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Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic disease that leads to
disability and death within 5 years of diagnosis. Pulmonary fibrosis is a disease with a multifactorial
etiology. The concept of aberrant regeneration of the pulmonary epithelium reveals the pathogenesis
of IPF, according to which repeated damage and death of alveolar epithelial cells is the main mecha-
nism leading to the development of progressive IPF. Cell death provokes the migration, proliferation
and activation of fibroblasts, which overproduce extracellular matrix, resulting in fibrotic deformity
of the lung tissue. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising
therapies for pulmonary fibrosis. MSCs, and EVs derived from MSCs, modulate the activity of
immune cells, inhibit the expression of profibrotic genes, reduce collagen deposition and promote the
repair of damaged lung tissue. This review considers the molecular mechanisms of the development
of IPF and the multifaceted role of MSCs in the therapy of IPF. Currently, EVs-MSCs are regarded as
a promising cell-free therapy tool, so in this review we discuss the results available to date of the use
of EVs-MSCs for lung tissue repair.

Keywords: mesenchymal stem cells; extracellular vesicles; pulmonary fibrosis; lung damage;
mesenchymal stem cells derived extracellular vesicles

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a specific form of idiopathic interstitial pneu-
monia. It has been shown to have a high mortality rate and an average of 2 to 3 years
lifespan after diagnosis [1]. The disease has been shown to occur in middle or older age
people. Primary symptoms of IPF include dyspnoea, hypoxaemia, radiographically marked
pulmonary infiltrates and accumulation of fibroblasts in the tissue. These symptoms are as
a result of the initial scarring of the lung tissues caused by IPF [2].

IPF has been shown to be caused by damages to alveolar epithelial cells due to genetic,
environmental and immunological factors, which leads to metabolic dysfunction, aberrant
activation of damaged epithelial cells and pathological epithelial repair. Molecular changes
in the alveolar epithelial cells during EMT-induced damage causes the cells to actively
express profibrotic factors leading to migration, proliferation, differentiation of fibroblasts
and myofibroblasts and subsequent accumulation of extracellular matrix, thereby leading
to pulmonary fibrosis [3–5]. However, the etiology of this progressive parenchymal disease
is still unknown.

There are several factors that contribute to the development of IPF. These include and
may not be limited to autoimmune/connective tissue diseases (e.g., rheumatoid arthritis or
scleroderma) [6–8]; antiarrhythmic drugs administration (amiodarone) [9,10]; chemother-
apeutic agents (bleomycin) [11]; antimicrobial agents (nitrofurantoin) [12]; smoking [13];
infectious agents such as mycoplasma [14], legionella [15], rickettsia [16]; viruses (e.g.,
SARS-CoV-2) [17]; radiation [18,19]; occupational exposures (mining; production of ce-
ramic, acid- and fire-resistant materials; work with sandblasters) [20–22]; toxic fumes and
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gases [23]; genetic predisposition [24–26]; diabetes [27]; and gastroesophageal reflux dis-
ease [28,29]. The therapeutic modality is determined by the etiology of the fibrosis, e.g.,
discontinuing the drug that caused the fibrosis, preventing allergic or occupational diseases,
or treating the underlying autoimmune disease with immunosuppressive drugs [30].

Current therapies for IPF include lung transplantation, pharmacotherapy and cell ther-
apy. Transplantation has the potential of increasing the quality and life span of patients with
lung diseases. However, shortage of donor material, risk of acute graft versus host disease
and infection, limit the application of lung transplantation as a therapy measure [31,32].
Pharmacotherapy measures for IPF are predominantly limited with the use of antifibrotic
drugs such as pirfenidone and nintedanib. These drugs slow disease progression but do
not repair damaged lung tissue and have a number of side effects [33–36]. Cell therapy
for pulmonary fibrosis (PF) involves the use of mesenchymal stem cells (MSCs). MSCs
are polypotent cells, capable of differentiating into various cell types and providing im-
munomodulatory, antiproliferative and anti-inflammatory effects [37–40]. MSCs secrete
growth factors, anti-inflammatory cytokines, chemokines and basic proteins that reduce
the deposition of extracellular matrix (ECM) and collagen, as well as promote alveolar
repair [41]. However, with MSCs therapy, there is a risk of their differentiation into fibrob-
lasts which produce collagen. Undesirable differentiation and accumulation of mutations
during cultivation limit the use of MSCs in clinical practice [42–44].

Extracellular vesicles naturally released from MSCs (nEVs-MSCs) are an alternative
to cell therapy. It has been shown that the positive effects observed from the use of
nEVs- MSCs in IPF therapy has to do with their ability to suppress the activity of growth
factors, chemokines and cytokines that stimulate fibrosis development, similarly observed
to parental cells [45,46]. It is worth mentioning that injection of nEVs-MSCs, in contrast to
MSCs transplantation, does not cause arrhythmia, tumour formation and calcification in
the tissues [47,48]. To increase the yield of EVs, protocols are being developed to obtain
induced vesicles. These induced vesicles exhibit immunosuppressive properties, similarly
observed in natural EVs and parental cells. These immunosuppressive properties may
have a positive effect on the therapy of IPF [49,50]. Thus, the use of mesenchymal stem
cells extracellular vesicles has reason to be of high interest in the treatment of IPF.

2. Fibroblast Heterogeneity in Pulmonary Fibrosis

IPF is the chronic damage of the alveolar epithelium resulting in its inflammation,
synthesis and deposition of collagen in the lung interstitium. Chronic inflammation, which
is often associated with the formation of a patchy interstitial infiltrate of lymphocytes
and plasma cells, has long been thought to be the key mechanism underlying IPF [51,52].
Pulmonary fibrosis was previously thought to be a purely inflammatory process, but,
according to current understanding of the pathogenesis of the disease, IPF is primarily
characterized by a process of pulmonary fibrosis. Epithelial cell damage and apoptosis
represent the initial step in the development of pulmonary fibrosis [53,54]. Various agents,
such as allergens, radiation, chemicals, viruses, cigarette smoke, AOFs (active oxygen
forms) cause damage to alveolar epithelial cells, which contributes to an inflammatory
response [55–58]. Damaged lung epithelial cells release proinflammatory mediators, namely
chemokines, which induce recruitment of circulating blood monocytes, fibrocytes and bone
marrow progenitor fibroblast cells [59] to sites of damage [60,61]. Inflammatory cells
actively secrete profibrotic activated cytokines and fibrocytes, which subsequently, infiltrate
tissue, damage sites of infiltration and promote pulmonary fibrosis by differentiating into
active collagen-producing fibroblasts and myofibroblasts [62,63].

Fibrogenesis results from the repeated microdamage of alveolar epithelial cells, fol-
lowed by the production of factors responsible for activation of a fibrotic program leading to
an abbreviated repair of the epithelial cells. This process known as tissue damage-induced
epithelial–mesenchymal transition (EMT) on the one hand promotes wound healing and
repair of damaged tissue, but on the other hand promotes fibrosis [64,65]. In pathologi-
cal processes such as fibrosis and in wound healing, the change of epithelial cells to the
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mesenchymal phenotype is believed to be a necessary process. Epithelial and endothe-
lial cells divide, migrate and participate in the regeneration of damaged tissue [66]. The
molecular changes that occur to alveolar epithelial cells during EMT allow them to acquire
the mesenchymal cell phenotype. They begin to actively express growth factors (TGF-
β, TNF-α, HGF, interleukin-4), secrete numerous mediators (matrix metalloproteinases,
angiogenesis inhibitors, and procoagulation factors) leading to their further migration,
proliferation, differentiation of fibroblasts into myofibroblasts, and accumulation of extra-
cellular matrix components [67–69]. The deposition of excessive amounts of extracellular
matrix components leads to an abnormal increase in tissue stiffness. Increased stiffness
of lung tissue causes PGE2 (an autocrine inhibitor of fibrogenesis) synthesis suppression,
induces further activation of fibroblasts through mechanotransduction pathways and their
differentiation into myofibroblasts, thereby contributing to IPF progression [70–73]. The
formed myofibroblasts release numerous profibrotic mediators and synthesize components
of the extracellular matrix such as collagen and fibronectin [74,75]. Myofibroblasts, due to
their contractile properties, are able to manipulate fibers of the extracellular matrix to heal
open wounds, and influence inflammation. All these processes induced by myofibroblasts,
in turn, contribute to fibrosis and PF progression.

Myofibroblasts can arise from different cell types such as epithelial cells, mesenchymal
stem cells, pericytes, circulating bone marrow fibrocytes, preadipocytes and adipocytes.
These are often collectively referred to as fibroblasts (Figure 1). Fibroblasts is the general
term often used to describe these heterogeneous cell populations. Stimulation of TGF-β1 is a
known factor to activate fibroblasts and transform them into myofibroblasts, which express
α-smooth muscle actin (α-SMA) and secrete cytoskeletal and contractile extracellular matrix
proteins (Figure 1). TGF-β binds to type I and type II receptor complexes localized on the
cell membrane and stimulates receptor activation leading to phosphorylation of SMAD2/3
in the cytosol. Activated SMAD2/3 additionally bind to SMAD4 and travel to the nucleus
where they control the expression of target extracellular matrix proteins by binding to the
SMAD binding element in the promoter. The expression of these proteins, as previously
mentioned, is a characteristic feature of myofibroblasts [76,77]. Myofibroblasts contribute
to lung tissue remodeling through collagen production, profibrotic factors and proteins. In
this regard, 25-hydroxycholesterol has been shown to be involved in tissue remodeling in
fibrosis. 25-hydroxycholesterol induces NF-κβ p65 transport into the nucleus. Activation
of NF-κβ signaling promotes enhanced TGF-β1 release, α-SMA expression, collagen I
production and matrix metalloproteinase release [78].
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Figure 1. Pathways of myofibroblast formation during IPF. The figure shows the different cell types 
that respond to stimulation by profibrotic growth factors (TGF-β, CTGF), cytokines (IL-1, IL-13, IL-
4, IL-6, TNF-α), signaling pathways (Wnt/β-catenin, Notch1/PDGFRβ/ROCK1), chemokines 
(CXCL12, SLC, CCL1), specific EMT transcription factors (Snail2, ZEB1, TWIST, p62/SQSTM1), ad-
hesion molecules (ICAM-1,VCAM-1, FAK and CDH-11), hyperoxia, exposure to endothelin-1 and 
nicotine, overexpression of α-SMA, COL1α1 and fibronectin, upregulation of SMAD2, SMAD3, Sp1 
and c-Myc differentiated into myofibroblasts [65,70,76–102] (Created with BioRender.com, accessed 
on 4 July 2022). 

Fibroblast differentiation into the myofibroblast phenotype can also be induced by 
hypoxia and expression of insulin-like growth factor type II (IGF-II). Hypoxia leads to 
hypermethylation of the Thy-1 promoter in normal human lung fibroblasts and increases 
the levels of the profibrotic markers: α-SMA, collagen-1, collagen-3, characteristic of the 
myofibroblastic phenotype [103]. IGF-II expression is activated during IGF. IGF-II trans-
mits signals through IGF1R/IR, PI3K/AKT/GSK3β and JNK/c-Jun receptors, resulting in 
the increased activity of ACTA2, TIMP1/4, collagen, fibronectin, TGF-β2/3 and SMAD2/3. 
Due to the expression of these genes, IGF-II induces myofibroblast formation [104]. 

According to recent studies, lipofibroblasts play an important role in myofibroblast 
formation. Lipofibroblasts are resident lung fibroblasts that are located in the thickness of 
the interalveolar septa near type II alveolocytes and can differentiate into myofibroblasts. 
This makes them able to contribute to pulmonary fibrosis. 

Exposure to nicotine, hyperoxia and Wnt/β-catenin signaling induce differentiation 
of lipofibroblasts into activated myofibroblasts during IPF formation (Figure 1).  

TGF-β expression also promotes myofibroblast formation from lipofibroblasts by up-
regulating SMAD2, SMAD3, Sp1 and c-Myc (Figure 1). Conversely, thiazolidinediones, 
metformin—an anti-diabetic drug, and PPARγ signaling are able to convert myofibro-
blasts back to lipofibroblasts. The use of PPARγ and its agonists to preserve the lipogenic 
phenotype and prevent differentiation into the myogenic phenotype in IPF can offer an 
alternative to existing ineffective drugs (pirfenidone and nintedanib) [76,105]. It has also 
been found that increased FGF-10 expression in lung tissue during IPF promotes fibrosis 
resolution through its ability to suppress the activation of profibrotic cytokines, especially 
TGF-β1, and presumably contributes to the differentiation of activated myofibroblasts 
into lipofibroblasts [76]. 

Figure 1. Pathways of myofibroblast formation during IPF. The figure shows the different cell types
that respond to stimulation by profibrotic growth factors (TGF-β, CTGF), cytokines (IL-1, IL-13,
IL-4, IL-6, TNF-α), signaling pathways (Wnt/β-catenin, Notch1/PDGFRβ/ROCK1), chemokines
(CXCL12, SLC, CCL1), specific EMT transcription factors (Snail2, ZEB1, TWIST, p62/SQSTM1),
adhesion molecules (ICAM-1,VCAM-1, FAK and CDH-11), hyperoxia, exposure to endothelin-1 and
nicotine, overexpression of α-SMA, COL1α1 and fibronectin, upregulation of SMAD2, SMAD3, Sp1
and c-Myc differentiated into myofibroblasts [65,70,76–102] (Created with BioRender.com, accessed
on 4 July 2022).

Fibroblast differentiation into the myofibroblast phenotype can also be induced by
hypoxia and expression of insulin-like growth factor type II (IGF-II). Hypoxia leads to
hypermethylation of the Thy-1 promoter in normal human lung fibroblasts and increases
the levels of the profibrotic markers: α-SMA, collagen-1, collagen-3, characteristic of the
myofibroblastic phenotype [103]. IGF-II expression is activated during IGF. IGF-II transmits
signals through IGF1R/IR, PI3K/AKT/GSK3β and JNK/c-Jun receptors, resulting in the
increased activity of ACTA2, TIMP1/4, collagen, fibronectin, TGF-β2/3 and SMAD2/3.
Due to the expression of these genes, IGF-II induces myofibroblast formation [104].

According to recent studies, lipofibroblasts play an important role in myofibroblast
formation. Lipofibroblasts are resident lung fibroblasts that are located in the thickness of
the interalveolar septa near type II alveolocytes and can differentiate into myofibroblasts.
This makes them able to contribute to pulmonary fibrosis.

Exposure to nicotine, hyperoxia and Wnt/β-catenin signaling induce differentiation
of lipofibroblasts into activated myofibroblasts during IPF formation (Figure 1).

TGF-β expression also promotes myofibroblast formation from lipofibroblasts by
upregulating SMAD2, SMAD3, Sp1 and c-Myc (Figure 1). Conversely, thiazolidinediones,
metformin—an anti-diabetic drug, and PPARγ signaling are able to convert myofibroblasts
back to lipofibroblasts. The use of PPARγ and its agonists to preserve the lipogenic
phenotype and prevent differentiation into the myogenic phenotype in IPF can offer an
alternative to existing ineffective drugs (pirfenidone and nintedanib) [76,105]. It has also
been found that increased FGF-10 expression in lung tissue during IPF promotes fibrosis
resolution through its ability to suppress the activation of profibrotic cytokines, especially
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TGF-β1, and presumably contributes to the differentiation of activated myofibroblasts into
lipofibroblasts [76].

After wound healing, myofibroblasts can follow different pathways: they may die
due to apoptosis induced by soluble proapoptotic factors (IL-1β, FGF1 and prostaglandin
E2 (PGE2)) [106–108]; they may be deactivated and turn into fibroblasts; and they may
be aged by the CCN family proteins [109]. This does not occur in IPF, as myofibroblasts
in fibrous tissues show high resistance to apoptosis, thus ensuring the preservation of
highly active cells at the sites of damage. Resistance to apoptosis is most likely due to the
persistent activity of TGF-β1 and myofibroblast-induced deposition of extracellular matrix
components, leading to prolonged survival and activity of myofibroblasts during fibrosis
development [110–112].

3. Multifaceted Role of MSCs in Pulmonary Fibrosis

MSCs located in the stromal and perivascular compartments in close proximity to
fibroblasts are believed to modulate myofibroblast activity.

There is evidence of the effectiveness of MSCs in the therapy of bleomycin-induced
fibrotic lung lesions in animals. Stem cells modulate the activity of B-cells by inhibiting their
maturation and recruitment to the sites of lung damage during IPF. Modulation of B-cell
activity leads to inhibition of the chronic inflammatory process with subsequent formation
of fibrotic lesions [113]. On a model of bleomycin-induced lung damage it was shown that
MSCs reduce costimulatory protein expression in dendritic cells and monocyte-derived
macrophages, reduce their ability to induce antigen-specific T-cell immune responses, and
promote generation of immune cells (Treg) and cytokines (IL-10) with immune regulatory
functions [114].

Various deleterious factors induce damage and apoptosis of alveolar epithelial cells,
which is commonly accompanied by mitochondrial dysfunction. One of the consequences
of mitochondrial dysfunction is an increase in AFC in alveolar epithelial cells (AECs),
which contribute to further damage, while there is a persistence of apoptosis-resistant
myofibroblasts and excessive deposition of extracellular matrix components [115].

The efficacy of PF treatment with MSCs has been shown to be linked to their ability to
deliver mitochondria to the damaged epithelial cells [116], reduce collagen deposition [117],
promote tissue repair through the secretion of anti-inflammatory and the anti-fibrotic
factors they possess [118]. Mitochondrial delivery reverses the effects of mitochondrial
dysfunction and maintains normal mitochondrial homeostasis by delivering healthy mi-
tochondria into damaged epithelial cells [116,119]. Gene expression analysis has shown
that MSCs powerfully suppress profibrotic genes induced by bleomycin and inhibit pro-
inflammatory transcripts [120]. Human MSCs reduce the levels of TGF-β1 and TNF-α
by secreting PGE2 and hepatocyte growth factor (HGF). And TGF-β is known to be a
key factor influencing the process of extracellular matrix deposition and myofibroblast
differentiation. Other favorable factors secreted by MSCs include PGE2 which has the
ability to inhibit TGF-β1-induced proliferation of fibroblasts and collagen production by
inducing myofibroblast apoptosis through the increased activity of PTEN (phosphatase
and tensin homolog); HGF which reduces the deposition of extracellular matrix in alveolar
type II (ATII) cells and induces myofibroblast apoptosis through MMP activation; MMP-9
which promotes myofibroblast death by degrading the FN-CCB domain, and MMP-1 which
function as a collagenase to prevent lung tissue thickening [118,121]. FGF-2, secreted by
adipose tissue stromal cells, can block further cell differentiation. This has been evidenced
by observed decreased gene and protein expression of mesenchymal markers and gene
expression of extracellular matrix components. FGF-2 treatment increased the matrix met-
alloproteinase gene expression and decreased the expression of the metalloproteinase gene
TIMP-2 inhibitors in tissues [122,123]. The expression of FGF-10 by lung mesenchymal
cells is believed to be involved in the suppression of pulmonary fibrosis. It was shown that
FGF-10 expression in lung MSCs inversely correlates with fibrosis progression and TGF-
β1 expression in activated myofibroblasts. FGF-10 expression was significantly reduced
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in stromal cells isolated from bronchoalveolar lavage of patients with IPF, in contrast to
MSCs of healthy lungs. This confirms that FGF-10 deficiency can be the cause of disease
progression and induction of this factor expression can serve as an effective therapy for
IPF [124–126].

However, there is alternative evidence for the involvement of MSCs in IPF. In addition
to having regenerative activity, MSCs have been shown to contribute to the development
and progression of pulmonary fibrosis. Overexpression of α-SMA, COL1α1, fibronectin,
TGF-β1, IL-6 and TNF-α in MSCs microenvironment induces MSCs differentiation into
myofibroblasts, which in turn promotes collagen deposition and accumulation of extra-
cellular matrix components [24–27]. Thus, in radiation-induced lung fibrosis, increased
expression of cytokines TNF-α, TGF-β1 and adhesion molecules ICAM-1 and VCAM-1 in
lung epithelial cells and in damaged lung areas induces bone marrow MSCs migration
through the circulatory system to the sites of lung damage and their differentiation into
myofibroblasts [127]. A similar effect of microenvironment on the regenerative properties
of MSCs was investigated on tissue-resistant lung MSCs, human umbilical cord MSCs,
and VEGF-positive MSCs actively used for therapeutic purposes [128–131]. Moreover, it
was shown that bleomycin-induced pulmonary fibrosis induces Wnt10a expression and
activation of Shh/Gli signaling cascade resulting in myofibroblast differentiation of lung
MSCs. The activation of Shh/Glioblastoma system through Wnt/β-catenin signaling con-
trol regulates MSCs transition into the myofibroblast phenotype and enhances pulmonary
fibrosis [132].

Excessive activation of PDGFRα signaling leads to fibrosis and vascular calcification.
Santini et al. showed that in stem cells actively expressing PDGFRα, there is an upregulation
of genes involved in fibrosis, namely, growth factor TGF-β1 and fibroblast activation
protein (FAP). Subsequently, MSCs differentiate into myofibroblast-like profibrotic cells,
thus contributing to the development of fibrosis [84].

In the manifestation of the profibrotic effects of the MSCs, the stage of fibrosis in which
the infusion of stem cells was carried out also plays a role. Yan et al. indicate that infusion of
MSCs at a later stage of lung damage enhances IPF. MSCs that were infused at an early stage
of fibrosis (after 4 h of fibrosis induction time) were safely engrafted into the lung tissues,
whereas MSCs injected at a later stage (at days 60 and 120) were detected as myofibroblasts
in the lung interstitial space. This is most likely due to the overexpression of profibrotic
cytokines, including TGF-β1, which affect MSC differentiation. These data indicate that
MSCs infusion in the late stages of the disease enhances scarring in the damaged tissue
rather than having a regenerative effect [131].

Despite the controversial properties, MSCs are currently promising candidates for
therapeutic use. For the safe application of MSCs as a therapeutic agent, factors such as
optimal dosing, age of the cell donor and the phase of fibrosis at which the stem cells are
injected should be considered. Stem cells have maximum beneficial effects when stem cells
are administered in the early inflammatory phase of pulmonary fibrosis, whereas a negative
effect is observed when they are administered in the late phase of fibrosis. The beneficial
effect in the early phase is explained by the fact that MSCs express TGF-β1, which is
involved in modulation of immune reactions [39]. At the same time, MSCs serve as a target
for TGF-β1, contributing to disease progression at later stages. MSCs of old mice, unlike
the stem cells of young mice, divide more slowly in vitro and do not exhibit protective
properties [133], hence it is recommended to use MSCs of younger donors in therapy.

4. Immunologic Regulation of Pulmonary Fibrosis

Studies on the mechanisms of pulmonary fibrosis have demonstrated the importance
of cytokines in pulmonary fibrogenesis in animals and humans. Epithelial and mesenchy-
mal cells, T- and B-lymphocytes, macrophages, neutrophils, eosinophils and platelets are
potential sources of cytokines in the lung.

Neutrophils are known to play a key role in the progression of pulmonary fibrosis.
They are recruited in the initial phases to exert pro-inflammatory effects. An increased



Int. J. Mol. Sci. 2022, 23, 11212 7 of 20

percentage of neutrophils in bronchoalveolar lavage (BAL) fluid has been shown to predict
early mortality in individuals with IPF [134]. Infiltration and migration of neutrophils
into damaged lung tissue is induced in response to overexpression of CXCL2 on resident
alveolar macrophages [135], as well as increased expression of CXCL1 and CXCL2/3, IL-
8/CXCL8 [136,137]. In addition, neutrophils produce neutrophil elastase (NE), a neutrophil-
specific serine protease, which in turn promotes fibroblast proliferation, myofibroblast
differentiation and TGFβ1 activation [138].

Hyperexpression of B-cell antibody genes and focal aggregations of these lymphocytes
have been observed in the lungs in IPF [139–142]. In patients with IPF, B-cell-produced
antigen–antibody complexes are present in the lung parenchyma, bloodstream and BAL,
which trigger cytotoxic and proinflammatory cascades [143–145]. The delivery of B-cells to
the foci of inflammation is ensured by the expression of a specific mediator-CXCL13, the
sources of which are CD68+ macrophage line cells [146].

Macrophages play a recognized role in wound healing and fibrogenesis through the
production and release of chemokines that can engage inflammatory cells and lead to
proliferation and activation of myofibroblasts [147–149]. In a mouse model of bleomycin-
induced pulmonary fibrosis, Baran et al. demonstrated that levels of macrophage colony-
stimulating factor, which they showed controls mononuclear phagocyte recruitment and
CCL2 production, are elevated in BAL in patients with IPF [150]. Repetitive lung injury in
a bleomycin-induced pulmonary fibrosis model showed activation of pulmonary capillary
endothelial cells (PCEC) and perivascular macrophages, which in turn inhibits alveolar
repair and promotes fibrosis. Suppression of the chemokine receptor CXCR7 expressed on
PCEC leads to recruitment of perivascular macrophages expressing VEGFR1 and subse-
quent stimulation of Wnt/β-catenin-dependent activation of Notch Jagged1 ligand with
profibrotic consequences [151]. It has been shown that in addition to initiating the immune
response, alveolar macrophages do generate reactive oxygen species (ROS), especially
mitochondrial H2O2, which contributes to the development of fibrosis by increasing the
expression of TGF-β1 [152,153]. The data obtained by Larson-Casey et al. demonstrate that
alveolar macrophages are a major source of TGF-β1. Similarly, their studies suggest that
Akt1-mediated mitophagy promotes alveolar macrophage resistance to apoptosis and is
essential for the development of pulmonary fibrosis [154].

A study by Scott et al. showed that increased monocyte counts are associated with an
increased risk of adverse outcomes in patients with IPF [155]. Classic monocytes have been
shown to infiltrate into the fibrotic lung in the early stages of fibrosis and subsequently
mature to profibrotic inflammatory alveolar macrophages [156].

Enhanced monocyte migration into the lungs of patients with IPF occurs in response
to increased production of CCL2 (or monocyte chemoattractant protein-1, MCP1) by en-
dothelial cells and increased serum CCL2 concentrations [157,158].

The accumulation of mature dendritic cells (DCs) in large numbers with local matura-
tion potential in ectopic lymphoid follicles has been shown to be induced by resident cells
that express chemokines such as CCL19, CXCL12 and CCL2, which ultimately contributes
to chronic inflammation in IPF [141,159]. TGF-β is able to modulate the accumulation and
phenotypic maturation of CD11c+ pulmonary DCs in a mouse model of pulmonary fibrosis.
Thus, the absence of TGF-β leads to a decrease in the percentage of CD11c+CD11b+ cells in
the group treated with bleomycin [160].

According to the literature, an increased number of mast cells (MCs) are found in the
lungs of patients with IPF [161,162]. In addition, increased levels of tryptase (a trypsin-
like enzyme found in mast cell granules and basophils) are found in IPF lung tissue
samples. In vitro experiments showed that co-culture of human lung MCs with human lung
fibroblasts induced MCs activation and stimulated human lung fibroblasts proliferation,
which in turn showed a significantly higher growth rate compared to controls [163]. In
addition, it has been shown that lung fibrotic ECM regulates MCs function and that
degranulating MCs activate TGF-β1 [164]. Overed-Sayer et al. showed a positive correlation
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between the number of MCs and foci of fibroblasts in patients with IPF, confirming the link
between MCs density and mortality from IPF [165].

The T-cell response is known to contribute to the pathogenesis of idiopathic pulmonary
fibrosis [166]. In addition, decreased expression of CD28 on circulating T cells is associated
with adverse outcomes in patients with IPF [167]. The regulation of IPF by T cells is carried
out through the interaction of Fas–Fas ligand (FasL), cAMP chloride channels or T-cells
depletion [168–170]. T cells such as Th1/Th2, Th17, Th9 and regulatory T cells are thought
to contribute most to the progression of IPF. For example, Th1 secrete antifibrotic factors
IFN-γ and IL-12, which inhibit fibroblast proliferation and fibrous tissue formation, while
the IL-4 and IL-13 released by Th2 stimulate fibroblast proliferation, collagen production
and fibroblast differentiation into myofibroblasts, as well as incline macrophages towards
the pro-fibrotic phenotype [171–173]. Thus, a Th1/Th2 imbalance has been shown to play
an important role in the pathogenesis of pulmonary fibrosis. Th17 cells and IL-17 are found
in and around inflammatory infiltrates in patients with IPF, confirming their role in fibrosis
development and inflammatory progression [142]. In vitro experiments have shown that
IL-17 promotes proliferation of pulmonary fibroblasts, which in turn leads to increased
synthesis of type I collagen, TGF-β and IL-6 expression [174]. A key cytokine secreted
by Th9 cells is IL-9, which has both antifibrotic and profibrotic effects [175]. However,
recent studies have shown that Th9 cells do contribute to pulmonary fibrosis by increasing
IL-4-mediated Th2 cell differentiation, and IL-9 neutralisation effectively reduces the degree
of pulmonary fibrosis [176]. Regulatory T cells can also have both anti- [177] and profibrotic
effects [178,179]. Boveda-Ruiz et al. showed that depletion of CD4+CD25+ regulatory
T-cells subpopulation at early stages of BLM-induced lung damage is associated with
fibrosis reduction, but this depletion later leads to increased lung fibrosis, meaning that
Tregs can be harmful at early stages, but protective at later stages of pulmonary fibrosis in
mice [180].

Thus, inflammation may act as an important component in the etiology of IPF, and
disease progression is accompanied by innate and adaptive immune responses. Therefore,
the immunosuppressive properties of MSCs help to suppress inflammation and promote
epithelial tissue repair, which makes them a promising tool for the therapy of IPF.

5. Effect of MSCs-Derived EVs on Pulmonary Fibrosis

The therapeutic efficacy of EVs-MSCs has been investigated in preclinical animal
models and in many diseases and injuries. Currently, there are more than 300 published
reports on the therapeutic properties of exosomes/microvesicles/extracellular vesicles
derived from MSCs listed in the PubMed database, covering many categories of diseases.

For example, human EVs-MSCs have been shown to be therapeutically effective in
an E. coli endotoxin-induced acute lung injury model in mice [181,182]. Intravenous ad-
ministration of EVs derived from MSCs prevents and treats bleomycin-induced pulmonary
fibrosis, with subsequent improvement in both lung morphology and architecture and
reduction in collagen deposition. In addition, PF modulates lung macrophage phenotypes
by shifting the proportions of pro-inflammatory/classical and non-classical lung mono-
cytes and alveolar macrophages towards the monocyte/macrophage profiles of control
mice, thereby reducing inflammation [183]. Xu et al. showed that human umbilical cord
EVs-MSCs can inhibit silica gel-induced pulmonary fibrosis, as well as regulate pulmonary
function [184]. Lei et al. found that by transferring miR-214-3p in EVs derived from human
placental MSCs attenuation of radiation-induced endothelial damage, vascular dysfunction
and inflammation as well as pulmonary fibrosis through suppression of the ATM/P53/P21
pathway occurs. They also found that the expression of collagen type 1α-1 (COL1α1),
TGF-β, α-SMA, fibronectin and MMP9 genes involved in fibrosis development was signifi-
cantly reduced after treatment with EVs-MSCs (Figure 2). Moreover, EVs-MSCs increased
the expression of several antifibrotic genes including the TIMP-1, TIMP-2 and bone mor-
phogenetic protein-7 (BMP-7) [185]. miR-186, delivered by EVs from bone marrow MSCs
(BM-MSCs), reduces fibroblast activation by downregulating the transcription factors SOX4
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and DKK1, while slowing the progression of IPF in mice (Figure 2) [186]. Li et al. demon-
strated that EVs-MSCs treatment can reduce pulmonary edema, pulmonary dysfunction
and inflammation, which were caused by ischemic/reperfusion lung injury in mice [187].
The results of another group of researchers showed that treatment with EVs-MSCs prevents
activation of hypoxia signaling, which underlies lung inflammation and the development
of pulmonary hypertension in a mouse model. They also showed that administration of
EVs-MSCs suppressed hypoxic induction of both MCP-1 and HIMF/FIZZ1 in the lungs,
which are strongly activated during lung hypoxia and are potent pro-inflammatory media-
tors (Figure 2) [188]. EVs BM-MSCs, with miR-29b-3p overexpression, effectively inhibit
fibroblast proliferation, invasion migration and differentiation by inhibiting FZD6 expres-
sion, contributing to the antifibrotic effects of pulmonary fibroblasts [189]. Treatment of
lipopolysaccharide-induced acute lung injury in mice using EVs derived from immature
MSCs reduced inflammatory cell accumulation and alveolar septum thickness 48 h after
injury compared to the control. In addition, young EVs-MSCs significantly reduced the
protein, total cell and neutrophil counts as well as the level of pro-inflammatory cytokine
IL-1β and increased the level of anti-inflammatory IL-10 in BAL after 48 h [190]. The results
of Sun et al. showed that therapy with EVs from menstrual blood MSCs helped to reduce
symptoms of pulmonary fibrosis, reduced collagen deposition and reduced the severity of
pulmonary edema. After treatment of bleomycin-induced fibrosis with EVs-MSCs, levels
of hydroxyproline (a marker of collagen deposition) and malondialdehyde (a biomarker of
oxidative stress in the lungs) were reduced, and levels of glutathione peroxidase (which
has an important protective function in the lungs [191]) were increased compared with the
untreated group (Figure 2) [192].
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Injection of EVs from human umbilical cord MSCs cultured under normal conditions
(Nor-EVs) and EVs from human umbilical cord MSCs cultured under hypoxic conditions
(Hypo-EVs) significantly reduced total cell count in BAL fluid of eosinophils and proinflam-
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matory mediators (IL-4 and IL-13) in mice with simulated asthma. Compared to Nor-EVs,
Hypo-EVs additionally prevented chronic allergic airway remodeling in mice, which was
accompanied by a decrease in the expression of the profibrogenic markers α-smooth muscle
actin (α-SMA), collagen-1 and TGF-β1-p-smad2/3 signaling pathway [193]. EVs derived
from human umbilical cord blood MSCs (hUC-MSCs) therapy reduced inflammation in
the lungs and the number of goblet cells, and inhibited lung destruction in a rat model of
chronic obstructive pulmonary disease. Additionally, EVs hUC-MSCs partially reduced
inflammation through the expression of PRKCZ and p65 and p50 NF-κβ subunits [194].
Treatment of mice with lipopolysaccharide-induced lung injury by intravenous and intra-
tracheal administration of EVs-MSCs significantly reduced inflammatory cell infiltration,
septal thickening, lung permeability, total cell and neutrophil counts in BAL. Here, a sig-
nificant reduction of pro-inflammatory cytokines including interleukin-1β, interleukin-6
and TNF-α in BAL was also shown [195]. Treatment of EVs-MSCs carrying miR-23a-3p
and miR-182-5p reversed the progression of lipopolysaccharide-induced lung damage
and fibrosis by inhibiting NF-κB and Hedgehog pathways by downregulating Ikbkb and
destabilizing IKKβ (Figure 2) [196].

6. Clinical Trials of IPF Treatment with MSCs and EVs

A number of clinical trials have been conducted to assess the safety and efficacy of
IPF therapy with mesenchymal stem cells. For example, in one study, patients with mild
to moderately severe IPF received a single intravenous injection of bone marrow MSCs
(20, 100 and 200 × 106/mL). No serious adverse effects were observed, but by 60 weeks
after the infusion, there was an average 3.0% decrease in FVC and a 5.4% decrease in
carbon monoxide diffusing capacity of the lungs [197]. In another study, patients received
intravenous umbilical cord MSCs (10 mL) with a cell density of 5 × 106–1 × 107/mL.
There was a slight improvement in lung carbon monoxide diffusion capacity (from 46.3 to
63.1%) and fibrosis score (from 4.6 to 9.8%). Dyspnea scores decreased, with dyspnea at
rest decreasing from 3.0 to 1.5; there was a 32.2% increase in maximal inspiratory pressure.
The results of the study showed a trend towards an increase in systolic pulmonary artery
pressure at 6 and 12 months after administration [198]. In addition, a clinical trial was
conducted to investigate the safety of fat-derived MSCs in three endobronchial infusions
(0.5 million cells per kg body weight per infusion) in patients with mild to moderate
IPF. There were no serious or clinically significant adverse events and no deterioration in
functional parameters or quality of life indicators [199].

Another study showed that endobronchial injection of bone marrow MSCs did not
cause immediate serious adverse events in patients with IPF, but a certain proportion of
patients suffered clinical progression of the disease. Genetic instability of MSCs during
cultivation was also observed, which may serve as a limitation for the use of autologous
MSCs for IPF therapy. [200]. When intravenous administration of bone marrow MSCs in
concentrations of 2 × 107 MSCs/kg (group 1) and 1 × 108 MSCs/kg (group 2), a slower
progression of pulmonary fibrosis and a smaller decrease in pulmonary diffusion capacity
index were observed in the subjects from group 2 than in the subjects from group 1 [201].

The therapeutic properties of MSCs derived from the placenta were also evaluated.
Patients with mild-to-moderate IPF were intravenously injected with MSCs at concentra-
tions of 1 × 106 MSC/kg (n = 4) or 2 × 106 MSC/kg (n = 4). Further, forced vital capacity
(FVC) and pulmonary diffusion capacity were assessed, and a 6 min walk test and chest
computed tomography (CT) scan were performed. As a result, there was an increase in
FVC (52.5–74.5%) and pulmonary diffusion capacity (29.5–40%); the 6 min walk test and
CT scan were unchanged from the baseline [202].

In a small cohort study (n = 2) it was demonstrated that nebulisation or intravenous
injection of telomerase-positive stem cells increased first-second forced expiratory volume
by 14% to 27% and 25% to 70%, respectively [203].

Mesenchymal stem cells have received particular attention because of their ability to
modulate the immune system and inhibit inflammation and fibrosis induced by SARS-CoV-
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2. A study was conducted to assess the safety and efficacy of intravenous administration of
Wharton’s jelly-derived MSCs (150 × 106 cells per injection) to patients with COVID-19.
The results showed that IL-10 and SDF-1 levels increased after cell therapy, while VEGF,
TGF-β, IFN-γ, IL-6 and TNF-α levels decreased. At the same time, the zonal lesion score in
both lungs was improved [204].

In 2020, Sengupta et al. conducted the first clinical trial on the safety and efficacy
of EVs from allogeneic BM-MSCs (ExoFlo) for therapy of severe COVID-19. Intravenous
administration of ExoFlo proved to be safe and was not associated with the occurrence of
side effects at any time point. The survival rate was 83%. A single intravenous injection
of ExoFlo showed an improvement in oxygenation, a 32% reduction in neutrophil counts
and lymphopenia with an increase in mean CD3+, CD4+ and CD8+ lymphocyte counts
of approximately 45%. Overall, this study demonstrates that therapy with EVs-MSCs
contributed to reversing hypoxia, restoring immunity and suppressing the cytokine storm
without treatment-related side effects [205].

7. Conclusions

The mechanism of idiopathic pulmonary fibrosis involves a complex interaction of
different cell types, factors and signaling pathways. To date, there is a problem with the
effectiveness of the applied methods of IPF therapy. Mesenchymal stem cells are the most
attractive candidates because they are effective in repairing lung tissue, reducing collagen
deposition, suppressing profibrotic genes, inhibiting pro-inflammatory transcripts, and
inducing myofibroblast apoptosis. However, the limitations of their use have forced the
search for alternative cell-free therapies. EVs-MSCs exhibit the properties of parental cells,
promote lung tissue repair and have been confirmed to be safe in clinical trials.
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