronal death
and active gliosis [153]. Such an interpretation was
likely at least partly driven by the assumption at
the time that expansion events occurred via DNA
replication slippage [154–156] (see below), and thus
could arise in mitotically dividing cells, but not in
post-mitotic neurons. A further independent study
also concluded that there was indeed evidence for a
greater preponderance of somatic expansions in var-
ious brain regions relative to those observed in blood
and cerebellum, but the authors noted these were not
restricted to the primary affected brain regions, and
concluded also that the differences were “too small
to make this mechanism an obvious candidate for the
cause of differential neuronal degeneration in HD”
[157]. Another important observation from around
this time was the demonstration, that not only was
the mutant HTT protein expressed in HD brains, but
that it appeared more diffuse in its size relative to the
non-disease associated allele, with a greater spread in
the cortex relative to the cerebellum [158]. These dif-
ferences were most apparent in juvenile cases where
they appeared to directly reflect the spread of somatic
expansions detectable at the DNA level. The authors
again noted that although largely absent in the cere-
bellum, HTT proteins with apparently somatically
expand glutamine repeats were detected in other
regions of the brain that are less affected in HD,
and that their cellular origin (i.e., glia versus neuron)
remained unknown [158]. A role for somatic expan-
sion was further supported by the observation that, at
least in one patient there was a correlation between
the degree of regional somatic mosaicism in the brain
and regional pathological severity as assessed by a
qualitative assessment of neuronal loss [159].

THE TWO TOWERS

The taming of Mus domesticus: mouse models

In the years after the identification of the disease-
causing mutations, much effort in the triplet repeat
field, as it had become known, was expended gen-
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erating cell and organismal models that could be
used to further understand the pathologic processes.
Key to these developments were the generation of
various mouse models. The first mouse model of
a repeat expansion disorder, an SBMA transgenic
model incorporating 45 CAG repeats in an androgen
receptor cDNA construct failed to replicate either dis-
ease pathology or genetic instability [160]. Excitingly
however, a SCA1 transgenic incorporating a much
larger 82 CAG repeat allele in an ataxin 1 cDNA trans-
gene with high levels of expression specifically in
cerebellar Purkinje cells did display a neurodegener-
ative ataxic phenotype [161]. However, the repeat was
not detectably unstable. The first HD repeat model,
an HTT cDNA transgenic with 44 CAG repeats unfor-
tunately contained a frameshift mutation that likely
contributed to the lack of a phenotype in these animals
[162]. Notably though, these mice did not display any
detectable genetic instability either.

The parting of the ways: downstream pathology
versus the mechanism of expansion

At about this point in time, in the mid 1990s, after
the identification of the disease-causing mutations,
the triplet repeat expansion field (at this time none of
the non-triplet repeat expansions had yet been iden-
tified) split broadly into two camps: those assailing
the pathogenic pathways downstream of the repeat
expansion; and those that concentrated more on sur-
mounting the mechanisms of repeat instability per
se. In a bizarre twist of fate however, the first trans-
genic model to display a robust HD-like phenotype
was actually generated by Mangiarini et al. to model
genetic instability [163]. The R6 lines were based
on a human HTT exon 1 transgene that expressed
a truncated HTT protein containing an expanded
polyglutamine tract encoded by ∼130 CAG repeats,
and this proved sufficient to generate a progressive
neurological phenotype. The R6/2 mice in particular
have become established as one of the most widely
used HD animal models to investigate a wide range of
aspects of the polyglutamine pathology. Fortunately
though, the original hypothesis was also proved cor-
rect and high levels of both intergenerational and
somatic instability were also revealed, in particular
in the R6/1 and R6/2 lines [164]. A notable feature
of the R6 lines, like two series of DM1 mouse trans-
genics that were generated in parallel, and that also
displayed genetic instability [165, 166], was the low
copy number of the integrants that facilitated muta-
tion detection relative to the large multicopy inserts

that characterised previous transgenic repeat mod-
els [160–162]. Notably, the R6 transgenics revealed
a pattern of age-dependent, tissue-specific somatic
expansion that was most prominent in the striatum
and virtually absent in the cerebellum. However, con-
sistent with the cell division-dependent replication
slippage models that predominated in mechanis-
tic thinking at the time, the authors suggested that
the somatic expansions in brain were derived from
mitotically dividing glial cells [164]. These tissue-
specific patterns of somatic expansion were also later
replicated in knock-in mouse models in which the
expanded CAG was targeted into the endogenous
mouse Htt gene [167, 168] (see also Wheeler and
Dion, this issue [169] for additional mouse models).

The small pool: very large striatal-specific
somatic expansions in HD mice

With the exception of a very limited single
molecule analysis of blood DNA used essentially as
controls for single sperm analyses of male germline
dynamics [170], up until the year 2000, all the previ-
ous analyses of somatic mosaicism in HD patients
or animal models had been conducted using bulk
DNA PCR analyses (i.e., PCR using large amounts
of input DNA, typically >10 ng, equivalent to »1,000
cellular equivalents). Although these studies revealed
clear evidence for somatic instability, the size of the
acquired somatic expansions beyond the length of the
inherited progenitor allele detected were relatively
small. In human brain samples, even in juvenile cases,
the largest acquired somatic expansions detected
were in the order of +13 repeats, and much less than
this in patients with more typical HD germline expan-
sions in the range of 40 to 50 CAG repeats [152, 153,
157, 159]. Somatic expansions in HD mice with much
larger germline alleles of 100 + repeats were shown
to have acquired somatic expansions in the order of
about 20 repeats greater than the inherited progen-
itor allele [164, 167]. These bulk DNA analyses by
standard PCR, were known to have limitations includ-
ing Taq polymerase slippage that generates a tail of
shorter products [171], thus masking any potential
contractions, and, the preferential amplification of
smaller alleles [172]. The PCR bias is further con-
founded by the detection method in which usually
only a single radionucleotide or fluorescent moiety
is incorporated into the PCR product, independent
of the total fragment length. Moreover, using either
radiolabelled products and polyacrylamide gel elec-
trophoresis, or fluorescently labelled products and
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capillary gel electrophoresis, yields non-zero back-
ground signals that mask low frequency variants.
Thus, these approaches were unlikely to accurately
detect amplification of large low frequency somatic
variants. In October 2000 Kennedy et al. reported the
application of the sensitive small pool PCR approach
[146, 173] to investigating somatic instability in two
knock-in HD mouse lines with inherited progenitor
alleles of either 72 or 80 CAG repeats [168]. In small
pool PCR, multiple replicate PCRs are performed
with very small amounts of input DNA (typically 1
to 50 molecules per reaction) for a limited number
of PCR cycles such that PCR competition between
small and large alleles is reduced. Moreover, the
PCR products are detected by Southern blot hybridi-
sation using a radiolabelled repeat unit probe that
binds more efficiently to larger alleles containing
more repeats. Using this approach, it is thus possi-
ble to partially compensate for the amplification bias
of smaller alleles, and to detect the products of indi-
vidual input molecules containing up to at least 1,000
trinucleotide repeats [146, 174]. Using this small pool
PCR approach Kennedy et al. revealed that a subset
of cells in the striatum of their knock-in HD mice
had acquired somatic expansions of up to at least
250 repeats, some three times larger than the inher-
ited progenitor allele. Somatic instability in these
mice was revealed to be age-dependent and highly
tissue-specific with the striatum clearly displaying the
highest frequency of large expansions relative to other
brain regions. These sensitive single molecule analy-
ses, free of the confounding effects of Taq polymerase
slippage that blight bulk DNA analyses, revealed that
net somatic contractions were essentially absent and
somatic mosaicism was highly biased toward further
expansion. Notably, the absence of overt neurodegen-
eration in these mice argued against the concept that
somatic mosaicism was a by-product of active gliosis
[168].

The window on the brain: ultra large
striatal-specific somatic expansions in HD
individuals

The detection of such large somatic expansions in
the primary affected brain region of a mouse model at
least partially reignited the debate that somatic expan-
sion might be a key driver of regional pathology in
HD. Skepticism remained though, as the initial data
presented by Kennedy et al. were derived not just
from mouse models, but from mouse models with
germline alleles of 72 or 80 CAG repeats, i.e., almost

double the size of an allele inherited by a typical HD
patient. There was considerable doubt that expan-
sions anywhere near so large would be detected in
humans. However, three years later, in 2003, Kennedy
et al. reported the application of the same sensitive
small pool PCR approach to investigating regional
instability in the brains of HD individuals [175].
Astoundingly, they revealed that a subset of cells
in the brain contained massive somatic expansions
of many hundreds of repeats. Indeed, in two indi-
viduals who inherited either 41 or 51 repeats, some
striatal and/or cortical cells were detected with more
than 1,000 CAG repeats. Critically, these two indi-
viduals did not die of end-stage HD and received a
neuropathological classification of Vonsattel grade 0
[176], i.e., no microscopic evidence of pathological
cell loss in the striatum. In the individual with the
smallest germline allele (41 repeats), who died at age
40, ∼13 years prior to their predicted age at motor
onset, large somatic expansions were only detected
in the striatum and were absent in the cortex and
hypothalamus. In the second individual who inherited
a larger germline allele (51 repeats), and who died at
age 27, ∼6 years prior to their predicted age at motor
onset, massive somatic expansions were detected in
the striatum, and to a lesser extent in the cortex,
but were absent in the cerebellum. Notably, analy-
sis of another individual who inherited a much larger
allele (∼75 repeats) and died 10 years after diagno-
sis, revealed a much less obviously regional-specific
pattern of somatic expansion. Indeed, in this end-
stage patient, the largest expansions were observed
in the cortex rather than the striatum. These data thus
revealed that large somatic expansions occur in early
in the disease time-course, before the onset of overt
motor symptoms. These data also suggested that the
regional specificity of somatic expansion may more
closely follow the regional specificity of the disease
earlier in the disease course, and in individuals with
smaller inherited alleles. These data also suggested
that neurodegeneration may selectively target striatal
neurons with large expansions, rather than precipitat-
ing large expansions as a secondary endophenotype
of active gliosis [175].

Of glia and neurons: HTT somatic expansions
accumulate in non-dividing neurons

Given the clear association between CAG repeat
size and age at onset in humans, and CAG repeat
size and cellular toxicity, and the rapidity with which
germline expansions had been accepted as an expla-
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nation for anticipation, it is hard in retrospect to
understand why the potential significance of somatic
expansion, and in particular the significance of the
detection of such large somatic expansions early
in the disease course of HD [175] were not more
widely considered. It is thus worth contemplating
what some of the drivers for this were. As alluded to
above, by the early 2000s, the basic science field had
broadly gone in two main directions: one focussed
on downstream pathology, which in HD was essen-
tially polyglutamine toxicity (and the vexed question
of whether aggregates are causative); and, the repeat
instability field that was more focussed on the mech-
anisms of instability. As a consequence, relatively
little attention was paid to the in vivo consequences
of somatic expansion. More directly, questions were
raised as to the reliability of the observations of such
large expansions in HD brains and the possibility
that such large expansions may be technical arte-
facts of PCR. However, pre-PCR size fractionation
of genomic DNA restriction fragments containing
the HTT repeat confirmed that such large expan-
sions were not technical artefacts [177]. The other
question that was resolved was whether expansions
could occur in non-dividing striatal neurons. Using
laser capture microdissection in both human HD
brains and knock-in animal models, it was demon-
strated that: although unstable in glia, expansions
were typically larger in striatal neurons; there were
more expansions in striatal, rather than cortical, neu-
rons in less advanced HD cases; and, that in mice,
smaller somatic expansions occurred in the relatively
well spared nitric oxide synthase-positive interneu-
rons compared with the overall neuronal population
in the striatum [178, 179].

The road well-travelled: striatal and cortical
instability is shared among many disease loci

Another important consideration was the fact that
striatal specific expansions are not limited to HD.
Notably, the striatum was revealed as the region with
the largest expansions in other expanded CAG•CTG
repeat mouse models of DM1 [180, 181], SCA1
[182] and DRPLA [183] (see also Wheeler and
Dion, this issue [169]). Likewise in humans, high
levels of somatic expansion are observed in stri-
atal and/or cortical regions in individuals with other
CAG•CTG repeat expansions including DM1 [184,
185], SCA1 [186–192], SCA2 [193, 194], MJD [187,
190, 195–197], SCA7 [94, 198] and DRPLA [188,
195, 196, 199–204]. These data suggest that regional-

specific CAG•CTG repeat somatic expansion in the
brain is strongly driven by major tissue-specific trans-
acting factors. These observations have been further
borne out by a recent study that revealed very simi-
lar somatic expansion profiles of the expanded CAG
repeat in both HD and SCA1 across multiple brain
regions [192]. Nonetheless, it is worth noting that in
SBMA overall levels of mutation length variability
in somatic tissues are lower than in the other polyg-
lutamine expansion disorders [195, 196, 205–207],
with more expansions in peripheral tissues such as
cardiac and skeletal muscle, skin and prostate, than
in the central nervous system. Overall, however, the
broadly preserved pattern of somatic mosaicism in the
CNS in the polyglutamine expansion disorders sheds
some doubt on whether somatic expansions really
drive the regional specificity of neurodegeneration
observed in HD, and the other polyglutamine encod-
ing CAG repeat expansion disorders more broadly.

The view from the other side: regional and
cell-type specificity in HD and the
spinocerebellar ataxias

In relationship to the other polyglutamine
repeat expansion disorders, particular consideration
deserves to be given to the contrast between the SCAs
and HD. The SCAs are characterised by early cerebel-
lar degeneration, with loss in particular of the critical
cerebellar Purkinje cells. It is very notable, however,
that in addition to the six different types of SCA
caused by the expansion of polyglutamine encoding
CAG repeats (SCA1, 2, 3, 6, 7 and 17), the SCAs
caused by other simple sequence repeat expansions
(SCA8, 10, 12, 36 and 37), mutations in at least 37
additional genes involved in a wide variety of dif-
ferent cellular pathways can also cause SCA [208].
This is in stark contrast to HD, DRPLA and SBMA,
that are each caused by a single type of mutation,
the CAG expansion, in only a single gene. The mas-
sive genetic heterogeneity in the SCAs reveals that
cerebellar Purkinje cells must be extremely sensitive
to a wide variety of cellular insults. Thus, given that
HTT is highly expressed throughout the brain, with
very high levels in the cerebellum, including in Purk-
inje cells [158, 209–212], one way of viewing the
dichotomy between the SCAs and HD is to ask, why
is HD not SCA49, and for that matter why DRPLA
is not SCA50, and SBMA SCA51? It is possible that
the default state might be that in the absence of a
very pronounced striatal-specific expansion process,
HTT germline expansions might elicit a late onset
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SCA like phenotype. Another important considera-
tion in this regard relates to critical role that Purkinje
cells play in the cerebellum, especially considering
the relatively low density and absolute of numbers of
Purkinje cells. Purkinje cells are estimated to com-
prise less than one in a thousand cells in an intact
cerebellum. Thus, it remains very possible that inves-
tigations of somatic length variability in bulk DNA
analyses have failed to account appropriately for
this gross disparity in relative cell ratios. Additional
application of laser capture microdissection to better
investigate the mutation profiles of defined cell types
within the cerebellum in both HD and the SCAs are
clearly warranted. Indeed, laser-dissected cerebellar
cells in DRPLA patients have demonstrated that the
expansion lengths in granule cells are significantly
smaller than in Purkinje cells and glia [202, 203].
Additionally, caution must be applied when inter-
preting studies of tissue from patients who died after
a long disease course—most commonly the case in
the published literature cited above. In end stage-
disease tissue, the residual cell profile is much altered
due to the loss of vulnerable neurons and the pro-
liferation of cells such as astrocytes. Therefore, in
order to more clearly define the relationship between
somatic mutation length and pathological vulnerabil-
ity in polyglutamine diseases, more detailed analysis
of defined cell types (isolated by techniques such as
laser capture microdissection or single cell sequenc-
ing) from candidate brain regions in the rare, early
disease cases where cell loss is minimal are really
needed.

Nevertheless, it is also important to recognise that
the question as to whether somatic expansion drives
the regional specificity of neuropathology between
the disorders, is entirely separable from the question
as to whether somatic expansion drives onset and
progression in any one disorder. A striatal-specific
expansion process may not delineate HD from the
SCAs, but it is unlikely to be helping in HD, and
cerebellar expansions in the SCAs, even if they occur
at an overall much lower rate than in the striatum,
may still be critical since cerebellar Purkinje cells
are acutely sensitive to perturbation.

The drivers of instability: somatic expansion is
cell-division independent and mismatch repair
dependent

Shortly after the first expansion mutations were
identified, attention quickly turned to what molecular
mechanisms were driving instability. Not unrea-

sonably, it was widely assumed that expansions
were most likely to be mediated by DNA replica-
tion slippage [154–156]. This concept appeared to
be supported by observations that polymerase slip-
page in vitro could generate products with altered
numbers of repeats—these data arising from experi-
ments that dated back to the 1960s when repeating
oligonucleotide tracts were being synthesised as
part of efforts to crack the genetic code [213–215].
This concept was further reinforced by the observa-
tion of similar slippage products that arose during
PCR of non-disease associated simple sequence
microsatellite repeats [216, 217]. This concept was
further reinforced when, as presaged by studies in
microbes [218], in 1993 and 1994 it was shown
that mutations in [post-replicative] DNA mismatch
repair genes were associated with genome-wide
microsatellite instability in the tumours of individu-
als with Lynch syndrome (a hereditary predisposition
toward non-polyposis colon cancer) [219–223], the
mechanism by which variation in non-disease asso-
ciated microsatellites arose appeared to be firmly
established as DNA replication slippage and mis-
match repair avoidance. It seemed a very reasonable
assumption that the expansion of disease-associated
loci would be similarly mediated by DNA polymerase
replication slippage errors that simply overwhelmed
the DNA mismatch repair machinery.

Additionally, the fact that for most of the
CAG•CTG repeat expansions disorders, the repeats
were relatively stable in the female germline, and
more unstable and prone to large expansions dur-
ing male transmission, appeared to fit nicely to the
greater number of premeiotic mitoses in spermato-
genesis relative to oogenesis. Indeed, detailed single
sperm analysis of male germline dynamics in HD
did at least appear to partially support such a mitotic
model [224]. Moreover, a premeiotic origin for at
least some of the HTT CAG mutations in the male
germline was directly established using laser capture
microdissection of testicular cells [225]. However,
these experiments also suggested that meiotic events
were important too [225]. A primarily premeiotic
replication dependent mechanism for male germline
mutations would also predict a strong age effect. In
comparing HTT CAG repeat length distributions in
sperm between men, an age effect was not detected
[224]. Likewise, there was no significant difference
in HTT CAG repeat length distributions in two sperm
samples from the same man obtained two years apart
[224]. Cross-sectional and longitudinal small pool
PCR analysis of sperm DNA variation in DM1 males
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has similarly failed to find evidence for an age effect
[146, 226, 227]. In addition to the absence of an obvi-
ous age effect in the male germline, these studies
in HD [224] and DM1 [146, 226, 227], and simi-
lar studies in SBMA [228, 229] and SCA7 [230],
have revealed substantive differences between the
dynamics of expanded repeats in the male germline
and those observed in somatic tissues, including: a
much greater frequency of germline mutations than
somatic mutations (at least in blood, and for DM1
males inheriting <80 CTG repeats); and, despite a
bias toward expansions, a greater frequency of con-
tractions in the male germline, including reversions
into the non-disease associated range. Although male
germline instability is observed in many expanded
CAG•CTG repeat mouse models (e.g., [164–167,
231]; see also Wheeler and Dion, this issue [169]),
the very frequent and very large expansions observed
in the male germline in humans have not yet been
faithfully mirrored in mice, especially when one con-
siders the relatively large allele sizes with which the
majority of the mouse models have been generated. It
thus remains unclear to what extent the mechanism of
expansion is shared between the germline and soma,
and what mediates the obvious differences.

A clear prediction of the DNA replication slippage
model for expansion would be that tissues with higher
levels of cell turnover would show higher levels of
somatic mosaicism. This does not appear to be borne
out in either humans with, or animals models of, the
CAG•CTG repeat expansion disorders, with somatic
expansions accumulating in post-mitotic tissues such
as skeletal muscle and brain (e.g., [94, 133–136, 164,
168, 178–181, 184, 185, 187–191, 193–204]; see
also Wheeler and Dion, this issue [169]). Another
clear prediction of the DNA replication slippage
model is that loss of function mutations in the post-
replicative DNA mismatch repair pathway should
increase the frequency of expansions. This predic-
tion was turned on its head in 1999, when Manley et
al. demonstrated that the complete reverse was true
and that the obligate mammalian MutS homologue
Msh2 was absolutely required to generate somatic
expansions [232] (see Iyer and Pluciennik, this issue,
for more details on the DNA mismatch repair path-
way [233]). These insights were extended when it
was shown that Msh3, but not Msh6, was also essen-
tial for the somatic expansion of CAG•CTG repeat
expansions, directly implicating the MSH2/MSH3
MutSBeta complex [234]. One potential explanation
for the requirement for MSH2 and MSH3 could have
been that MutSBeta stabilises [232, 235] the slipped

strand [236] and/or hairpin [237] DNA structures that
are the presumed length change intermediates in the
expansion pathway. However, involvement of var-
ious downstream MutL homologues in CAG•CTG
repeat expansion [238, 239], and the requirement for
MSH2 ATPase activity [240], suggest instead that
expansions may be mediated by an actual mismatch
repair reaction of small slipped strand loop-outs in
which the loop is preferentially incorporated [232,
238, 240]. In addition to candidate gene studies using
knock-out mismatch repair gene null alleles, it is
notable that naturally occurring mouse strain-specific
differences in CAG•CTG repeat somatic expansion
profiles could be detected [234, 241] and some of
these associated with naturally occurring variants in
Mlh1 and Msh3 [239, 242], presaging the identifica-
tion of similarly acting human variants (see below).
Cell division-independent inappropriate DNA mis-
match repair has thus come to the fore as a likely
mechanism of expansion of CAG•CTG repeats [238].
Along with other in vitro experiments, these animal
model studies were critical in establishing the key
players in the expansion pathway (for more details,
see Wheeler and Dion, and Iyer and Pluciennik, in this
issue [169, 233]). However, in most cases, these stud-
ies did not lead directly to insights into the accrual of
somatic expansions in mediating pathology (although
see below). Nonetheless, the identification of the key
players in the expansion pathway, would later prove
critical in providing an explanation for the results of
the genome-wide associations studies for modifiers of
age at onset in HD, and for providing suitable targets
for candidate gene studies (see below).

The journey to pathology: genetically
suppressing somatic expansion in HD mice slows
the accumulation of pathological hallmarks of
disease

The critical dependence of somatic expansion on
functional Msh2, Msh3 and Mlh1 genes has been used
to demonstrate that genetically slowing the rate of
somatic expansions can also slow the rate of accu-
mulation of pathological markers of HD such as
polyglutamine aggregates [239, 243, 244]. One of
the primary reasons that more definitive data directly
linking somatic expansion and disease pathology in
HD models has been difficult to generate relates to the
length of the CAG repeat in mice necessary to gen-
erate sufficient levels of somatic expansion and/or a
disease phenotype during the lifetime of a mouse,
or the even shorter length of a typical project grant.
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Simply put, mice with small germline CAG expan-
sions in the range typically observed in humans do not
develop an overt HD phenotype during their lifetime
[245, 246]. HD mice with larger germline expan-
sions typically beyond the length that is observed
even in most juvenile HD cases (>80 repeats), can
display robust HD phenotypes in a matter of months
(e.g., [163, 167, 168]). In such cases, the repeat is
likely already well beyond any cell-dependent toxic
threshold and pathology can proceed in the absence
of somatic expansion. Of course, that is not to say,
as evidenced above [239, 243, 244], that somatic
expansions may not exacerbate the phenotype in HD
mice already inheriting large expansions. Indeed,
such an effect may explain the greater frequency of
HTT aggregates observed in a minimally CAA inter-
rupted yeast artificial chromosome HD mouse model
(presumed to be at least partially somatically unsta-
ble), relative to a bacterial artificial chromosome HD
mouse model with a somatically stable highly inter-
rupted polyglutamine encoding CAG/CAA repeat
tract [247, 248]. Furthermore, detailed studies in
mouse models with germline alleles that are small
enough not to cause an overt early onset phenotype,
but that have the capacity to somatically expand, are
clearly warranted. Nonetheless, it remains unclear if
short-lived mice can be effectively used to determine
the absolute requirement for the somatic expansions
that typically accumulate over 30 to 40 years in HD
patients inheriting alleles of 40 to 50 CAG repeats.

The passage of the extremes: the frequency of
large cortical expansions is associated with
variation in age at onset in HD

A key prediction of a critical role for somatic
expansion in HD pathology would be that individual-
specific variation in the rate of somatic expansion
would be reflected in individual differences in disease
severity. To this end, the first human data demon-
strating such a link were generated in 2009 [249].
Specifically, using small pool PCR analysis of cor-
tical DNA from a cohort of HD individuals with
extreme early or extreme late onset of symptoms rel-
ative to the age at onset predicted by the number of
CAG repeats inherited, Swami et al. were able to
demonstrate that the fraction of large somatic expan-
sions, as quantified by the skewness of the repeat
length distribution, was inversely associated with
residual variation in age at onset, i.e., individuals with
more large somatic expansions had an earlier age at
onset than expected. These data, along with additional

data defining the repeat length dependence of somatic
expansions in buccal cell DNA [250], demonstrated
that the somatic expansion phenotype in humans is
modifiable by factors other than repeat length, tis-
sue and age. Through this period, animal model and
human data implicating somatic expansion slowly
accumulated, but even as late as 2018 somatic expan-
sion was not widely viewed as a therapeutic target in
HD (e.g., [251]).

THE RETURN OF THE REPEAT

The reckoning: genome-wide association studies
of variation in HD age at onset reveal DNA
repair gene variants

A major limitation of the scientific process is the
inherent biases and preconceptions that are inevitably
brought into play in the design of an experiment.
One of the beauties of genome-wide association stud-
ies (GWAS) are that they are completely unbiased,
at least in terms of the having to make no predic-
tions about the genes in which variants may modify
the phenotype of interest. It was thus with great
excitement that the HD community eagerly awaited
the results of GWAS of modifiers of residual age
at onset in HD. As detailed in the accompanying
manuscript by Hong et al. [252], the results of the
first GWAS to collate a large enough cohort of HD
participants to achieve genome-wide significance lev-
els was published by the GeM-HD consortium in
2015, and revealed genome-wide significant associa-
tions in two regions: the FAN1 gene; and the RRM2B
gene [253]. The FAN1 gene encodes the Fanconi
anaemia FANC1/FANCD2-associated endonuclease
1 DNA repair gene. Although at the time FAN1 was
not known to be involved in the repeat expansion
pathway, it is now clear that the levels of FAN1 are
important in mediating somatic expansion in cells
[254] and animal models [255, 256] (see also Desh-
mukh et al. [257] and Zhao et al. [258], this issue).
RRM2B encodes ribonucleotide reductase regulatory
TP53 inducible subunit M2B and its role in modifying
HD onset currently remains unknown. A third region
encompassing the MLH1 DNA mismatch repair gene
almost reached genome-wide significance in the 2015
GWAS [253], and was subsequently replicated in an
independent cohort [259]. MLH1 has previously been
shown in animal models to be essential for somatic
expansions of the HD repeat [239]. Pathway analysis
of the 2015 GWAS results also revealed that polymor-
phisms in DNA repair genes were overrepresented in



20 D.G. Monckton / A Brief History of Somatic Expansion in HD

variants associated with age at onset in HD, includ-
ing specifically DNA mismatch repair. These data
thus strongly supported the contention that DNA mis-
match repair processes mediate differences in HD age
at onset not accounted for by inherited CAG length.
Given the prior association of the mismatch repair
proteins in the somatic expansion process, it seemed
logical to assume that these polymorphisms mediate
a role in HD pathology via a more direct role in the
somatic expansion pathway [253].

The land of light: the same variants in MSH3 are
associated with disease severity in HD and DM1

Providing an amazing example of the utility
of careful longitudinal clinical characterisation of
the disease phenotype, in 2017 Hensmann Moss
et al. were able to demonstrate that a combined
multi-phenotype CAG and age-adjusted disease pro-
gression score was able to reveal a genome-wide
significant association with variants in the MSH3
DNA mismatch repair gene in only just over two
hundred HD participants in the TRACK-HD cohort
[260]. These associations were further strengthened
when it was revealed that some of the same variants in
and around a polyproline/alanine encoding polymor-
phic 9 bp repeat in MSH3 exon 1 were also associated
with both somatic expansions rates in blood DNA,
and residual variation in disease severity, in both HD
and DM1 [261]. It is a bizarre coincidence that MSH3
contains its own variable repeat, but the fact that
MSH3 is absolutely required for repeat expansion in
animal models, suggests that the association between
MSH3 variants with variation in disease severity is not
a coincidence, and that the causative MSH3 variants
modifying disease severity are acting directly through
their effects on somatic expansion.

The pure repeat: CAG repeat number, not
encoded polyglutamine length best predicts HD
severity

The polymorphic HTT CAG that expands in HD
is succeeded by an additional CAACAG cassette that
also encodes glutamine such that the total length of
the encoded polyglutamine tract equals the number
of CAG repeats plus two in a typical HTT allele
[61]. It has been known for many years that a sub-
set of atypical HTT alleles can differ in this regard
with some alleles containing a duplication of the
CAACAG cassette, and some alleles lacking this cas-
sette completely (see Hong et al. [252], this issue,

and Ciosi et al. [262]). These variants can give rise
to CAG sizing errors as estimated using fragment
length analysis, and recent high-throughput DNA
sequencing analyses by Ciosi et al. have revealed
that failure to take these sizing errors into account
can yield highly atypical genotype to phenotype
associations in HD [262]. Similar effects were also
reported by Wright et al. [263] and in the latest
results from the GeM HD Consortium GWAS for
modifiers of age at onset in HD [264] (see Hong et
al., this issue [252]). An early observation after the
disease-causing mutations were first identified, was
that in several disorders non-disease associated alle-
les were interrupted with stabilising variant repeats,
whilst genetically unstable disease-causing expan-
sions were pure (e.g., [186, 265–268]). In the DM1,
the vast majority of non-disease associated alleles
are pure CTG, as are most disease-causing expan-
sions. However, a subset of approximately 5% of
DM1 disease-causing expansions are interrupted by
primarily CCG variant repeats [269, 270]. In addition
to being genetically more stable in both the germline
and soma, such alleles are typically associated with
delayed onset and/or milder DM1 symptoms, thus
linking variant repeat interruptions with increased
somatic stability, and further linking somatic insta-
bility with disease onset [150, 269–274]. Thus, the
most logical explanation for the greater predictive
value of the number pure CAG repeats, rather than
total glutamine number encoded, is that it is pure
CAG number that drives somatic expansion and ulti-
mately disease onset/progression. Indeed, pure CAG
length accurately predicts the relative ratio of somatic
expansions observed in the blood DNA of HD indi-
viduals [262], effects that appear to be mirrored
in the male germline [275]. However, it should be
noted that whilst correcting for pure CAG more
accurately predicts age at onset and disease progres-
sion than does the number of glutamines encoded,
individuals lacking the CAACAG cassette on their
mutant chromosome still tend to have an earlier age
at onset than expected. Likewise, individuals with
the CAACAG cassette duplication on their mutant
chromosome do not have a worse disease course,
despite the fact they inherit alleles expressing two
additional supposedly toxic glutamine codons rel-
ative to individuals with a typical expanded allele
[262–264]. The reasons for these residual effects
remain unknown, but could include additional effects
on somatic expansion in the brain not detectable in
blood DNA, or some other effect on HTT transcrip-
tion [276], RNA stability and/or translation efficiency
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for instance [252, 262, 277, 278]. Alternatively, it is
possible that the ultimate pathogenic moiety in HD
is not the canonical polyglutamine containing HTT
protein, but some directly toxic effect of the HTT
CAG RNA [279], an alternative truncated transcript
[280] or a repeat associated non-ATG translation
product [281].

More of the same: GWAS reveals even more DNA
mismatch repair gene variants associated with
variation in HD age at onset

In 2019 the GeM HD Consortium revealed the
results of the latest GWAS for modifiers of age at
onset in HD incorporating just over 9,000 partici-
pants [252, 264]. In addition to further confirming
associations with FAN1, MLH1 and MSH3, these data
elevated variants in the PMS2 and PMS1 DNA mis-
match repair genes, in addition to the LIG1 DNA
ligase gene, also required to complete a DNA mis-
match repair reaction, to genome-wide significance.
These data further highlight the critical role that DNA
repair gene variants have in mediating symptomatic
variation in HD, most likely through their action on
somatic expansion [264].

The mechanistic bridge: DNA repair gene
variants are associated with somatic expansion
scores in HD blood DNA

The high-throughput HTT sequencing assay devel-
oped by Ciosi et al. also allows for the quantification
of the relative ratio of somatic expansions in blood
DNA (see Ciosi et al., this issue for comparison
of approaches to quantifying somatic mosaicism
in HD) [282], that after correcting for age and
CAG length effects, results in an individual-specific
somatic expansion score [262]. As expected, assum-
ing that somatic expansion profiles in blood DNA at
least broadly parallel those in the brain, the somatic
expansion score was inversely associated with vari-
ation in age at onset and positively associated with
individual-specific disease progression scores (i.e.,
individuals with a faster rate of somatic expansion
have an earlier age at onset than expected and more
rapid disease course). The somatic expansion score
is also a molecular phenotype that can be used for
association studies to reveal genetic modifiers of the
expansion process. Indeed Ciosi et al. have used
this phenotype to reveal direct associations between
somatic expansion and variants in the FAN1, MLH1,
MLH3 and MSH3 DNA repair genes in a candidate

gene analysis [262]. As discussed, FAN1, MLH1 and
MSH3 have already been implicated as modifying age
at onset and disease severity in HD by GWAS anal-
yses [253, 260, 264]. Whilst variants in MLH3 have
not yet been significantly associated with variation in
HD age at onset, the latest HD GWAS data indicate
a nominal association of p = 0.0001 [264]. Given the
essential requirement for MLH3 in mediating somatic
expansions in HD mice [239], it seems a reason-
able supposition that MLH3 will reach genome-wide
significance with a larger cohort. Nonetheless, the
FAN1, MLH1 and MSH3 data already provide a mech-
anistic link between the HD age at onset modifiers,
and direct modifiers of somatic expansion, that lends
further credence to the model proposing somatic
expansion as a key driver of disease pathology
in HD.

The last debate: is somatic expansion required
and does size matter?

It would now appear that the concept that somatic
expansion contributes toward disease onset in HD
is beyond reasonable doubt—size changes, and it
clearly does matter (although see Maiuri et al., this
issue, for alternative hypotheses linking DNA repair
and HD [283]). More pertinent now is to consider
what are the actual critical products of the somatic
expansion process? Are the massive somatic expan-
sions of hundreds or even thousands of repeats
actually required? The U-shaped disease severity
curve observed in the R6/2 mice where germline
expansions beyond 300 CAG repeats become protec-
tive [284–286], albeit in transgenic model expressing
a protein fragment, are nonetheless very intriguing.
Such large expansions are at least partially hypo-
morphic [284–286]. However, if they were truly
protective, then we might expect cells carrying such
large expansions to accumulate in end-stage disease.
This they clearly do not do [175]. Indeed, at any one
point cells carrying such large expansions are rela-
tively rare. However, this is exactly what might be
expected if such cells have only a very short half-life
and exist only transiently in such an elevated state in
HD brains. It is nonetheless possible that such very
large expansions may be something of a red herring.
Given that transmitting an allele only one CAG repeat
longer results in at least a two-year decrease in the age
at onset of HD, it seems not unreasonable that even
somatic gains of one or two repeats are certainly not
helping and almost certainly making things worse.
Some clues as to the answer to this question may come
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from asking an even more fundamental question as
to whether somatic expansion is absolutely required
to generate HD pathology. If germline expansions in
the range 40 to 50 CAG repeats are inherently toxic
and capable of precipitating symptoms in the absence
of somatic expansion, then that would suggest that
even small changes would accelerate pathology in
a meaningful way. If, however, a toxicity threshold
exists at some larger size, then somatic expansion
may indeed be absolutely required (see Donaldson
et al., this issue, for further discussion of where
the toxic CAG threshold may actually lie [287]).
The concept that somatic expansion is required in
HD, may be supported by the observation that indi-
viduals homozygous for HD expansions (the vast
majority of whom are compound heterozygotes with
disease-causing expansions of two different sizes),
do not appear to have an earlier age at onset than
that predicted by the larger of their two alleles [288,
289]. One possible explanation for the fully domi-
nant nature of HD onset, supported by a modelling
approach, is that onset is achieved when a partic-
ular fraction of cells somatically expand the CAG
repeat beyond a higher pathological threshold [290].
As somatic expansion is highly repeat length depen-
dent, this threshold will, in the majority of cells,
be achieved first by the larger of the two inherited
alleles, and hence it is the larger allele that predicts
disease onset [290]. Additional insight into the issue
of whether somatic expansion is actually required,
could also be provided by the identification of indi-
viduals with repeat stabilising interruptions in the
middle of an expanded HTT CAG array. For instance,
if an individual with a 45 repeat allele with a sin-
gle glutamine encoding variant CAA repeat (e.g.,
(CAG)22CAA(CAG)22) was identified, and assum-
ing, as expected such an allele would be somatically
stable, then if they were affected it would indicate
that somatic expansion is not required. If however
they remain asymptomatic throughout their life, then
it would indicate somatic expansion is absolutely
required and the true pathological threshold at the
cellular level is greater than that required to be inher-
ited (at least for a somatically unstable pure CAG
repeat). Such individuals are at the least very rare in
either the HD or general population, if they exist at
all. However, the availability of a high-throughput
HTT sequencing assay [262], and an improved
ability to genotype simple repeats from whole-
genome sequencing data [291, 292] suggest that this
question is closer to being answered than it ever
has been.

One rule to bind them: trans-modifiers of
somatic expansion in the other repeat expansion
disorders

As somatic expansion is a common theme in many
of the repeat expansion disorders, it seems not unrea-
sonable to assume that somatic expansion might
similarly drive disease onset in some of these dis-
orders too. Indeed, it was established in 2012 that
individual-specific variation in the rate of somatic
expansion in blood DNA was inversely correlated
with residual variation in age at onset in DM1 [148].
Moreover, individual-specific variation in somatic
expansion was shown to be inherited as quantifiable
trait consistent with an underlying genetic mecha-
nism [148]. These data were further borne out with
the demonstration in 2016 that using a candidate
DNA mismatch repair gene study, variants in the
MSH3 DNA mismatch repair gene were associated
directly with variation in the individual-specific rate
of somatic expansion in DM1 [151]. Similarly, pre-
liminary evidence has been generated that variants in
FAN1 and the PMS2 DNA mismatch repair gene are
also associated with residual variation in age at onset
of some of the other polyglutamine encoding CAG
repeat expansion disorders, including SCA1 [293].
Whilst most of the data relating directly to the role
of somatic expansion in disease aetiology in humans
relates to the CAG•CTG repeat disorders, there is
also evidence for considerable somatic instability in
Friedreich ataxia (FA) [294–299]. However, the very
strong bias toward net somatic expansions observed
in the CAG•CTG repeat disorders, is not seen in FA
where a high frequency of somatic contractions of
the GAA repeat are also observed [295–299]. Nev-
ertheless, somatic mosaicism continues throughout
life, and somatic expansions accumulate in the dor-
sal root ganglia, one of the primary affected tissues,
suggesting somatic mosaicism may play an impor-
tant part in FA [298, 299]. Moreover, it appears many
of the same mismatch repair proteins are implicated
in somatic instability of GAA repeats in both human
cells and animal models [300–306]. Mismatch repair
proteins have been similarly implicated in expansion
of the CGG repeat in FXS mouse models [307–312]
(for more details, see Zhao et al., this issue [258]).
Given the massive cross-disorder potential of ther-
apies aimed at supressing somatic expansion (see
Benn et al., this issue [313]), additional insights into
the dynamics and mechanisms of somatic expansion
in the other repeat expansion disorder are required.
Suitably powered large-scale GWAS of modifiers
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of somatic expansion and disease severity in the
other repeat expansion disorder should be particularly
informative.

The houses of healing: somatic expansion
as a therapeutic target

In addition to inherent questions of fundamental
biological interest, the ultimate goal of understand-
ing the role of somatic expansion in HD is to evaluate
it as a possible therapeutic target. The data are now
clear that somatic expansion at the very least exac-
erbates disease onset and progression, and as such
somatic expansion has to be considered a very real
therapeutic target worthy of further scrutiny. Sup-
pressing somatic expansion would be expected to be
therapeutically beneficial. Even more enticing is the
prospect of modulating repeat instability in such a
way so as to be able to elicit somatic repeat contrac-
tions. If enabled early enough, repeat contractions
raise the prospect of being not just beneficial, but
potentially curative. In this light, the recent data that
CAG repeat somatic instability can be modified by
small molecules in HD animal models and appears
to be associated with reduced markers of disease is
exceptionally exciting [314–317]. However, I will
leave Benn et al., this issue [313], to delve deeper
into this topic, and discuss some of the technical chal-
lenges involved, and leave you here with the idea that
our journey has reached a significant milestone, but it
has not ended. Much remains to be done to translate
these findings to new treatments for HD and related
disorders, but the establishment of somatic expansion
as contributory to HD pathology, and the identifica-
tion of potential enzymatic targets, opens up some
exciting possibilities.
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