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Individual‑fMRI‑approaches reveal 
cerebellum and visual communities 
to be functionally connected 
in obsessive compulsive disorder
Rajan Kashyap1,11*, Goi Khia Eng2,3,4,11, Sagarika Bhattacharjee4,11, Bhanu Gupta5, 
Roger Ho6, Cyrus S. H. Ho6, Melvyn Zhang6, Rathi Mahendran6,7, Kang Sim8 & 
S. H. Annabel Chen1,4,9,10*

There is significant interest in understanding the pathophysiology of Obsessive–Compulsive Disorder 
(OCD) using resting‑state fMRI (rsfMRI). Previous studies acknowledge abnormalities within and 
beyond the fronto‑striato‑limbic circuit in OCD that require further clarifications. However, limited 
information could be inferred from the conventional way of investigating the functional connectivity 
differences between OCD and healthy controls. Here, we identified altered brain organization 
in patients with OCD by applying individual‑based approaches to maximize the identification of 
underlying network‑based features specific to the OCD group. rsfMRI of 20 patients with OCD and 22 
controls were preprocessed, and individual‑fMRI‑subspace was derived for each subject within each 
group. We evaluated group differences in functional connectivity using individual‑fMRI‑subspace 
and established its advantage over conventional‑fMRI methodology. We applied prediction‑based 
approaches to highlight the group differences by evaluating the differences in functional connections 
that predicted the clinical scores (namely, the Obsessive–Compulsive Inventory‑Revised (OCI‑R) and 
Hamilton Anxiety Rating Scale). Then, we explored the brain network organization of both groups 
by estimating the subject‑specific communities within each group. Lastly, we evaluated associations 
between the inter‑individual variation of nodes in the communities to clinical measures using linear 
regression. Functional connectivity analysis using individual‑fMRI‑subspace detected 83 connections 
that were different between OCD and control groups, compared to none found using conventional‑
fMRI methodology. Connectome‑based prediction analysis did not show significant overlap between 
the two groups in the functional connections that predicted the clinical scores. This suggests that 
the functional architecture in patients with OCD may be different compared to controls. Seven 
communities were found in both groups. Interestingly, within the OCD group but not controls, we 
observed functional connectivity between cerebellar and visual regions, and lack of connectivity 
between striato‑limbic and frontal areas. Inter‑individual variations in the community‑size of these 
two communities were also associated with the OCI‑R score (p < .005). Due to our small sample size, 
we further validated our results by (i) accounting for head motion, (ii) applying global signal regression 
(GSR) in data processing, and (iii) using an alternate atlas for parcellation. While the main results were 
consistently observed with accounting for head motion and using another atlas, the key findings were 
not reproduced with GSR application. The study demonstrated the existence of disconnectedness 
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in fronto‑striato‑limbic community and connectedness between cerebellar and visual areas in OCD 
patients, which was also related to the clinical symptomatology of OCD.

Obsessive–compulsive disorder (OCD) is a chronic illness affecting two to three percent of the global 
 population1,2. OCD is life-disrupting and is one of the leading causes of major health-economic  burdens3.

Resting-state functional magnetic resonance imaging (rsfMRI) offers the opportunity to evaluate neural cor-
relates without task influences. Using rsfMRI techniques, prior studies implicate a myriad of neural alterations 
in patients with OCD, including the basal ganglia, limbic, prefrontal, temporo-parietal, occipital, and cerebellar 
 regions4–18. Even though these studies also generally support neural dysfunctions involving the cortico-striato-
thalamo-cortical circuitry (CSTC) in OCD pathophysiology, it remains unclear how the whole-brain network 
organization differs in patients with OCD compared to healthy controls.

The network organization identifies the modular architecture of the brain and reveals how communities 
are connected to each  other19. Communities refer to a group of brain areas that are more strongly connected 
to one another, thereby reflecting the regularities in the brain’s wiring diagram, where groups of brain areas get 
delineated based on the functionalities they  share20,21. A rsfMRI study that identified group-level differences in 
network organization between patients with OCD and controls found stronger intra-connectivity between the 
basal ganglia and cerebellar nodes in patients compared to  controls22. There is current consensus that individual-
based-approaches, when applied to rsfMRI, could better identify neuroimaging biomarkers for  OCD23.

In our prior work, we developed a technique to decompose the rsfMRI signal into a group-level subspace 
shared across all subjects within the group, and an individual subspace that is unique to each  subject24. We 
showed that the common group-level signal encompassed experimental and environmental (scanner)  effects24–27, 
and demonstrated that the individual subspace of subjects could be obtained by removing the group-level signal 
from the subject’s rsfMRI data. Compared to conventional rsfMRI approaches (where the group-level sub-
space is typically not removed from the subject’s data), we found that functional connectivity derived using the 
individual-fMRI-subspace improves the accuracy of functional-connectivity-based predictions of behavioral 
 measures24. This was consistent with another study that also reported enhanced accuracy in behavioral score 
prediction using individual-specific cortical  networks28. Therefore, in the present study, we utilized individual-
ized approaches in rsfMRI functional connectivity to gain a richer understanding of the neural correlates that 
are relevant to OCD pathophysiology.

Here we evaluated the benefits of using individual-fMRI-subspace to investigate differences in functional 
connectivity between patients with OCD and healthy controls. We demonstrated group differences in functional 
connectivity that were associated with  behaviors29, by using functional connectivity to predict the scores of some 
clinical  measures24,28,30–32. Prediction-based approaches, which are typically applied on large datasets, are thought 
to augment prediction accuracy of behavioral scores from functional connectivity  matrices33. Even though our 
sample is small, we leveraged on the advantages of prediction-based approaches and applied this technique to 
improve evaluations of group differences using functional connections that were predictive of the clinical scores.

To explore brain organizational differences between the two groups, we detected communities of each OCD 
and control group using a recently developed multi-subject modularity maximization  technique34. This technique 
explores communities in each subject within its own group (i.e., subject-specific community)34. The subject-
specific communities of all individuals within the group were then combined, forming the group-specific com-
munity structure. Group-related differences in community structures could provide interesting clues about the 
differing neural architecture.

The inter-individual differences in the community structure of a group is a powerful source of behavioral 
 variation34. Since neural reorganization may be the impetus to a disorder, association of altered neural network 
to OCD symptomatology may broaden the avenues for research and treatment. We evaluated the relationships 
between communities and clinical scores by applying linear regression to investigate the effect of inter-individual 
variability in the number of nodes in a community on the clinical measure. Understanding inter-individual 
variability in communities may form the basis for future studies to explore potential brain modulation targets 
for treatment of  OCD35.

Methods
Overview. Differences in the scores of clinical measures were evaluated between patients with OCD and 
controls. Preprocessing of the rsfMRI data of all participants was performed to obtain the conventional-fMRI-
space. Individual-fMRI-subspace was then obtained from the conventional-fMRI-space. We compared the two 
spaces by evaluating group differences in functional connectivity. Clinical scores were then predicted from func-
tional connectivity using elastic-net (a machine learning method) to demonstrate that the functional connec-
tivity associated with some behavior in patients with OCD were different from healthy controls. Finally, group 
differences in brain network organization were evaluated using the community detection technique.

Participants. The study was granted ethical approval by the Nanyang Technological University Institutional 
Review Board (NTU-IRB; IRB-2013–11-010) and National Healthcare Group Domain-Specific Review Board 
(NHG-DSRB; Ref: 2013/01,221). All experiments were performed in accordance with relevant guidelines and 
regulations with participants’ written informed consent.

Twenty-one patients with OCD (10 males and 11 females) and 22 controls (10 males, 12 females) between 
the ages of 21–65 participated in the study. Patients with OCD were recruited from the outpatient clinics of the 
National University Hospital (NUHS) and the Institute of Mental Health (IMH). The healthy controls were age-, 
sex-, and education-matched to the patient sample and were recruited from the community (see supplement). 
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Data of one female patient with OCD were excluded from the study due to an incomplete resting-state scan. The 
final dataset included 20 patients with OCD and 22 controls.

All patients only had a diagnosis of OCD without any comorbidities. Out of 20 patients with OCD, all but 2 
were on medications at the time of assessment. All 18 patients who were medicated were on serotonin reuptake 
inhibitors, 3 were on atypical antipsychotics, and 5 on tricyclic antidepressants.

Procedures. Data collected for the current investigations were part of a larger investigation. Participants 
completed a series of clinical interviews—Structured Clinical Interview for DSM-IV Axis I  Disorders36 (Patient/
Non-Patient Versions; SCID I-P/NP), Yale-Brown Obsessive–Compulsive  Scale37 (Y-BOCS), Hamilton Depres-
sive Rating  Scale38 (HDRS), Hamilton Anxiety  Scale39 (HAS); and a self-report questionnaire—the Obsessive–
Compulsive Inventory-Revised40 (OCI-R). All participants underwent an 8-min resting-state scan with eyes 
opened.

MRI data acquisition. Images were acquired with a Siemens 3T PRISMA MRI scanner (Siemens Prisma, 
Erlangen, Germany) using a 32-channel head coil at the Clinical Imaging Research Centre, National University 
of Singapore. Whole brain MRI structural data were obtained using a high-resolution sagittal T1-weighted 3D 
MP-RAGE protocol: TR = 1900 ms; TE = 2.52 ms; 176 slices with 1 mm thickness with 0.5 mm gap, flip angle = 9°, 
the field of view (FOV) = 256 mm, interleaved acquisition. Whole-brain functional MRI images were acquired 
using gradient-echo planar imaging (EPI) sequence: TR = 2000 ms; TE = 29 ms; flip angle = 90°; 41 slices with 5% 
gap, voxel size = 3.5 × 3.5 × 3.5 mm; FOV = 225 mm, interleaved acquisition from anterior to posterior. The first 
five images of the acquisition run were discarded. A total of 240 volumes were obtained for each participant.

rsfMRI data preprocessing. All neuroimaging data were preprocessed and analyzed using the SPM12 
software package (revision #6470)41. All images were first reoriented to the AC-PC line with the point of origin 
set to the anterior commissure. Resting-state functional images were then (i) slice-time corrected to the middle 
 slice42, (ii) realigned to the first volume of the run to adjust for head movements, and (iii) co-registered to the 
T1-weighted image. Individual participant’s structural T1-weighted image was segmented, and the Diffeomor-
phic Anatomical Registration Through Exponentiated Lie algebra (DARTEL)  pipeline43 was applied to obtain 
a group-specific structural template for normalizing of functional images to MNI space, and smoothed with a 
Gaussian kernel of 6 × 6 x 6 mm full-width at half-maximum (FWHM).

CONN-fMRI Functional Connectivity Toolbox for SPM (version 17b)44 was utilized to extract the rsfMRI 
time-series from 116 regions within the Automated Anatomical Labeling (AAL) atlas that consists of 90 cortical 
(45 for each hemisphere) and 26 cerebellar  regions45. To accomplish this, preprocessed data were first tempo-
rally band-pass filtered (0.008 < f < 0.09 Hz). White matter and cerebrospinal fluid signals (5 regressors each) 
and motion parameters (6 motion parameters and their  1st order temporal derivatives) were regressed from 
the rsfMRI signals using component-based noise correction method (CompCor) implemented in CONN. The 
CompCor strategy significantly reduces physiological and movement noises without removing the global  signal46, 
thereby avoids introducing artifactual anti-correlations44. Following CompCor, rsfMRI time-courses were 
extracted from 116-regions, obtaining a 116 × 240 matrix for each subject with 6 motion parameters included as 
covariates-of-no-interest (as part of default setting). For convenience, we refer to this as the ‘conventional-fMRI-
space’ of a subject.

We computed the mean framewise displacement (FD) as an index of head  motion47. All participants had mean 
FD < 0.2 mm. Therefore, motion correction was not performed in the primary analysis. Global signal regression 
(GSR) was also not performed in the primary analysis as GSR introduces artifactual anti-correlations and spuri-
ous findings in comparison-based  studies48. However, we recognized that motion correction and GSR procedures 
are commonly performed in functional connectivity analyses. In the later parts of the paper, we validated our 
findings by accounting for head motion using FD as a covariate and applied GSR separately in additional analyses 
(please see the validation section).

Individual‑fMRI‑subspace. The algorithm to obtain individual-fMRI-subspace for each subject is pre-
sented in greater detail in prior  works24,49,50. Briefly, the conventional-fMRI-space of a subject was taken as a 
block. The conventional-fMRI-space (116 × 240 matrix) of all subjects within each group was stacked, forming 
two sets of multi-blocks (OCD, controls). The group-level common component (116 × C matrix) shared by all 
subjects within each set was then computed and removed from the conventional-fMRI-space of each subject to 
obtain the individual-fMRI-subspace (116 × 240 matrix). The number of group-level common component C was 
fixed to 1 based on a past  recommendation50, which was also appropriate as demonstrated in our prior  study24.

Functional connectivity. We computed a 116 × 116 Pearson’s correlation matrix for all subjects in both 
groups based on the resting state data from (1) conventional-fMRI-space, and (2) individual-fMRI-subspace. 
In each space, functional connectivity values (edge strength) that were significantly different between OCD and 
control groups were extracted at false discovery rate (FDR) < .05 to account for multiple comparisons. The total 
number of significant connections whose edge strengths were different between the two groups was extracted 
from both conventional-fMRI-space and individual-fMRI-subspace.

Assessment of behavior‑connectivity associations. Behavior-connectivity association was assessed 
for clinical measures (state anxiety severity, and obsessive–compulsive tendencies) that were significantly dif-
ferent (p < .05, following Bonferroni-corrections) between patients with OCD and controls. For each measure, 
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the elastic-net51,52 algorithm was used to predict the subject’s clinical  score24 in a leave-one-out nested cross-
validation scheme using the functional connectivity matrices obtained from individual-fMRI-subspace only (see 
results). Specifically, data from n − 1 participants were used to train the model, and the resulting trained model 
was then applied to predict the remaining participant’s score of clinical measure. Age, sex, and years of education 
were regressed from the measures before elastic-net regression. The nuisance regression was performed on the 
training folds, and the estimated coefficients were then applied to the test fold.

After nuisance regression, the training folds were used for feature selection by selecting the top 50% of 
functional connections that were most strongly correlated (positive or negative) with the particular clinical 
measure within each  group24. The selected features (functional connectivity strength) were then entered into 
the elastic-net regression estimation procedure. Two hyperparameters associated with the elastic-net were first 
optimized via leave-one-out inner-loop cross-validation, then applied to predict the clinical measure in the test 
fold. Accuracy in prediction was evaluated by correlating the predicted and actual values of the clinical measures 
across the subject in the test fold within each  group30. The prediction R2 was also computed to directly compare 
the predicted and observed  values53,54. Prediction results obtained from training and testing on the OCD dataset 
were referred to as ‘Train-OCD-Test-OCD’, and controls dataset as ‘Train-Control-Test-Control’. We evaluated 
whether functional connections that were relevant in predicting the clinical scores were different between the 
groups. For this purpose, we created random subgroups of controls (RSC) and patients with OCD (RSO) using 
bootstrapping (see next paragraph). We trained the algorithm on RSC and tested the algorithm on a subject 
randomly chosen from the OCD group (we refer to this as ‘Train-Control-Test-OCD’), and vice-versa—trained 
the algorithm using random subgroups of OCD subjects (RSO) and tested it on a randomly chosen control (we 
refer to this as ‘Train-OCD-Test-Control’). Prediction indices (accuracy and prediction R2) were also computed 
in this cross-dimensional approach.

To statistically evaluate the prediction accuracies between Train-OCD-Test-OCD and Train-Control-Test-
Control from Train-Control-Test-OCD and Train-OCD-Test-Control, respectively, we first applied the leave-
one-out bootstrap  technique55 to the four groups. The leave-one-out bootstrap procedure generates a total of B 
bootstrap samples of size n. Using the prediction model (elastic-net in leave-one-out scheme), each observed 
specimen is predicted repeatedly using the bootstrap samples such that the test observation does not appear in 
training. This technique is particularly suitable for small sample  sizes56. We chose B = 1000 based on previous 
 literature57, and estimated the prediction accuracy and prediction R2. For these two groups (Train-OCD-Test-
OCD and Train-Control-Test-Control), a one-sample t test was performed on the prediction accuracy values of 
the permuted samples to test whether, for each behavioral measure, prediction accuracy was significantly greater 
than chance. For Train-Control-Test-OCD and Train-OCD-Test-Control, we adopted an approach to avoid 
leakage of data from training to testing  samples58. For each bootstrapped training sample, the prediction was 
made on the test data (chosen from the other dataset) selected randomly (but not repeated for a bootstrapped 
test sample). The prediction accuracy and prediction R2 were eventually obtained for each model. To test for 
significance, a two-tailed t test with FDR-correction (p < .05) was performed on the prediction accuracies between 
Train-OCD-Test-OCD & Train-Control-Test-OCD, and Train-Control-Test-Control & Train-OCD-Test-Control. 
At this point, it is essential to mention that our study was not intended to emphasize the predictive accuracy of 
small sample  sizes58, although prior studies have made such  attempts59. We planned to use the prediction-based 
approach as a tool to highlight differences in the functional neural architecture of the two groups.

Next, we estimated the total number of functional connections that were common between OCD patients and 
controls for each bootstrapped sample using the approach validated in a previous  study23. In this evaluation the 
weight of each functional connection used for behavior prediction was computed as the averaged-weight across 
all leave-one-out bootstrap folds. If a connection was not selected in one-fold, its weight was set to zero. Hence, 
each connection obtained weights in the range of zero to N − 1, where N was the number of folds. The higher 
the weight, the greater the plausibility of the connection contributing to behavior-connectivity associations. To 
evaluate the overlap in functional connectivity architecture between the two groups, we applied three threshold 
conditions by selecting the top- (A) 20%, (B) 50%, and (C) 100% weighted connections of each group. As no 
threshold was applied in the 100% condition, all weighted connections of both groups were selected for evalua-
tion. For each threshold condition, similarities in weighted connections between the two groups were estimated 
using the Jaccard index. This was computed by dividing the number of weighted connections that were common 
between the two groups (intersecting) by the total number of weighted connections (union). Connections were 
considered common when the same connection was selected for evaluation in both groups. The Jaccard index 
ranges between 0 and 1. A value of 0 indicates no overlap between the groups, and a maximal value of 1 indicates 
perfect overlap. A one-tailed t-test was done on values of the Jaccard index obtained from the permuted samples 
to test for a significant overlap.

Community detection. To detect communities, we adapted a multi-layer multi-subject modularity maxi-
mization  framework34 that was based on the Louvain method for community  detection60,61. Here, we briefly 
describe this framework that facilitated the analysis of inter-individual differences in network communities.

A subject’s functional connectivity matrix was treated as a layer. Therefore, multiple layers were used to esti-
mate the community assignment for all subjects. Importantly, there are two free parameters, namely the structural 
resolution parameter γ that determines the community size, and the inter-subject coupling parameter ω that 
determines the consistency of communities across layers. Smaller values of γ result in fewer large communities, 
and larger values ω indicate communities that are common across subjects. One other important parameter is 
the entropy that determines the variability of the communities across subjects. The averaged normalized entropy 
serves as an index of community variability across brain areas and individuals. This framework is typically applied 
on a restricted subset of the {γ,ω} parameter space, so that communities have characteristic size and variability.
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Here, we sampled 20,000 partitions in the parameter space {γ,ω} with γ and ω acquired in the range of [− 0.7, 
1] and [− 0.5, 2],  respectively34. We obtained the mean of the averaged-normalized-entropy (MANE) across all the 
partitions of each group. To search for the optimal community partition, we explored the community partitions 
whose averaged normalized entropy lies within the range of MANE ± 0.02. To select the optimal community 
partition for the purpose of our study, we chose the partition where (1) value of γ is minimum (so that few large 
communities appear), (2) value of ω is maximum (to ensure that communities are shared across subjects within 
the group), and (3) community assignment did not show any community that contain a single node in any of the 
subjects (in that partition)34. In addition, prior studies that delineated several large-scale networks using rsfMRI 
aided our decision regarding appropriate community-level partitions and naming  convention62,63 with a range 
from 5 to 23 communities/networks as widely  reported20,64–66.

Association of communities with behavioral measures. After selecting the optimal community partition, we 
obtained the inter-individual variation in the number of nodes assigned to a community. The extent to which 
inter-individual variation in the community size is associated with any clinical measure was explored using lin-
ear regression via Matlab’s “fitlm.” function. The model was constructed as behavior ~ inter-individual variation 
of nodes in Community 1 + inter-individual variation of nodes in Community 2 + … + inter-individual variation 
of nodes in Community N (where N is the optimal number of communities in a group).

As patients with OCD showed increased depressive and anxiety symptoms compared to controls, we included 
scores from HDRS and HAM-A as covariates in the model for the OCI-R measure for both groups. Therefore, the 
model was: behavior ~ inter-individual variation of nodes in Community 1 + inter-individual variation of nodes in 
Community 2 + … + inter-individual variation of nodes in Community N + scores of HAM-A + scores of HDRS.

Additional analysis for validation. To further validate our findings, we conducted the following addi-
tional analyses by (i) accounting for the effects of head motion, (ii) applying global signal regression in data 
preprocessing, and (iii) using an alternate atlas for parcellation.

(i) Accounting for effects of head motion. As head motion could influence functional  connectivity67 and pre-
diction  accuracy68, we evaluated whether functional connections that were associated with predicting clinical 
scores remained after correcting for head motion. Head motion of each participant was indexed using mean FD 
(Mean = 0.074 mm, SD = 0.040 mm)47. The rsfMRI time-courses were extracted with each subject’s mean FD 
included as a covariate-of-no-interest. Next, we estimated group differences in functional connectivity (differ-
ences in edge strength). For the elastic-net, we regressed out mean FD along with age, sex, and education. The 
remaining steps such as training and testing the algorithm, permuting new samples and estimating the relevant 
functional connections remained the same. For convenience, we called this set of data ‘Train-OCD-Test-OCD 
(FD-Corrected)’ and ‘Train-Control-Test-Control (FD-Corrected)’. A two-tailed t test with p < .05 FDR-correc-
tion was performed to assess for group differences in prediction accuracies between Train-OCD-Test-OCD and 
Train-OCD-Test-OCD (FD-Corrected) and between Train-Control-Test-Control and Train-Control-Test-Con-
trol (FD-Corrected) datasets. Next, we tested for group differences in the associations between motion (mean 
FD) and edges. For this purpose, we correlated the mean FD with the strength of edges. The values were then 
converted to Fisher’s z and a two-tailed t test (with FDR-correction) was performed to evaluate group differ-
ences. Finally, we tested if the communities were altered when head motion was accounted for.

(ii) Applying global signal regression in data processing. There is much debate on the use of GSR in preprocess-
ing. While GSR reduces the impact of  motion67,68 and strengthens brain-behavior  associations69, GSR introduces 
negative  correlations48,70,71 that could influence group  differences72,73. We repeated our main analyses to under-
stand the impact of GSR on functional connections that were associated with predicting clinical scores.

Following band-pass filtering in CONN, instead of adopting the CompCor strategy for noise-reduction, 
we conducted GSR noise reduction by including global signal (1 regressor) and motion parameters (6 motion 
parameters and their  1st order temporal derivatives). Subsequent steps were the same as the primary analyses. 
Following noise reduction, rsfMRI time-courses were extracted with 6 motion parameters included as covariates-
of-no-interest. We applied the same procedure of permuting the new samples and estimating the relevant func-
tional connections. For convenience, we call this set of data ‘Train-OCD-Test-OCD (GSR)’ and ‘Train-Control-
Test-Control (GSR).’ A two-tailed t test was performed to assess for group differences in prediction accuracies 
between Train-OCD-Test-OCD and Train-OCD-Test-OCD (GSR), and between Train-Control-Test-Control 
and Train-Control-Test-Control (GSR). Lastly, the impact of GSR on community structures was evaluated.

(iii) Using an alternate atlas for parcellation. Our choice of the atlas was based on the consideration to include 
both cortical and subcortical region of interests (ROIs). However, due to our small sample size, we refrained 
from using fine-grained parcellations (for example,  Schaefer74,  Glasser75) that comprise a large number of ROIs. 
While we initially utilized the AAL atlas for parcellation, we validated our findings by repeating our analyses on 
the FD-corrected data using the Harvard–Oxford atlas. The Harvard–Oxford atlas consists of 132 cortical and 
subcortical areas. In this analysis, we focused on community detection (with predefined criteria of community 
selection) and deciphering the associations between inter-individual variation in the nodes of each community 
and clinical measures (HAM-A and OCI-R).

Code availability. The codes relevant to the study can be downloaded at (https ://githu b.com/Clini calBr 
ainLa b/OCD_Cereb ellar -Visua l-Commu nity). The codes for elastic-net are available at https ://web.stanf ord.

https://github.com/ClinicalBrainLab/OCD_Cerebellar-Visual-Community
https://github.com/ClinicalBrainLab/OCD_Cerebellar-Visual-Community
https://web.stanford.edu/~hastie/glmnet_matlab/
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edu/~hasti e/glmne t_matla b/. The code for multi-subject community detection is at https ://www.brain netwo 
rksla b.com/coder esour ces.

Results
Overview. Patients with OCD and controls showed group differences in two clinical measures. We found 
using the individual-fMRI-subspace advantageous in evaluating group differences in functional connectivity. 
Behavior-connectivity association analysis indicated group differences in functional connectivity architecture 
that were associated with clinical measures. Finally, in terms of functional organization, patients with OCD 
showed connectivity between the cerebellar regions with visual nodes and lack of connectivity between the 
striato-limbic and frontal areas that were not observed in controls.

Demographics and clinical measures. There were no significant group differences in demographic vari-
ables (Table 1). Compared to healthy controls, patients with OCD reported higher anxiety scores and OC scores 
as measured on the HAM-A and OCI-R, respectively (p < .05, following Bonferroni-corrections).

Spatial maps of common components. Spatial maps of the first common component were not signifi-
cantly different for patients with OCD and healthy controls (p > .05) (Fig. 1A).

Functional connectivity differences from conventional and individual‑fMRI‑spaces. Func-
tional connectivity differences between the OCD samples and controls using the conventional-fMRI-space did 
not find any connections that survived FDR-correction. In contrast, the same analysis conducted using individ-
ual-fMRI-subspace yielded significant group differences in 83 functional connections, p < .05, FDR-corrected 
(Fig. 1B). To confirm that the edges were indeed significant, we performed 1000 iterations of permutation test-
ing (shuffling subject labels), and used the "tmax" method to account for multiple comparisons at a particular 
threshold (α-level) 76. We found that 56 edges (or connections) were significantly different between the groups at 
α = .05, and this number decreased to 14 when a more stringent threshold of α = .01 was applied. The small dif-
ferences in the number of edges revealed using each method suggests that the findings were considerably stable.

Although not the main focus of the study, we briefly present the group differences in functional connectivity 
here. Group differences appear distributed (Fig. 1B), as was expected based on the findings reported from previ-
ous  studies4, 17, 18, 77. Connections were observed in several subcortical, cortical, and cerebellar regions, including 
areas in the frontal lobe, cingulate, cuneus, limbic system (hippocampus, parahippocampus, amygdala, thalamus, 
olfactory, and insula), visual areas (extrastriate and lingual gyrus), sensorimotor (pre- and post-central, inferior- 
and superior- parietal, and supramarginal gyrus), temporal regions (superior, middle and heschl gyrus), and 
the cerebellum (lobules 4–6, 9 and 10). Connections between these areas encompassed several brain networks, 
including the frontal-limbic-posterior circuit, fronto-striatal, fronto-parietal, and cerebellar-visual circuits, which 
were reported in prior studies (albeit with inconsistencies)2, 5–7, 9, 11 and consolidated in review-based  studies4, 

78 (Fig. 1).

Differences in functional architecture between OCD and controls. For the complete samples, we 
estimated the prediction accuracy (and prediction R2) of the two models, namely Train-Control-Test-Control 

Table 1.  Descriptives of demographics and clinical indices. a Handedness index is measured using Edinburgh’s 
Handedness Questionnaire. *Indicates findings significant at .05 following Bonferroni-correction. HDRS 
Hamilton depressive rating scale, HAM-A Hamilton anxiety rating scale, OCI-R obsessive–compulsive 
inventory (revised), Y-BOCS Yale–Brown obsessive compulsive scale. n sample size. Mdn median, M mean, SD 
standard deviation, r effect size coefficient, where .1 = small, .3 = medium, .5 = large effects.

Gender (male:female) 
(count)

Controls OCD χ2 df p

Effect size

10:12 10:10 0.09 1 .77

Controls (n = 22) OCD (n = 20) Mann–Whitney

Mdn M SD Mdn M SD U p z r

Demographics

Age 27.0 28.18 6.66 29 28.80 7.02 206.00 .72 – –

Years of education 13.0 14.41 2.06 14.5 14.55 2.19 202.50 .63 – –

Handedness  Indexa 100.0 79.09 36.19 100 84.15 44.61 185.00 .31 – –

Clinical indices

HDRS 2.0 2.55 1.82 4 5.30 4.61 134.00 .03  − 2.18  − .34

HAM-A 2.5 2.50 1.68 7 7.05 5.91 107.50 .004*  − 2.85  − .44

OCI-R 2.5 3.45 3.33 21 23.20 15.47 18.50  < .001*  − 5.09  − .79

Duration of illness (years) – – – – 8.18 6.59

Y-BOCS (total) – – – – 19.90 6.61 – – – –

Y-BOCS (obsessions) – – – – 9.70 3.34 – – – –

Y-BOCS (compulsions) – – – – 10.20 3.87 – –

https://web.stanford.edu/~hastie/glmnet_matlab/
https://www.brainnetworkslab.com/coderesources
https://www.brainnetworkslab.com/coderesources
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(n = 22) and Train-OCD-Test-OCD (n = 20) for the two clinical measures (HAM-A and OCI-R) that showed 
significant group differences. For HAM-A, the prediction accuracy (and prediction R2) for Train-Control-Test-
Control and Train-OCD-Test-OCD were 0.71 (0.48) and 0.65 (0.40), respectively. Similarly, for OCI-R, the val-
ues for Train-Control-Test-Control and Train-OCD-Test-OCD were 0.67 (0.42) and 0.63 (0.40), respectively.

For the bootstrapped samples, the prediction accuracy (and prediction R2) were estimated for the four models 
listed in Table 2 for HAM-A and OCI-R. Results showed that prediction values for the measures were higher 
when training and testing were performed on data belonging to the same group (Train-Control-Test-Control and 
Train-OCD-Test-OCD). One sample t-test was significant (p < .0001) for both groups across the two measures. 
Please refer to the supplement for the same analyses conducted for the HDRS and Y-BOCS (Total).

The accuracies (and prediction R2) were reduced when training and testing data were obtained from dif-
ferent groups (Train-Control-Test-OCD and Train-OCD-Test-Control). Significantly (p < .05, FDR-corrected) 
lower values of prediction accuracies were found for Train-Control-Test-OCD and Train-OCD-Test-Control 
compared to Train-Control-Test-Control and Train-OCD-Test-Control in the permuted samples, respectively. 
This indicates that the functional connections recruited during training were different from that required to have 
high prediction accuracy in the testing phase. The analysis supports our hypothesis that there exist differences 
in functional connectivity architecture in patients with OCD and controls. While our study does not make any 
recommendations for applying prediction-based approaches to datasets with small sample sizes, we leveraged on 
the advantages of these techniques to maximize differences in the functional organization between two groups.

Figure 1.  Represents the features and advantage of individual-fMRI-space with (A) spatial map of the common 
component for the control and OCD group. Maps are similar in both groups and also similar to our previous 
 study24, (B) significant differences in 83 functional connections between patients with OCD and control. The 
connections survived FDR-corrected p < .05. No group difference in functional connectivity was observed from 
using conventional-fMRI (therefore not shown).

Table 2.  Average (± SD) leave-one-out bootstrap prediction accuracy and prediction R2 (in brackets and 
bolded) for the two clinical measures estimated across 1000 permutations. Prediction R2 is indicated in 
bold within parentheses. HAM-A Hamilton Anxiety Rating Scale, OCI-R Obsessive–Compulsive Inventory 
(Revised), SD standard deviation.

Clinical measure

Average (± SD) leave-one-out bootstrap prediction accuracy and prediction  R2

Train-control-
Test-control

Train-OCD-
Test-OCD

Train-control-
Test-OCD

Train-OCD-
Test-control

HAM-A
0.69 ± 0.20 0.68 ± 0.20 0.17 ± 0.16 0.12 ± 0.19

(0.45 ± 0.31) (0.43 ± 0.32) (0.02 ± 0.10) (0.01 ± .12)

OCI-R
0.68 ± 0.23 0.66 ± 0.22 0.08 ± 0.24 0.06 ± 0.27

(0.42 ± 0.31) (0.40 ± 0.29) (0.00 ± 0.10) (0.00 ± 0.11)
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Group differences in the functional connections that were associated with the two clinical measures were 
further demonstrated using the Jaccard index ( Numberofcommonconnections

Totalnumberofconnections ). The Jaccard index (Mean ± SD) calculated 
from bootstrapped samples for the three threshold conditions is shown in Table 3. Values near 0 indicate that the 
number of common weighted connections between the OCD group and the controls is low. The results showed 
almost no overlap of connections between the two groups in the Top 20% condition (JI values were almost 0) 
and remains minimal in the 50% condition. The overlap in weighted connections at no-threshold condition 
(Top 100%) may look larger (approximately 100), but less than one-tenth (approximately) of the total connec-
tions were common between the two groups. This indicates that only 10% of the unweighted connections were 
common between the two groups. The lower values of the Jaccard index (approximately 0.05–0.08) for the two 
clinical measures affirms the minimal overlap. Please refer to the supplement for the values estimated for HDRS 
and Y-BOCS (Total).

It may be observed that 83 edges that were different between OCD and controls constitute significance in the 
earlier part of the study, but here, we concluded that approximately 100 overlapping edges does not constitute 
significant effect in the prediction architecture. To evaluate this finding, we estimated the overlap between the 
edges that ‘overlapped-between-two-groups’ (in each permutation) and the ‘83 connections that differentiated 
the two groups’. For HAM-A and OCI-R, the range of the overlap was from 15 − 33% and 18 − 38%, respectively. 
This suggests that, although the 83 functional connections that differed between the two groups were relevant in 
differentiating them, the same connections may be inherent in the networks for both groups related to a behav-
iour that is on a continuum as reflected in the clinical scores. Future research could evaluate how connections 
that differ between groups may inform about the relevant dimensions of behavior(s) involved. Nevertheless, 
using the prediction-based strategy augmented our understanding that there exists divergence in the functional 
architecture between the two groups. This provides evidence regarding differences in the underlying organization 
of the brain between patients with OCD and controls.

Group differences in the predictors (i.e., functional connections as seen in Table 2) indicate different func-
tional connections were associated with state anxiety and obsessive–compulsive tendencies in patients with OCD 
compared to controls. A similar observation was also seen in Table 3. Taken together, these findings indicate that 
the functional organization in healthy individuals is different from patients with OCD.

Differences in community assignment in OCD and controls. We estimated the underlying network 
organization of the brain in each group using community detection  technique34. Differences in network organi-
zation are vital in understanding the neural architecture in OCD. The values obtained with the predefined crite-
ria for community selection (see supplement) revealed seven communities as optimal for both OCD and Control 
groups (Fig. 2). For convenience, we assigned a name to the communities for each group based on the areas they 
encompassed (Supplement). The community names for the control group (Fig. 2A) were fronto-basal-ganglia, 
motor-insulo-temporal, fronto-parietal-default, fronto-striato-limbic, visual, cerebellar-1, and cerebellar-2. The 
community names for the OCD group (Fig. 2B) were basal-ganglia, motor-insulo-temporal, fronto-parietal-
default, striato-limbic, cerebellar-visual, cerebellar-1-short, and cerebellar-2. Differences in communities were 
observed between the groups. Interestingly in the OCD group, the areas in the frontal lobe dissociated from the 
striatal, limbic, and basal ganglia regions; areas in the cerebellum were associated with the visual areas, which 
were not observed in the controls group.

The number of nodes of each community in a subject within their group (OCD and control) was estimated. 
The inter-individual variation in the number of nodes in each community (or community size) can be visualized 
for the control and OCD groups inside the inner circle of Figs. 2A,B, respectively.

Associations of communities with behavioral measures. We evaluated the associations of inter-
individual variation in community sizes (number of functional connections) with the two clinical measures 
(HAM-A and OCI-R). The model was significant (p < .01) only for the OCI-R scores in both groups (for details 
see supplement). Since the sample size is small, we performed post-hoc power analysis and found 83% power at 
α = .05 to detect effect size with Cohen’s  f2 = 1.3179. Inter-individual variations in the community size were found 
significant for two communities (fronto-parieto-default and fronto-striato-limbic) in the control group, but 
three communities (fronto-parieto-default, striato-limbic, and cerebellar-visual) in the patient group (p < .05, 

Table 3.  Overlap (Mean ± SD) of weighted connections between OCD patients and controls estimated across 
the bootstrapped samples for three threshold conditions. Results were only presented for HAM-A and OCI-R. 
The number of overlaps (OL) is negligible compared to the total number of connections, as reflected by smaller 
values of the Jaccard index (JI). Each connection was given a weight based on the number of times it appeared 
in the leave-one-out bootstrap scheme for that group. Thresholding (as specified) was performed to select 
the connections that contributed most to the prediction. The overlap represents the number of connections 
that were common between the two groups. HAM-A Hamilton Anxiety Rating Scale, OCI-R Obsessive–
Compulsive Inventory (Revised), SD standard deviation, OL overlap, JI Jaccard index.

Clinical Measure

Top 20% threshold Top 50% threshold No-threshold (top 100%)

Controls OCD OL JI Controls OCD OL JI Controls OCD OL JI

HAM-A 9 ± 20 11 ± 16 0 ± 1 0.05 ± 0.07 128 ± 82 154 ± 76 8 ± 18 0.03 ± 0.06 730 ± 476 1030 ± 520 98 ± 87 0.05 ± 0.10

OCI-R 3 ± 17 10 ± 21 0 ± 3 0.00 ± 0.12 212 ± 56 205 ± 110 16 ± 11 0.05 ± 0.07 687 ± 547 1201 ± 396 106 ± 93 0.08 ± 0.12
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FDR-corrected). For each group, we correlated the values of OCI-R with the scores of HAM-A and HDRS. For 
controls, the correlation between OCI-R and HAM-A was .41, and OCI-R and HDRS were .32. Similarly, for the 
OCD group, the correlation between OCI-R and HAM-A was .75, and OCI-R and HDRS were .80. As depres-
sion and anxiety scores were highly correlated with OCI-R scores, we included these scores as covariates-of-no-
interest. Interestingly, we found that for the OCI-R measure, the model was no longer significant for the OCD 
group but remained significant (p < .01) for the controls.

Validations. We validated our results by conducting additional analyses by (i) accounting for the effects of 
head motion, (ii) applying global signal regression in data preprocessing, and (iii) using an alternate atlas for 
parcellation.

(i) Accounting for effects of head motion. Group differences in mean FD were significant (p < .01) between 
patients with OCD and controls. Differences in functional connectivity controlling for mean FD revealed 76 
connections that were significantly different between the two groups. However, using permutation testing at 
α = .05, this number dropped to 53 connections, and further dropped to 11 when the α-level increased to .01. 
To understand which connections were affected by motion correction, we estimated the overlap between the 
connections that were significantly different between the two groups — ‘with’ (76 connection) and ‘without’ 
(83 connections) accounting for head motion. Only 15 connections were different between the two datasets 
(Fig. 3). Thus, accounting for head motion may minimize false positives in the group differences in functional 
connectivity.

Interestingly, the features (functional connections) recruited for predictions were not significantly 
different between Train-OCD-Test-OCD and Train-OCD-Test-OCD (FD Corrected); and between 

Figure 2.  Communities in each control and patient group. The outer circle shows the median of the number 
of nodes (in a community) across the subjects and brain areas involved in each community. The communities 
(colored regions) are named based on the areas they encompass. Inside the inner circle, the inter-individual 
variation (red dots inside the violin plots, where one red dot = one participant) in the number of nodes in each 
community can be visualized for the control group. Seven communities were delineated for the (A) controls, 
and (B) patients with OCD. We also highlight that the frontal and cerebellar areas were observed only in the 
OCD group but not control group (enclosed in red boundaries). The abbreviations of brain areas were labelled 
according to the AAL atlas (please refer to the supplement for a full expansion of the abbreviations).
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Train-Control-Test-Control and Train-Control-Test-Control (FD Corrected), all p > .05. There were also no 
significant group differences in the associations between mean FD and edge strength. Finally, the community 
structure remained similar to our primary findings, and the inter-individual variation in the number of nodes in 
a community was significant (p < .01) for OCI-R. Three communities (fronto-parieto-default, striato-limbic and 
cerebellar-visual) showed significant inter-individual variation within the OCD group, whereas only two com-
munities (fronto-parieto-default and fronto-striato-limbic) were significant in controls (p < .05, FDR-corrected). 
In general, the results observed from our primary analyses remained even when head motion was accounted for.

(ii) Applying global signal regression in data processing. Following GSR application in data processing, the num-
ber of functional connections that significantly differed between the two groups dropped from the initial 83–54 
connections, and even further, to 18 connections with permutation testing using “tmax” at α = .01. Primary 
findings, such as the connections between the cerebellum and other areas (visual and frontal) were no longer 
significant with GSR application. Features (functional connections) that were recruited for predictions were 
significantly different (p < .05) between Train-OCD-Test-OCD and Train-OCD-Test-OCD (GSR); and between 
Train-Control-Test-Control and Train-Control-Test-Control (GSR). The Cerebellar-Visual community that 
were previously observed in the OCD group were no longer observed.

(iii) Using an alternate atlas for parcellation. Six communities were detected for each control and OCD group 
using the Harvard–Oxford atlas that comprises 132 ROIs (supplement) compared to seven communities that 
were reported in the primary analyses using the AAL atlas. This discrepancy was expected as the areas were 
specified differently in the two atlases, therefore, leading to different community structures. Nevertheless, the 
disconnection of the striato-limbic regions from frontal regions, as well as alliance of the cerebellar regions with 
visual regions were still observed in the OCD group using the Harvard–Oxford atlas. Associations of the inter-
individual variation in community size with the two clinical measures were assessed, and only the model for the 
OCI-R score was significant (p < .001) in both groups. Inter-individual variation in the community size were 
significant in two communities in both groups—the default mode and cerebellar-visual communities within the 
OCD group, and the default mode and fronto-striato-limbic communities in the control group (p < .05, FDR-
corrected). The use of a different atlas did not alter the interpretation of our key study findings.

Discussion
In this study, we sought to clarify the pathophysiology of OCD using individualized approaches. In general, 
functional connectivity derived from individual-fMRI-subspace appear to have an edge over conventional-fMRI-
space in revealing functional connectivity differences between patients with OCD and controls.

The rsfMRI signals can be decomposed into a group-level subspace that is shared across all subjects within 
the group, and an individual subspace that is unique to each  subject24. We extracted the spatial maps of the 
common group-level signal within each OCD and control group, and showed that, while the common group-
level signal (specific to each group) appear similar, they were not identical (see supplement). Consistent with 
prior  observations24, the common group-level signal observed in our study included regions such as the pos-
terior cingulate areas and prefrontal cortex. These regions were reportedly involved in monitoring the scanner 
environment and scanner  noise25–27. The presence of this common group-level signal in fMRI data, as with the 

Figure 3.  Shows the effect of motion correction on the functional connectivity differences between the two 
groups. As in Fig. 1, 83 functional connections were significantly different between the two groups prior 
to motion correction. However, only 76 connections were different between the two groups after motion 
correction. There was a large overlap between the two sets of functional connections (83 and 76), and only 15 
connections are different between the two sets of data (‘without’ versus ‘with’ motion correction). The location 
of the nodes and the edges of these 15 functional connections are shown across the four different views (a, b, c, 
and d) of the brain.
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conventional-fMRI-space, reduces inter-individual differences of subjects within the group, thereby, decreasing 
individual distinctiveness in the data. The individual-fMRI-subspace can be extracted by removing the com-
mon group-level signal from the individual’s conventional-fMRI-space. A more in-depth discussion on the 
importance of removing the common group-level signal to obtain the individual-fMRI-subspace is discussed 
in our previous  work24.

Considering that the common group-level signal in both groups appear similar, instead of extracting the 
common group-level signal that is specific to each group, one may be tempted to first combine the two groups, 
then extract the common component to obtain individual fMRI subspace of each subject. We do not recommend 
this approach, as doing so may result in erroneous removal of signals that may not be “common” to the specific 
group (OCD / Controls). We provided further explanations in the supplement.

Here, we found that using individual-fMRI-subspaces in functional connectivity analyses improved the 
detection of differences between OCD patients and controls (Fig. 1B). While no group differences in functional 
connectivity were observed using the conventional-fMRI-space approach, 83 connections between the nodes 
in the frontal cortex, temporo-parietal, limbic, and cerebellar regions were observed to be different between the 
groups using the individual-fMRI-subspaces approach. These connections were previously reported in various 
 studies4,9,10,14,22,77,80. Thus, analyses using the individual-fMRI-subspace approach may offer an opportunity to 
deepen our understanding of neural alterations in patients with OCD.

To further understand the underlying differences between the groups, we used the functional connectiv-
ity derived from individual-fMRI-subspace to map the differences in functional connectivity architecture of 
patients with OCD and controls. This is achieved by applying the widely-used connectome-based-predictive 
 modeling28,30–32,81,82 in our study. We established that the functional connections recruited by OCD patients were 
different from those of controls (Tables 2 and 3). The significant drop in the prediction accuracy when we trained 
our predictive algorithm on a dataset (OCD/control) but tested the prediction accuracy on a different dataset 
(control/OCD) indicated specificity in the functional connections within each group (Table 2). Together, our 
findings suggest that the functional architecture is different between patients with OCD compared to controls.

In terms of network organization, seven communities were obtained in each OCD and control group. The 
network organization in OCD patients and controls were similar in three communities: motor-insulo-tempo-
ral, fronto-parietal-default, and cerebellar, and different in four communities. Differences in the communities 
between OCD patients and controls were contributed by disconnection of the frontal areas from limbic and 
striatal regions, and connection of the cerebellar regions with the visual system in the OCD sample. Altered 
network organization have been observed in neurological  disorders83,84, but understudied in OCD. The fronto-
striato-limbic community that is observed in controls but not in the OCD group, is a major component of the 
CSTC, and has been implicated in studies investigating  OCD4,11,78. There is also an increase in recent observa-
tions involving the cerebellum and visual regions in OCD  pathophysiology18,85,86. It may be possible that the 
connectivity of cerebellar and visual regions may compensate for fronto-striato-limbic  dissociations87,88. Nakao 
and  colleagues78 reviewed a vast collection of OCD research and proposed the OCD circuity be extended beyond 
the fronto-striato-limbic circuit with inclusion of the occipital lobe and cerebellum that might be involved in 
processing the visuospatial information. Our findings appear to support their proposal of an extended circuitry.

The OCI-R is a reliable and well-validated scale that differentiates between patients with OCD and  controls40. 
Our data showed that compared to controls, patients with OCD reported greater distress associated with their 
OC symptoms. We showed that within OCD patients, OCI-R tends to associate significantly with inter-individual 
variation in community size of fronto-parieto-default, striato-limbic, and cerebellar-visual, but with fronto-
parieto-default and fronto-striato-limbic brain networks in controls. Compared to controls where frontal regions 
appear to be functionally connected with limbic areas, patients with OCD showed similar communities but 
without the communities involving the frontal areas. Drawing reference from what is known about the CSTC 
 circuitry89, where the frontal regions help regulate excitatory signals that were elicited from the striatum, the 
lack of regulatory connections in the striato-limbic community in the OCD group could potentially support the 
idea that overactive excitatory signals may be associated with obsessive–compulsive symptoms. Interestingly, we 
observed cerebellar-visual and striato-limbic communities having the strongest associations with OCI-R scores in 
the OCD group compared to other communities (p < .05, FDR-corrected). This highlights that along with frontal 
dissociation of striatal and limbic regions, connection between the cerebellum and the visual  areas78 may be a key 
feature in OCD. In addition, we also observed regions within the fronto-parieto-default community that included 
the default mode network (DMN). Although DMN has been thought to be involved in self-awareness and self-
referential  processing90, studies have reported altered resting-state activity of DMN in patients with  OCD15,91. 
These findings suggest that observed disconnection and connection of cortical regions may be relevant in OCD.

The pattern of community clustering observed in our study appears to differ from the communities reported 
by Vaghi and  colleagues22. While Vaghi et al. (2017) reported a single community that comprises the caudate, 
putamen, and cerebellar regions in their sample of OCD  patients22, the similar regions were clustered into sepa-
rate communities (cerebellar-visual, and striato-limbic communities) in our current sample. These differences 
may be attributed to the nature of community detection algorithms being non-deterministic, and sample char-
acteristics such as younger age and lower subjective severity of obsessive–compulsive symptoms in our sample. 
Further research is required to understand the effects of sampling characteristics on the stability of community. 
Finally, it is also difficult to comprehend the reasons for the non-significant association between inter-individual 
differences in community size with HAM-A. However, we agree that non-linear and complex associations might 
exist between them which will benefit from future investigation. Alternatively, it may be possible that anxiety 
affects networks that are different in OCD.

We observed that OCI-R scores were associated with community size of the fronto-parieto-default and fronto-
striato-limbic communities in controls, but the fronto-parieto-default, striato-limbic, and cerebellar-visual in 
patients with OCD. We no longer observed significant associations in the OCD group when depression and 
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anxiety scores were included in the regression analysis. This implies that for patients with OCD, the communi-
ties may not be specific to obsessive–compulsive related symptoms but may also relate to traits of depression 
and anxiety. Since depression and anxiety often coexist in spectrum of OCD symptoms, the contributions of the 
identified neural communities towards depression and anxiety require further investigations.

Finally, we would like to highlight the importance of the validation analyses. Accounting for head motion 
in the rsfMRI data appears to reduce false-positive functional connections that differentiated the two groups, 
although the key findings remained. The application of GSR in data processing have profound impacts on the 
results and inferences of the study, mainly due to the fact that GSR introduces artifactual  correlations48,70,71 that 
influences group  comparisons72,73. Our findings were also similar to prior comparison studies involving OCD 
patients, which reported that the cerebellum and its involvement with other cortical areas in the disorder could 
only be observed when rsfMRI data are preprocessed without  GSR16,18,80. Lastly, using an alternate atlas for parcel-
lation did not change our key findings, suggesting that the results observed in the primary analyses were stable.

Even though the current study did not investigate or account for the effects of medication status and comor-
bidities (18 out of 20 patients were medicated, and all patients did not have comorbid conditions), future investi-
gations could consider the effects of these variables on neural communities. We also acknowledge that the small 
sample size in the current study may restrict  generalizability92. Nevertheless, our data demonstrated differences 
in neural network organization in patients with OCD compared to controls. We showed alterations involving 
two networks (fronto-striato-limbic and cerebellar-visual) in the OCD group. Further research is required to 
replicate our findings using larger sample sizes. In particular, it will be interesting to investigate the causal 
 relationship29,93,94 between the two communities and demonstrate how the association between areas (cerebellar-
visual) potentially compensates the dissociation observed in another network (fronto-striato-limbic).

Conclusions
In this work, we attempted to investigate the pathophysiology of OCD by maximizing inter-individual differ-
ences. We demonstrated that individual-fMRI-subspaces improved detection of functional connectivity differ-
ences between OCD and control over conventional-fMRI space. We demonstrated differences in the functional 
architecture between the two groups using prediction-based approaches. The difference was further investigated 
with subject-specific community assignments. Communities revealed that frontal dissociation with striatal and 
limbic regions and cerebellar association with visual regions may be important neural features in OCD. Finally, 
the association of inter-individual differences in community size with OCI-R score suggests that two more net-
works (fronto-parietal and default mode) might also serve as biological substrates underpinning the diversity 
of clinical manifestations in OCD.
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