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Abstract: Preparations of sulfated polysaccharides obtained from brown algae are known as fu-
coidans. These biopolymers have attracted considerable attention due to many biological activities
which may find practical applications. Two Atlantic representatives of Phaeophyceae, namely, Fucus
vesiculosus and Ascophyllum nodosum, belonging to the same order Fucales, are popular sources of
commercial fucoidans, which often regarded as very similar in chemical composition and biological
actions. Nevertheless, these two fucoidan preparations are polysaccharide mixtures which differ
considerably in amount and chemical nature of components, and hence, this circumstance should be
taken into account in the investigation of their biological properties and structure–activity relation-
ships. In spite of these differences, fractions with carefully characterized structures prepared from
both fucoidans may have valuable applications in drug development.
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1. Introduction

Sulfated polysaccharides containing L-fucose as the main monosaccharide component
were discovered in several brown algae, including Fucus vesiculosus and Ascophyllum
nodosum, more than a century ago [1]. Now, it is well known that preparations obtained by
extraction of algae and designated by trivial name “fucoidans” usually represent complex
mixtures of several chemically different polysaccharides [2–4], where fucan sulfate (FS, a
polysaccharide built up of fucose and sulfate only) may (but not necessarily) be one of the
main components. The procedure suitable for commercial production of fucoidans from
brown algal biomass was suggested in 1952 [5], but a highly purified sample of more or less
individual FS was obtained much later by numerous manipulations with crude fucoidan
from F. vesiculosus, probably accompanied by considerable loss of the starting material [6].
The first data on the chemical structure of SF published in 1950 [7,8] were then revised
several times. In this period, evidence appeared on the prospective biological activity of
fucoidans, especially as anticoagulants [9,10].

The availability of commercial fucoidans resulted in the rapid appearance of a large
amount of publications devoted mainly to the investigation of their biological proper-
ties [11]. At present, there are hundreds of such papers; for example, more than 400 refer-
ences dedicated mainly to therapeutic applications of fucoidans were cited in three reviews
by Fitton et al. [12–14]. Multiple biological actions of fucoidans depend primarily on their
interaction with different proteins due to the presence of sulfate groups [15–19], but branch-
ing of molecules [20] and molecular weights [21,22] may also be very important factors.
Fucoidans are traditionally regarded as promising anticoagulant [23–26], antitumor [27,28]
and anti-inflammatory agents [29–33], but recently they acquired special importance as
potential components of antiviral drugs [34–36], activators of hematopoiesis [37,38], and
reagents for use in nanomedicine [39].
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The elucidation of correlations between the biological properties of concrete samples
of fucoidans and their chemical structures remains a very important task [23,40], but
there are substantial difficulties connected with the conception of “fucoidan”, which is
not the term of strict carbohydrate nomenclature. It designates a preparation of water-
soluble sulfated polysaccharides, obtained by extraction of brown algal biomass and
separated (partially or completely) from other polysaccharide components of this biomass
devoid of sulfate groups—alginates and laminarans. The class Phaeophyceae (brown algae)
numbers more than 1000 species, which may differ considerably in their polysaccharide
composition [41,42]. Thus, fucoidans isolated from different species may contain not only
fucopyranose, but also fucofuranose units [43] together with other monosaccharides, such
as galactose, xylose, mannose, and glucuronic acid, etc. [2–4,41].

Therefore, the algal species is the first factor determining the composition of extracted
sulfated polysaccharides. Then it is necessary to bear in mind that representatives of the
same species growing in different conditions should inevitably differ in chemical compo-
sition. Ecological factors influencing the chemical composition of biomass include age
and physiological status of the alga [44], climate and season [45], water temperature and
salinity, solar radiation, and the accessibility of biogenic elements. Additional influences on
the quality of polysaccharide preparations should have the procedures of harvesting and
storage of raw material, as well as conditions of biomass treatment, which should secure
the completeness of polysaccharide extraction without their degradation and minimal
dissolution of extraneous non-carbohydrate materials, such as proteins and polyphenols.
Since crude preparations of sulfated polysaccharides, obtained by water extraction, are
usually mixtures of biopolymers of different structures [46], the nature of products destined
for structural analysis or the investigation of biological properties will be determined by
the used methods of fractionation [47]. Taking into account all the factors listed above,
it is not surprising that different groups of researchers, dealing with samples being com-
monly named by the same term “fucoidan”, in fact are often working with very different
polysaccharides [48].

Below we overview the published results of structural studies of polysaccharides
obtained from two widely distributed brown algal species, namely, F. vesiculosus and A.
nodosum. Both these species have been investigated for a long time and may be regarded
as prospective sources for the large-scale preparation of sulfated polysaccharides suitable
for diverse medical applications [49]. For example, based on such polysaccharides, biolog-
ical vectors are being developed, which may be used for delivering drugs or diagnostic
contrasting agents to tissues with increased P-selectin expression [50–54]. It should be em-
phasized that GMP-graded production of low-molecular-weight fucoidan from A. nodosum
was recently reported [54], and it was suggested to apply this product as the biovector or
contraster for the detection of P-selectin expression during cardiovascular diseases.

2. Sulfated Polysaccharides of Fucus vesiculosus

Representatives of the genus Fucus are widely distributed in the North Atlantic, as
well in the Barents and the Whyte Seas. Being typical littoral species, they occupy spacious
coastal plots uncovering at the low tide. Harvesting of this natural raw material is not a
very difficult task.

F. vesiculosus was one of those several brown algal species wherein the presence of
fucoidans was discovered [1]. Polysaccharide preparation from this species was used in
the first attempt to elucidate its chemical structure [7,8]. The alga was heated with water
in the boiling water bath, the extract obtained was treated with lead acetate to remove
alginic acid and proteins, and the remaining soluble polysaccharides were reprecipitated
several times and yielded a preparation, which was regarded as a fucan sulfate. According
to the analytical data, an essentially linear structure was suggested for the backbone of this
polysaccharide, built up of 1→2-linked α-L-fucopyranose residues, together with some
unsubstituted or monosulfated fucose residues attached to position 3 of the backbone as
single branches.
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About 40 years later, a commercial fucoidan from F. vesiculosus was reinvestigated
and the structure of hypothesized fucan sulfate was corrected [55]. It was shown that
1→3-linkage is the main type of linkage between the backbone residues. Possible positions
of sulfate and branches are depicted in Figure 1. Similar figures are often used to illustrate
structures of FS isolated from other brown algal species [56]. It should be noted that this
formula does not belong to any concrete sample of FS, but shows only the set of different
units, which may be found in different proportions in different samples of polysaccharides.
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Figure 1. The current idealized formula of brown algal fucan sulfate (structural elements, which are
possibly important for biological activity, are indicated).

The structure of the backbone was revised once more after the introduction of NMR
spectroscopy in the practice of structural analysis of FS. Spectral data gave reliable con-
firmation on the presence of 1→3-linked backbone in FS isolated from Chorda filum [57]
and several other algae belonging to the order Laminariales, but showed that fucoidans
from F. vesiculosus and A. nodosum contain fractions with backbones built up of alternating
(1→3)- and (1→4)-linked fucose residues [58,59]. Polysaccharides containing two alter-
nating linkages in the backbones were also found in several other representatives of the
order Fucales [60–62]. A hypothesis once appeared that (1→3)-linked FS backbones are
characteristic for algae from Laminariales only, whereas backbones with alternating (1→3)-
and (1→4)-linkages are typical for algae from Fucales, but the existence of such a firm
correlation between the taxonomic position of the algae and the structure of their FS was
not confirmed in recent investigations [48].

The formula of FS depicted in Figure 1 does not take into account the presence of
several other monosaccharides, primarily galactose, xylose, mannose, and glucuronic acid,
which usually may be found in fucoidan preparations. These monosaccharides may be com-
ponents of other types of polysaccharides. According to contemporary evidence, several
polysaccharides forming brown algal cell walls are linked with proteins and polyphenols in
a complex [4], where the nature of linkages between components remains mostly unknown.
To isolate polysaccharides, this complex should be destroyed by, for example, the action of
dilute acids [5], although FS itself may be partially degraded under acid conditions. Crude
fucoidans usually contain a wide set of molecules differing in composition and molecular
weights and evidently need additional purification. Anion-exchange chromatography
demonstrates the presence of continuous spectrum of molecules differing in charge and
monosaccharide composition, from fractions with low sulfate and low fucose, containing
other neutral monosaccharides and glucuronic acid, to highly sulfated fucans [63]. Si-
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multaneous presence of several different sulfated polysaccharides was demonstrated for
many brown algae [46,64]. The isolation of the components of these mixtures depends
on their relative content and specific extraction and fractionation procedures. More de-
tailed discussion on the problem is given below in the description of polysaccharides from
A. nodosum.

One of the laboratory procedures of fucoidan isolation [60] recommends extraction
of algal biomass with 2% aqueous calcium chloride at 85 ◦C. It results in dissolution of
neutral laminaran and sulfated polysaccharides, whereas insoluble Ca-salts of alginic acids
remain in the precipitate. Acid polysaccharides may be precipitated from extract by the
addition of a cationic detergent, such as cetyltrimethylammonium bromide, transformed
into the soluble sodium salts and then chromatographed on an anion-exchanger, such as
DEAE-Sephacel, using stepwise elution with NaCl solutions of increasing concentrations.
Neutral components are not absorbed on the column, while alginic acids are eluted with
0.5 M NaCl, and sulfated fractions are then eluted according to the increase of sulfate
content, the most sulfated fractions appearing in the region of 2.0 M NaCl.

There are numerous modifications of isolation procedure aimed at acceleration of the
process or increase of the yield of target polysaccharides. For these purposes it was sug-
gested to isolate cell walls [64,65], to carry out extraction with solutions of acids, alkali, or
detergents [64,66,67], to use autohydrolysis [68], microwave radiation [69], ultrasound [70],
or treatment with enzymes capable of destroying the accompanying polysaccharides [71,72].
Fucoidans prepared by different procedures may differ considerably in composition and
properties. Thus, seventeen fucoidans isolated by different authors from F. vesiculosus
contain from 4% to 39% of sulfate and from 50% to 94% of fucose in carbohydrate moiety.
These analytical characteristics were given in a recent review [48].

3. Sulfated Polysaccharides of Ascophyllum nodosum

This brown algal species belonging to the same family Fucaceae, as described above
F. vesiculosus, practically coincides with it in geographical distribution, but is growing in
sublittoral conditions. A. nodosum is used for industrial production of alginates and is
available as feedstock in large amounts.

A peculiar sulfated heteropolysaccharide named “ascophyllan” was isolated from
the mixture of water-soluble polysaccharides obtained by extraction of A. nodosum [73]. It
contained approximately equimolar amounts of fucose, xylose, glucuronic acid, and sulfate,
as well as a tightly bound polypeptide fragment. Partial acid hydrolysis of ascophyllan gave
rise to 3-O-β-D-xylopyranosyl-L-fucose [74] and a non-dialysable polyuronide, indicating
the presence of a backbone built up of glucuronic acid residues and side chains containing
fucose and xylose. Using extractions under very mild conditions, it was possible to isolate a
high-molecular complex, which was split under subsequent acid treatment into ascophyllan,
alginate, and a fraction close to fucan sulfate in composition. Based on these data, it was
supposed that a similar situation should also be found for polysaccharides of F. vesiculosus,
but in this case the content of fucan sulfate predominates considerably over the content
of hypothetical ascophyllan analogue [75]. Structural analysis of ascophyllan was the
subject of a series of more recent publications [76–81]. Based on these data, a procedure was
developed for isolation of a fraction of fucan sulfate from A. nodosum, having backbones of
1,3-linked fucose residues [82]. At the same time another fraction, containing backbones
of alternating 1,3-1,4-linked fucose residues, was obtained from the same alga by another
group of authors. The structure of the latter polysaccharide was carefully investigated using
chemical methods together with NMR spectroscopy [58,59] and mass spectrometry [83].
Hence, fucan sulfate itself is heterogeneous and contains fractions having fundamental
structural differences in their carbohydrate moieties.

Later on, a simplified procedure of biomass treatment was published, which gives
the possibility to prepare ascophyllan and fucan sulfate separately [84] (Table 1). Polysac-
charides isolated by this procedure were studied in biological tests, and it was found for
the first time that ascophyllan can stimulate the growth of a culture of mammalian cells
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(under the same conditions fucan sulfate showed opposite action) [85]. Comparison of
polysaccharide preparations, isolated from A. nodosum by usual extraction with dilute acid,
and by several new procedures using microwave radiation [86], ultrasound, or enzymatic
degradation of cell walls was described in a recent paper [87]. As expected, these prepara-
tions differ in yields, composition, and molecular weights, but have comparable prebiotic
activity by stimulating, in vitro, the growth of lactic acid bacteria. Two polysaccharide sam-
ples differing in molecular weights and capable of inhibiting inflammation were isolated by
treatment of A. nodosum with enzymes followed by anion-exchange chromatography [88].
Both preparations contained not only fucose, but also galactose and hence were fragments
of a sulfated galactofucan. They exhibited different anti-inflammatory activities, indicating
that molecular weight is an important factor for this type of biological action.

Table 1. Yields and composition (in %) of several polysaccharide preparations isolated from
A. nodosum and F. vesiculosus *.

Preparation Yield Fuc Xyl Glc Man Gal UA SO3Na

Ascophyllan [71] 1.9 15.5 (1.00) 13.4 (0.95) 0.3 (0.02) 3.4 (0.2) 0.6 (0.04) 21.4 (1.17) 9.6 (1.06)

Fucan sulfate from
A. nodosum [71] 1.25 28.4 (1.00) 4.3 (0.16) 2.0 (0.06) 0.8 (0.03) 5.3 (0.17) 5.8 (0.17) 19.4 (1.17)

Fucan sulfate from
A. nodosum [69] (1.00) (0.05) - - - - (0.47)

Fucan sulfate from
F. vesiculosus [5] (1.00) tr. - - tr. - (0.47)

Commercial fucoidan
from F. vesiculosus [71] 24.8 (1.00) 1.9 (0.09) 0.8 (0.03) 1.0 (0.04) 3.1 (0.11) 9.6 (0.33) 22.6 (1.56)

* Molar proportions relative to fucose content (Fuc = 1.00) are given in brackets.

4. Conclusions

Both brown algal species described in this review are convenient sources of so-called
“fucoidans”, which are crude mixtures of sulfated polysaccharides. Both “fucoidans” con-
tain fucan sulfates as the main components, which are especially interesting as biologically
active polysaccharides. Differences between “fucoidans” of these two algal species are con-
nected mainly with the higher content of another main component, termed “ascophyllan”,
in A. nodosum. In fact, ascophyllan itself is a mixture of several heteropolysaccharides of
moderate sulfation degree, containing, in addition to fucose, also xylose, glucuronic acid,
and some other monosaccharides [73,77,81]. Ascophyllan has its own practically useful
properties and may find application as a preparation with peculiar (distinct from fucan
sulfates) biological activities [89]. The paper by W. Jin et al. [90] may be mentioned as a
very impressive example of investigation devoted to correlating the biological activity and
chemical structures of fucoidan components: the authors carefully analyzed the structural
information of about sixty fucoidan samples isolated from different algae, used them in a
cell surface tau-binding assay, and found that two different branched sulfated polysaccha-
ride components of fucoidans, namely, a galactofucan and a fucoglucuronomannan, acted
as effective inhibitors of tau spreading. Hence, these data may provide a basis for creation
of drugs applicable for therapy in the earliest phase of Alzheimer’s disease.

Resolution of “fucoidans” into individual polysaccharide components remains the
most difficult problem. Since these polysaccharides are polyanions, anion-exchange chro-
matography is traditionally used for their separation, giving excellent results in some
cases [61]. At the same time this procedure cannot resolve compounds differing in struc-
ture, but having similar charge densities. Similar limitations are typical for gel-permeation
chromatography, where even structurally different polysaccharides cannot be resolved,
if they have close molecular weights. Evidently, the resolution of fucoidans needs addi-
tional improvement. Specific enzymatic degradation of unnecessary components of the
mixture [91] or affinity chromatography based on the property of sulfated polysaccha-
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rides to bind several proteins [92,93] may be mentioned as the possible approaches to new
fractionation procedures.

Fucoidan preparations devoted to medical applications should satisfy the very strong
demands concerning their reproducible composition and compatibility with manufacturing
requirements under GMP-standards. A similar problem has been solved in the prepara-
tion of low-molecular-weight heparins [94]. The process of fucoidan isolation should be
carefully controlled at several steps. One of the most important parameters is the standard
quality of the raw material, which is highly varying and depending on the place and season
of harvesting, as well on the procedure of its conservation and storage. Extraction may be
carried out with dilute acids under moderate heating at the conditions, which are sufficient
for the destruction of polysaccharide complexes of the cell walls without marked degrada-
tion of the target fucoidan. Mild oxidants may be used for bleaching, and high molecular
mass may be diminished (if necessary) by careful partial depolymerization. The wanted
fraction may be prepared using membrane filtration. Finally (this is especially important
for algae similar in polysaccharide composition to A. nodosum) the most interesting bio-
logically active highly sulfated fraction should be separated from lower-sulfated material
(such as so-called ascophyllan) using chromatography on anion-exchange resins. The
preparations obtained should be characterized by quantitative determination of monosac-
charides (e.g., gas–liquid chromatography, spectrophotometry) sulfate (e.g., turbidimetry)
and molecular-mass distribution (e.g., analytical gel-permeation chromatography). Similar
standardization procedures are suggested for sulfated glycosaminoglycans, such as, for
example, for chondroitin sulfates [95].

Regulatory requirements mentioned above shorten the fields of medical use of fu-
coidans by the case of superficial applications (ointments, gels, inhalable compositions,
etc.), but injectable forms may be based on synthetic oligosaccharides related to fucoidan
fragments. It should be emphasized that the preparation of such compounds is well elabo-
rated to date [96–98]. In addition, one promising option for fucoidan standardization can
be connected with enzymatic treatments. Recent studies discovered a series of fucoidan
degrading and modifying enzymes [99–101], but up to now only a few agents of this type
were obtained, while their applicability for industrial application was not studied yet and
needs to be investigated.
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