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Abstract

Forage fishes play an important role in marine ecosystems by transferring energy and nutri-

ents through the food web. The population dynamics of forage species can therefore have

cascading effects across multiple trophic levels. Here, we analyzed a 19-year dataset on

Pinfish (Lagodon rhomboides) across four eastern Gulf of Mexico estuaries to investigate

population dynamics, inter- and intra-annual synchrony, metapopulation portfolio effects,

growth, and habitat effects. Young-of-year growth rates did not differ among estuaries. The

population dynamics of these four systems were stable in the long-term, but highly dynamic

inter-annually. Intra-annual dynamics were stable and predictable despite variation in long-

term means. Some estuaries exhibited positive inter-annual synchrony, and all four estuar-

ies were synchronous intra-annually. There was evidence for stronger portfolio effects for

the entire four-estuary metapopulation, as well as for the two northern estuaries while the

southern estuaries appeared to act as a single population. Submerged aquatic vegetation

was by far the most important predictor for both presence and abundance of Pinfish. It is

important to understand the factors driving forage fish population fluctuations to better pre-

dict ecosystem effects, including those to species of economic and ecological importance.

These predictors can be useful for the implementation of ecosystem-based management

decisions.

Introduction

‘Forage fishes’ are defined as small- to intermediate-sized schooling fishes that serve as prey

for numerous marine predators [1]. These species fill crucial intermediate trophic levels

through schooling behaviors, fast growth, and high abundances that make them a common

target as prey [2]. They also fill fundamental niches in energy and nutrient transfer through

marine food webs due to their planktivorous and herbivorous diets, relatively high lipid con-

tent [3,4], and role as a major prey item in the diets of large fish, seabirds, and marine mam-

mals [5]. In addition to their ecological roles, forage fishes contribute $16.9 billion annually to

global fisheries through direct harvest for fish oil and consumption, and indirect support of

other fisheries [1]. High fishing intensity can potentially lead to forage fish population collapse
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[6, 7] and cause pronounced changes in ecosystem structure and function [8, 9]. Conversely,

high fishing intensity on predatory fishes can lead to trophic cascades, increases in forage fish

abundance, and decreases in biodiversity throughout an ecosystem [10, 11, 12]. Studying the

population dynamics of low trophic level species is important for understanding energy trans-

fer and food availability for higher trophic levels. Changes in demographics or population

structure of prey species can influence those of their predators, leading to effects throughout a

community [2, 13]. These bottom-up effects have been well-studied in many systems and are

known to act in conjunction with top-down effects on community structure [13, 14]. Bottom-

up effects can vary greatly across scales, thus it is important to understand the dynamics of var-

ious trophic levels on multiple spatial and temporal scales [12, 15]. The vulnerability and

importance of forage fishes highlight the need for conservation efforts focused on these popu-

lations and implementation of ecosystem-based management.

Pinfish (Lagodon rhomboides) are an abundant and ubiquitous marine forage fish in eastern

Gulf of Mexico (eGOM) estuaries. Pinfish meet several of the required characteristics to be

considered a ‘forage fish’ by the standards set forth by Pikitch et al. [1], as the species is a pri-

mary consumer, maintains an intermediary trophic position throughout its life, and is a major

conduit of nutrients to higher trophic levels [16]. Due to its role within eGOM ecosystems, it

has been classified within the forage fish functional group in Atlantis models used for food

web modeling [17]. In addition to its ecological importance, a commercial fishery exists for

Pinfish in Florida, mainly for use as bait in other commercial and recreational fisheries [18].

Despite its recreational and commercial contributions, and its role as an important prey item,

a formal stock assessment has yet to be completed for this species [19].

Juvenile Pinfish settle in Florida seagrass beds from November to March [20]. Young-of-

year (YOY) Pinfish then remain and grow in seagrass beds, exhibiting an ontogenetic diet shift

from a planktivorous diet to an herbivorous one in which they forage on epiphytic algae [21,

22, 23, 24]. Following maturation (~110mm) [25], adult Pinfish migrate offshore to spawn

between October-May [26, 27, 28, 29], although some individuals may remain inshore year-

round [22]. Due to the use of both inshore and offshore habitats during different life stages

and its high abundance [30], Pinfish serve as prey to a wide range of predators both inshore

and offshore and serve as a nutrient subsidy to offshore food webs [16]. Predators include eco-

nomically-important fisheries species such as Spotted Seatrout, Cynoscion nebulosus [23, 31,

32, 33], Red Drum, Sciaenops ocellatus [34, 35], and Gag, Mycteroperca microlepis [17, 36, 37],

as well as seabirds [38, 39, 40, 41], and marine mammals [40].

Given the critical ecological roles Pinfish play in eGOM trophic dynamics, it is important

to understand the spatiotemporal patterns in Pinfish population dynamics and the factors

potentially driving fluctuations. In this study, a long-term dataset of Pinfish density and bio-

mass was analyzed across four major estuaries in the eGOM. We also apply the theory of port-

folio effects to a Pinfish metapopulation to assess the long-term stability of the population

when the individuals of a population are “invested” in multiple geographically separate estuar-

ies across the eGOM. The principles of portfolio theory from the field of economics (sensu
Markowitz [42]) have been applied to a handful of biodiversity studies to assess the security of

natural diversity [43] through the calculation of return–risk ratios of ecosystem “portfolios.”

Here, we use this technique to assess the long-term security of a population of Pinfish in the

eGOM. Knowledge on portfolio effects and long-term population stability can help inform

management on the vulnerability of fish stocks to perturbations.

The objectives of this study were to: 1) analyze the long-term, inter- and intra-annual popu-

lation dynamics of Pinfish across these estuaries to describe the spatial and regional patterns in

long-term mean and variation, 2) investigate the inter- and intra-annual population synchrony

among these four estuaries, and measure the strength of metapopulation portfolio effects, 3)
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analyze regional variation in YOY size and growth, and determine if this variation influenced

the density-biomass dynamics within each estuary, and 4) model the habitat variables that

were related to long-term Pinfish population dynamics.

Methods

Sampling design

Specimen collections were conducted via standard protocols by the Florida Fish and Wildlife

Research Institute (FWRI) Fisheries Independent Monitoring (FIM) program. These protocols

were authorized by the Florida Fish and Wildlife Conservation Commission for state fisheries

and conservation research. All animals counted and measured for this dataset were released

alive in the field. Stratified random sampling was conducted monthly from 1998–2016 by the

FWRI FIM program in each of four estuaries: Apalachicola Bay (AB), Cedar Key (CK), Tampa

Bay (TB), and Charlotte Harbor (CH; Fig 1). Strata were defined by spatial zones (based on

geographic, hydrologic, and logistical criteria), water depths, and habitat types (submerged

aquatic vegetation [SAV], unvegetated, and shoreline). Each estuary was subdivided into 1

nautical mile2 (nmi2) grids and stratified by depth. Sampling was conducted using a 21.3 m

center-bag seine with 3.2 mm mesh netting that is restricted to use in depths <1.8m. There-

fore, grids with a minimum depth between 0.1 and 1.8 m were randomly selected within each

estuary for sampling. Within each randomly selected grid, a 183 m2 microgrid was randomly

selected as the starting point to search for the designated habitat [44]. At each sampling site,

environmental variables including salinity and water temperature (˚C) were measured with a

YSI handheld multiparameter water quality meter, and the percent cover of SAV was visually

estimated in ten percent increments. A seine haul consisted of pulling the seine 9.1 m with a

15.5 m line maintaining a consistent net opening, resulting in a sampled area of 140 m2. After

net deployment, the sample was retrieved by pulling the leads around a pole to concentrate the

sample in the bag. All Pinfish were counted and a subsample of up to ten randomly selected

individuals was measured for standard length (SL) in millimeters (mm) before being released

alive. Mean number of seine hauls per month varied between 9–20 per estuary (See S1 Table).

Analysis

To examine Pinfish population dynamics, catch abundances were converted to densities by

dividing the number of Pinfish collected in each sampling event by the total area sampled with

the gear. Seine hauls conducted a minimum of 5m away from the shoreline were used in these

analyses. To analyze spatial patterns among estuaries, density (fish/100m2) for each net haul

was calculated and then averaged over all months and years for each estuary. Second, mean

density was calculated over all months in each estuary per year to examine inter-annual pat-

terns. Third, density was averaged over years in each estuary per month to explore intra-

annual patterns. Mean biomass (g/100m2) was estimated to compare dynamics between Pin-

fish density and biomass. Lengths of the measured subsample of Pinfish were extrapolated to

the remaining unmeasured Pinfish sample before biomass was calculated using the length-

weight relationship:

W ¼ a� SLb; ð1Þ

where W is weight in grams, SL is standard length in millimeters, and a and b are length-

weight constants. The regression parameters (a and b) were derived from estuary-specific

length and weight data from subsamples of Pinfish caught during monthly inshore fisheries-

independent surveys (2001–2017; n = 3,517).

Population dynamics of Pinfish
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To test for population synchrony, time-series analyses were conducted on the Pinfish den-

sity data. To investigate inter-annual synchrony, the density data were detrended to remove

seasonal signals. For intra-annual synchrony, analyses were focused only on the seasonal sig-

nals. Then cross-correlations were conducted for each estuary pair to test for inter- and intra-

annual synchrony.

The principles of portfolio theory from the field of economics (sensu Markowitz [42]) have

been applied to a handful of biodiversity studies to assess the security of natural diversity [43]

through the calculation of return–risk ratios of ecosystem “portfolios.” Here, this technique is

applied to a Pinfish metapopulation to assess the long-term stability of the population when

the individuals of a population are “invested” in geographically separate estuaries. Metapopu-

lation stability is a direct function of local and large-scale abundance and population syn-

chrony [45, 46], while extirpation risk is heightened by low population variability, decreasing

Fig 1. Map of study sites. Blue polygons represent areas sampled by FWRI’s FIM program from 1998–2016 in four eastern Gulf of Mexico (eGOM) estuaries:

Apalachicola Bay (AB), Cedar Key (CK), Tampa Bay (TB), and Charlotte Harbor (CH).

https://doi.org/10.1371/journal.pone.0221131.g001
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abundance and synchronous population dynamics [47]. For each portfolio, we calculated the

average coefficient of variation portfolio effect (CVPE) [48]:

CVPE ¼
ðCVp1 þ CVp2 þ � � � þ CVpnÞ=n

CVm
; ð2Þ

where CVp1. . .n, are the coefficients of variation for each local population, n is the number of

local populations, and CVm is the coefficient of variation for the overall metapopulation. The

CVPE quantitatively describes the mean variation of local populations with variance dampen-

ing from the metapopulation. Larger values represent stronger portfolio effects, or greater vari-

ance dampening, while low values represent no variance dampening or complete synchrony

[47]. A CVPE = 1.0 therefore effectively represents a single homogeneous population while

CVPE >1 represents a population with asynchronous dynamics that is more stable than a sin-

gle homogeneous population.

A month-to-month comparison of mean SLs was conducted to estimate Pinfish growth

rates. A bimodal distribution in standard length was observed in December, indicating pres-

ence of a second, smaller cohort within each estuary. This was confirmed through the calcula-

tion of bimodality coefficients (AB: 0.79; CK: 0.74; TB: 0.61; CH: 0.67), where a value >0.55

suggests bimodality [49]. Due to the potential for the bimodality coefficient to incorrectly

assume a bimodal distribution from a highly skewed unimodal distribution [50], we also con-

ducted the Hartigan’s dip test [51], which confirmed significant multimodality in each estuary

(all p< 2e-16). This smaller cohort was split into a “month 0” to represent the recruitment of

smaller fish for the beginning of the following year. Instantaneous growth coefficients were

additionally calculated for Pinfish annually. The assessment of growth coefficients in each

estuary assumed limited migration of Pinfish among estuaries, however, other factors could

affect size class structure such as size selective mortality and egress. Thus, growth rates were

approximated with mean SL data with an emphasis on months April through July to reduce

biases related to settlement (January-March) and ontogenetic movements of juveniles

(August-December). Following the approach of Nelson [20], growth was estimated with the

model:

lnðLtÞ ¼ lnðL0Þ þ G� t; ð3Þ

where G is the instantaneous growth rate (per month), Lt is the monthly mean SL (mm), L0 the

theoretical SL at which Pinfish recruit to each estuary, and t is time in months.

A zero-altered negative binomial (ZANB) analysis was used to explore which environmen-

tal variables were related to the observed variation in Pinfish presence and density for each

individual estuary. A ZANB model was selected due to overdispersion of both zeroes and non-

zero data. Four methods were tested (zero-inflated negative binomial, zero-inflated Poisson,

and zero-altered Poisson). Akaike Information Criteria (AIC) model selection was used to

determine the most appropriate model. The ZANB approach was the most appropriate, with

higher R2 and lower AIC than the other three models. This analysis consists of two generalized

linear models: a binomial distribution was used to model presence-absence probability, and a

negative binomial distribution was used to model density patterns. Explanatory variables

included percent cover of SAV, water temperature, salinity, water depth, SAV2 (to account for

non-linear saturation effects of habitat structure), and SAV-temperature interaction term. A

stepwise model selection was conducted via a combination of forward addition and backward

elimination on both the presence-absence and abundance models for each estuary based on

minimization of the AIC. To test for multicollinearity among model predictors, a tolerance

test was conducted on the full model excluding interaction and power terms for each of the

Population dynamics of Pinfish

PLOS ONE | https://doi.org/10.1371/journal.pone.0221131 August 22, 2019 5 / 18

https://doi.org/10.1371/journal.pone.0221131


presence-absence and abundance models by estuary. At a tolerance level of 0.5, there was no

evidence of multicollinearity among any of the predictors in both the presence-absence and

density models for all estuaries (VIF range: 1.001–1.352), which gave sufficient justification to

include all predictors in the selection process. Analyses were conducted using the MASS and

car packages for R Statistical Computing Environment [52, 53, 54].

Results

Patterns in mean density and biomass were similar among estuaries but both varied by as

much as an order of magnitude between estuaries (Fig 2A–2D). Both interannual mean den-

sity (Fig 2A) and biomass (± standard error; Fig 2C) were highest in CH (76.80 ± 8.40 no./

100m2; 266.18 ± 11.46 g/100m2), followed by TB (40.43 ± 4.42 no./100m2; 103.18 ± 4.79 g/

100m2), AB (23.17 ± 2.39 no./100m2; 89.19 ± 5.48 g/100m2), then CK (6.37 ± 0.93 no./100m2;

38.64 ± 3.45 g/100m2). Intra-annual densities of Pinfish increased across the four estuaries

during the early months of the year and peaked in March-May, for all years combined (Fig

2B). The southern estuaries tended to have a one-month peak in density while the northern

estuaries had more prolonged peaks lasting three months. Intra-annual biomass increased

across all estuaries from January through April-May for AB, TB, and CH, and through Sep-

tember for CK and subsequently declined through December (Fig 2D).

Population synchrony

There was positive inter-annual synchrony (with a lag between 0–3 months) in density

between the two northern estuaries (AB and CK, r = 0.30) as well as the two southern ones (TB

and CH, r = 0.53), and negative synchrony between the two middle estuaries (TB and CK, r =

-0.18; all other estuaries were asynchronous at the inter-annual scale) (Table 1A). For biomass,

Fig 2. Inter- and intra-annual Pinfish densities and biomass. Inter- (left column) and intra-annual (right column)

population dynamics of Pinfish density (top row) and biomass (bottom row) from 1998–2016. Long-term means (±
SE) are reported for each estuary in the legends of the inter-annual plots. The four plots display: a) inter-annual

density, b) intra-annual density, c) inter-annual biomass, d) intra-annual biomass.

https://doi.org/10.1371/journal.pone.0221131.g002
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there was positive inter-annual synchrony between all pairs (r = 0.14–0.43), except TB and AB,

which were asynchronous (Table 1B).

All four estuaries were positively synchronous with each other in intra-annual density

(r = 0.88–0.99; Table 1C), although the two northern estuaries (AB and CK) generally lagged

one month behind the two southern estuaries (TB and CH). Likewise, biomass was generally

positively synchronous intra-annually among estuaries (r = 0.77–0.92), however CK was nega-

tively synchronous with both TB (r = -0.85) and CH (r = -0.92; Table 1D). Within each estuary,

peak positive synchrony between density and biomass lagged by one month in CH (r = 0. 0.96;

Fig 3D), two months in AB (r = 0.86; Fig 3A) and TB (r = 0.94; Fig 3C), and four months in

CK (r = 0.80; Fig 3B).

Metapopulation portfolio effects

The dynamics in peak inter-annual density (three-month moving average) were relatively sim-

ilar in AB (CV = 0.73), TB (CV = 0.63), and CH (CV = 0.77). Density dynamics were more var-

iable in CK (CV = 1.12). Qualitatively, the peak inter-annual biomass dynamics reflected those

for density but were less variable (Fig 4). Specifically, they were similar in AB (CV = 0.49), TB

(CV = 0.42), and CH (CV = 0.44), but more variable in CK (CV = 0.88). The magnitude of

portfolio effects varied among metapopulations. The full, four-estuary portfolio effect was 42%

more stable than a single homogenous population (CVPE = 1.42; Fig 5). The portfolio effects

differed between the northern (CVPE = 1.35) and southern (CVPE = 1.05) metapopulations

(Fig 5).

Size and growth

Pinfish SL increased in all four estuaries between December, when Pinfish began to recruit,

and October of the following year (mean increase of 45–55 mm SL; Fig 6). Mean SLs were

smallest in December and January, increased during the summer and early fall, and generally

reached an asymptote by October. Mean SLs were similar among the four estuaries through

July after which Pinfish were noticeably larger in CK, smaller in AB, and of intermediate size

in TB and CH through the remainder of the calendar year. Instantaneous growth rates (G)

were similar across estuaries (0.15 to 0.17).

Table 1. Inter- and intra-annual population synchrony between estuaries. Cross correlation coefficients (r) of peak synchrony measured within 0–3 month lags

between estuaries for a) inter-annual density, b) inter-annual biomass, c) intra-annual density, and d) intra-annual biomass. Significant correlations are in bold and the

peak lag time in months is reported in parentheses.

a) Density inter-annual b) Biomass inter-annual

AP CK TB AP CK TB

AP AP

CK 0.30 (2) CK 0.37 (1)

TB 0.10 (3) -0.18 (0) TB 0.11 (1) 0.14 (3)

CH 0.10 (2) 0.08 (1) 0.53 (1) CH 0.22 (2) 0.21 (0) 0.43 (1)

c) Density intra-annual d) Biomass intra-annual

AP CK TB AP CK TB

AP AP

CK 0.99 (0) CK 0.77 (1)

TB 0.88 (1) 0.91 (1) TB 0.91 (1) -0.85 (3)

CH 0.89 (1) 0.92 (0) 0.99 (0) CH 0.92 (1) -0.92 (3) 0.92 (0)

https://doi.org/10.1371/journal.pone.0221131.t001
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Habitat variables

Among the habitat variables included in the ZANB model, SAV explained the most variability

in both Pinfish presence (Table 2A) and density (Table 2B) in all four estuaries. Submerged

aquatic vegetation explained 2–38 times more variability than each of the other significant

terms for presence and 2–11 times more variability for density. SAV was followed by the qua-

dratic function of SAV (SAV2), which explained more variability than the remaining signifi-

cant terms (Salinity, Temperature, Depth, SAV�Temperature) for both presence and density

of Pinfish.

The four remaining terms in the ZANB model (in descending order of importance based

on the standardized coefficients: salinity, temperature, SAV�temperature, and depth) were

positively associated with presence (binary model, Table 2A). Salinity explained Pinfish pres-

ence in the two southern estuaries (TB and CH), but not the two northern estuaries. Tempera-

ture and the SAV�temperature interaction term accounted for significant variability in the

presence of Pinfish in the southernmost (CH) and northernmost (AB) estuaries (Fig 2B).

There was a significant, negative relationship between temperature and Pinfish density in

all four estuaries. Salinity also had a significant relationship with density in all four estuaries

Fig 3. Mean monthly Pinfish dynamics. Mean monthly density (black triangle) and biomass (open circles) of Pinfish from 1998–2016. Months are in order of calendar

year (i.e., 1 = January, 12 = December). Cross correlation coefficients and lags reflect peak synchrony between density and biomass within each estuary.

https://doi.org/10.1371/journal.pone.0221131.g003
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Fig 4. Standardized density and biomass. Standardized density (top panel) and biomass (bottom panel), expressed as the

ratio of annual to long-term mean values (horizontal dark gray line). Coefficient of variation (CV) values are provided for

each metric in each estuary.

https://doi.org/10.1371/journal.pone.0221131.g004
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but with different directionality: positive in the southern (TB and CH) and negative in the

northern (AB and CK) estuaries. There was a significant, negative relationship between tem-

perature and Pinfish density for all four estuaries, but SAV�Temperature only accounted for a

significant amount of variation in AB. The effects of depth were significant in every estuary

except CK, although the magnitude of the relationships was relatively small compared to the

other variables.

Discussion

In this study we analyzed nineteen years of Pinfish catch data from four major estuaries in the

eGOM to investigate the population dynamics of one of the most abundant forage fishes in the

region. The results add to our understanding of the spatial, inter-annual, and intra-annual pat-

terns of density and biomass for this ecologically important species. Our results showed that

although Pinfish population dynamics varied spatially and temporally, there were similar

inter- and intra-annual patterns of density and biomass among the four estuaries. Further-

more, we found that both presence and density of Pinfish were related primarily with SAV

coverage, and to a lesser degree with other environmental factors including temperature, salin-

ity, and depth.

Fig 5. Metapopulation portfolio effects. Long-term mean metapopulation density across all four estuaries (full), two northern estuaries (AB and CK

combined), and two southern estuaries (TB and CH combined). The coefficient of variation portfolio effect (CVPE) values are reported for each

metapopulation.

https://doi.org/10.1371/journal.pone.0221131.g005
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Fig 6. Pinfish growth. Spatio-temporal variation of mean Pinfish standard length among estuaries intra-annually. Means (± SE)

of the instantaneous growth rates (G) between April and July for each estuary are reported in the legend. Months are in order of

calendar year (i.e., 1 = January, 12 = December), with month 0 representing sizes from the smaller cohort of new YOY recruits in

December of the previous year.

https://doi.org/10.1371/journal.pone.0221131.g006

Table 2. Zero-Altered Negative Binomial (ZANB) model outputs. The ZANB analysis consists of two generalized linear models: a zero adjusted (binary) model for pres-

ence-absence probability (a), and a negative binomial (count) model for density (b). Values reported are standardized coefficients.

a) Presence

Estuary SAV Salinity Temperature Depth SAV2 SAV�Temperature

AB 2.8822��� NS 0.3705��� 0.0765 -1.6454��� 0.1501��

CK 0.9183��� NS NS 0.0698 NS NS

TB 2.0577��� 0.6921��� NS NS -0.7783��� NS

CH 1.7210��� 0.6606��� 0.1891��� 0.1863��� -0.4483� 0.1605���

b) Density

Estuary SAV Salinity Temperature Depth SAV2 SAV�Temperature

AB 0.9330��� -0.0851� -0.3825��� 0.1304��� NS 0.1422���

CK 1.8860��� -0.3579��� -0.3354��� NS -0.8332��� NS

TB 1.0671��� 0.3858��� -0.6767��� -0.1017�� NS NS

CH 0.8109��� 0.4445��� -0.5587��� 0.1460��� -0.313� NS

Significance:

� = p < 0.05

�� = p < 0.01

��� = p < 0.001

NS = Not Selected

https://doi.org/10.1371/journal.pone.0221131.t002
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Density and biomass varied greatly across the four estuaries, possibly due to variation in the

quality of suitable juvenile habitat (i.e., seagrass coverage, suitable temperature and salinity

ranges) or differences in larval supply. Southern estuaries (CH and TB) had far greater density

and biomass than northern estuaries (CK and AB). Mean density and biomass with all years

combined were two times higher in CH than TB, with even greater differences between CH

and the two northern estuaries (AB and CK). The differences in both density and biomass

across estuaries could result from estuarine-specific variation in environmental variables. For

example, seagrass beds at higher latitudes experience larger seasonal fluctuations in tempera-

ture and solar radiation, which can lead to leaf necrosis and lower seagrass biomass [55],

potentially reducing their ability to support Pinfish. In addition, regional variation in domi-

nant seagrass has been observed, with higher cover of turtle grass (Thalassia testudinum) in

the south and manatee grass (Syringodium filiforme) in the north [30]. The wide, flat blades of

turtle grass may support more epiphytic algae, which is a key food source for Pinfish [21, 22,

56], compared to relatively thinner and cylindrical structures of other seagrass species [57].

Variation in Pinfish density between northern and southern estuaries could also be driven

by differences in larval supply. Pinfish are assumed to spawn offshore [26, 40] along the West

Florida Shelf (WFS) and successful settlement occurs when larvae are transported to nearshore

estuaries. This transport can be explained by modeled eGOM hydrodynamic patterns, particu-

larly the timing of offshore water delivery across the WFS. Interactions between the Gulf of

Mexico Loop Current and the shelf slope affect the magnitude and direction of offshore water

moving inshore [58] and could therefore influence larval transport and recruitment of Pinfish

to eGOM estuaries. In years when nearshore waters of the TB and CH regions—and AB to a

similar but lesser degree—are renewed during protracted upwelling circulation, conditions are

not favorable for transport to the CK region [59], and vice-versa. These processes could influ-

ence the timing of recruitment pulses to these estuaries along the WFS, leading to the observed

inter-annual trends [60, 61]. The CK estuary (i.e., the greater Big Bend region) is located

inshore of a very wide portion of the shelf, so larvae may have longer distances to travel to

reach this estuary compared to the other estuaries.

Although Pinfish density and biomass were highly dynamic in the region, the populations

were stable across these four systems in the long-term, despite the occurrences of severe stress-

ors such as severe cold events [62], red tide events [63], and seagrass die-offs [64]. This study

revealed evidence of stability in the form of a strong portfolio effect (PE) for the entire four-

estuary Pinfish metapopulation, as well as the northern subcomponent of the metapopulation.

Alternatively, the stability of the metapopulation across the four estuaries could have resulted

from the metapopulation being well-mixed and acting as a single population. This stability

could also be attributed to changes in environmental attributes causing populations to fluctu-

ate similarly, as correlation among the separate populations of the same species can result

from correlation among the variables present [65] and result in synchronization. In contrast,

the low PE value for the southern component suggested that CH and TB were acting as a single

population during the study period. This was further supported and explained by the strong

population synchrony between the southernmost estuaries. These results suggest higher levels

of stability for the full, four-estuary metapopulation as well as the northern subcomponent,

compared to the southern subcomponent. The long-term stability of the Pinfish population is

evident in the lack of trends in both density and biomass in this 19-year dataset, which indi-

cates that there is currently no management concern for Pinfish stocks in the eGOM.

Intra-annual patterns of Pinfish density and biomass were synchronous across all four estu-

aries, despite inter-annual differences. Densities peaked earlier in the year (March-April) than

biomass (April-May). This observation is consistent with recruitment of Pinfish to seagrass

beds about 1 month after spawning, followed by a biomass peak as juveniles grow [64, 66, 67].
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The high densities and subsequent increase in biomass in the spring months occurred when

primary and secondary productivity increase in subtropical seagrass beds as water tempera-

tures increased [30, 66]. Earlier peaks in density in CH and TB than in AB and CK could be

driven by differences in larval supply, while earlier peaks in biomass could be driven by the

timing of productivity increases in these subtropical latitudes being earlier than the two north-

ern, warm-temperate systems.

Variation in growth rates could be driven by inter-annual changes in mean temperature,

prey availability [68, 69], nutrient concentration, or intraspecific competition [70, 71]. Pinfish

SLs increased throughout the calendar year, which is consistent with growth studies in the

Gulf of Mexico and South Atlantic (Texas, Florida, and North Carolina) [22, 72]. Length at

capture was consistent across all four estuaries throughout most of the year but diverged

slightly in the fall months, with the largest fish in CK, smallest in AB, and intermediate fish in

CH and TB. The larger SLs found in the CK region may have been due to density dependent

growth, as this estuary was found to have the lowest densities, possibly reducing the strength

of intraspecific competition and allowing Pinfish to grow larger. However, instantaneous

growth rates for fish at CK was similar to the other estuaries, especially CH and TB. An alter-

native explanation is that the habitats that Pinfish used in CK left them more susceptible to the

sampling gears at larger lengths than in the other systems. Instantaneous growth rates (G) var-

ied little among estuaries, although the northernmost estuary (AB) had the lowest instanta-

neous growth rate. Apalachicola Bay (AB) also had the second lowest density, suggesting it

may have had lower habitat quality or fewer trophic resources for Pinfish compared to the

other estuaries.

The association of juvenile fishes, including Pinfish, with seagrass has been well-studied

[30, 73, 74, 75, 76], and it is understood that these habitats provide both protection from pred-

ators and food for juvenile Pinfish [77, 78, 79, 80]. It is likely that higher SAV coverage aids in

Pinfish larval retention within seagrass habitats and leads to higher survival compared to areas

with lower SAV, which is consistent with our findings of Pinfish densities in areas with higher

SAV [81]. Vegetation has been shown to influence species abundance in estuarine environ-

ments [64], which is consistent with the findings presented here of a positive effect of SAV on

Pinfish presence and abundance. The strong positive effect of SAV reached a saturation level

in each of the four estuaries. High density of seagrass has been shown to have a negative rela-

tionship with fish growth [82, 83] by decreasing foraging efficiency. Indeed, Spitzer et al. [84]

found that in a controlled system, Pinfish foraging in higher density of seagrass had signifi-

cantly lower growth than those in areas of lower seagrass coverage, and attributed this to the

additional energy expended when searching for prey in more complex habitats. In an open sys-

tem, it is possible that Pinfish avoid these areas in order to maximize foraging efficiency within

low density seagrass habitats, leading to the observed saturating effect of SAV coverage in this

study. In other systems, maximal prey and predator abundances were found within intermedi-

ate levels of habitat complexity [85].

Water temperature was also an important habitat variable related to Pinfish presence and

density. Higher winter temperatures in southern estuaries may be more conducive to survival

and growth of newly settled juveniles, compared to northern estuaries. The subsequent drop in

density in the late summer to early fall may be explained by effects from post-settlement mor-

tality, escapement from sampling gear by larger individuals, or perhaps offshore movement in

preparation for spawning [26]. It is important to note that Pinfish abundance was significantly

negatively correlated with water temperature. The increase in Pinfish density during settle-

ment, and decrease during egress, both coincide with lower water temperatures. This relation-

ship differs from the findings of Chacin et al. [81], which found no significant relationship

between Pinfish density and water temperature in TB.
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Pinfish are an important forage fish in the Gulf of Mexico that serve as a trophic link

between primary and secondary production due to their herbivorous diet [16, 86, 87]. They

are prey for a variety of inshore and offshore fishes [16, 31, 32, 36, 88, 89] and act as an impor-

tant biologically-mediated transporter of nitrogen to offshore habitats. Indeed, Nelson et al.

[16] conservatively estimated that the amount of nitrogen subsidized by the offshore migration

of Pinfish from the Big Bend area alone (i.e., surrounding the CK region) was on the same

order of magnitude in the eGOM as Trichodesmium, an important nitrogen-fixing bacteria

[16]. Thus, the total amount of nutrient transfer exported via Pinfish movement to offshore

food webs is likely much greater when export from the other estuaries is factored in, especially

from the high-density area in the southern region of the current study. This further enhances

the known importance of Pinfish to inshore-offshore trophic coupling along the WFS.

Conclusion

Understanding broad spatial and temporal scale dynamics of forage fish populations can

inform us about prey availability for higher trophic-level species of both economic and eco-

logical importance. Pinfish meet many of the criteria for the definition of “forage fish”, and fill

a similar niche for eGOM systems, especially given their important role in inshore-offshore

food web coupling [16]. Overall, Pinfish abundance and biomass were the highest in areas

with more SAV coverage and higher temperatures. Seagrass habitats are already influenced by

a tremendous number of anthropogenic stressors including nutrient input, habitat destruction

[90, 91], and increasing water temperatures from climate change which may lead to severe

declines in seagrass growth and survival [92]. The potential loss of seagrass could have pro-

found influences on many species, including Pinfish. Forage fishes have the potential to act as

indicator species for the stability of higher trophic levels due to their relationships with specific

habitat variables. It is therefore important to continue monitoring low trophic level forage

fishes in order to better predict ecosystem-level changes.
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