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Identification of T helper (Th)1- 
and Th2-associated antigens 
of Cryptococcus neoformans in 
a murine model of pulmonary 
infection
Carolina Firacative   1,2,6, A. Elisabeth Gressler1, Kristin Schubert3, Bianca Schulze1,7,  
Uwe Müller1, Frank Brombacher4, Martin von Bergen3,5 & Gottfried Alber1

Cryptococcosis, caused by Cryptococcus neoformans, has been demonstrated to be controlled by 
T helper (Th)1 cells while Th2 cells are associated with fungal growth and dissemination. Although 
cryptococcal immunoreactive protein antigens were previously identified, their association with Th1 
or Th2 immune responses was not provided. In mice, Th1-dependent IFN-γ induces the production 
of IgG2a, whereas the Th2 cytokine IL-4 stimulates the expression of IgG1 rendering each isotype an 
indicator of the underlying Th cell response. Therefore, we performed an immunoproteomic study 
that distinguishes Th1- and Th2-associated antigens by their reactivity with Th1-dependent IgG2a or 
Th2-dependent IgG1 antibodies in sera from C. neoformans-infected wild-type mice. We additionally 
analysed sera from Th2-prone IL-12-deficient and Th1-prone IL-4Rα-deficient mice extending the 
results found in wild-type mice. In total, ten, four, and three protein antigens associated with IgG1, 
IgG2a, or both isotypes, respectively, were identified. Th2-associated antigens represent promising 
candidates for development of immunotherapy regimens, whereas Th1-associated antigens may serve 
as candidates for vaccine development. In conclusion, this study points to intrinsic immunomodulatory 
effects of fungal antigens on the process of Th cell differentiation based on the identification of 
cryptococcal protein antigens specifically associated with Th1 or Th2 responses throughout mice of 
different genotypes.

Cryptococcus neoformans, an encapsulated basidiomycetous yeast, is the main etiological agent of cryptococcosis, 
a systemic and potentially fatal fungal infection. C. neoformans is ubiquitously present in the environment, espe-
cially in pigeon guano, which is the main known ecological niche of this pathogen1,2. Pulmonary infection with 
C. neoformans usually occurs through inhalation of infectious spores or desiccated yeasts from the environment 
establishing a normally latent, asymptomatic or minimally symptomatic disease in immunocompetent individu-
als1–3, although the risk to develop chronic allergic diseases such as asthma, has been shown to be enhanced in rats 
and BALB/c mice experimentally infected with C. neoformans4,5. In contrast, in immunocompromised persons 
such as AIDS patients, solid organ transplant recipients, or patients receiving exogenous immunosuppression, 
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unresolved or untreated pulmonary cryptococcosis may lead to dissemination affecting the central nervous sys-
tem (CNS) and causing meningitis or meningoencephalitis with a high mortality rate1,6. With about a quarter of 
a million individuals affected with cryptococcal meningitis per year and over 180,000 attributable annual deaths, 
this fungal infection is still responsible for 15% of all AIDS-associated mortalities7.

It is well known that the main host defence mechanism to resolve cryptococcosis is cell-mediated immunity by 
suppressing the growth of the yeasts in the lungs, which impedes dissemination to the CNS8. While T helper (Th)1 
cells play a central role in induction of a protective immune response against cryptococcal infection, Th2 cells 
producing interleukin (IL)-4, IL-13, and IL-5, are detrimental in infection with C. neoformans9,10. Interestingly, C. 
neoformans is able to subvert immunoprotection by suppressing cellular immune response and through induction 
of humoral Th2 cell mediated immunity, resulting in a permissive environment for cryptococcal growth, charac-
terized by IL-4-dependent immunoglobulin (Ig)E production, IL-13 dependent mucus production by goblet cells, 
IL-5-dependent eosinophilia, and functional pulmonary impairment, which are also features typically described 
in asthma2,4,5,11. Despite the benefits of available antifungal drugs, the emergence of drug-resistant fungal strains 
and several side-effects resulting from long term medication and toxicity, limit their use12. Therefore, adjunctive 
immunotherapy together with antifungal treatment is a promising option for the future11. The identification of 
cryptococcal protein antigens is of great interest for the development of an antifungal vaccine11. Particularly the 
discrimination between antigens that induce protective cell-mediated immunity responses to cryptococcal infec-
tion and antigenic compounds that are detrimental in cryptococcosis could contribute to the identification of 
vaccine candidates and targets for specific immunotherapy, respectively, which may help to reduce fungal burden, 
preventing the spread of the yeast from the lungs and increase the survival rate of the patients11.

Previous studies have aimed to identify protective cryptococcal proteins and protein fractions by their reactiv-
ity with antibodies produced by mice immunized with a murine IFN-γ-expressing C. neoformans strain (H99γ) 
that were in consequence protected against a subsequent challenge infection with a C. neoformans wild-type 
strain13,14. In another study, immunoreactive proteins of C. gattii, the closest related species to C. neoformans 
and the second most common etiological agent of cryptococcosis, have been identified using antibodies from 
sera of naturally infected koalas15. However, those studies lack the specific discrimination between immunopro-
tective and immunopathologic properties of the antigen that are associated  with either a Th1 or a Th2 response. 
We decided to use a proteomic approach involving two-dimensional (2D) gel electrophoresis and subsequent 
immunoblot, for the identification of Th1- and Th2-associated cryptococcal antigens based on the linkage of class 
switching in B cells with production of distinct Th cell cytokines16. Several murine studies firmly established that 
IL-4 regulates B cells for secretion of IgG1 antibodies, whereas interferon-γ stimulates the expression of IgG2a 
antibodies rendering either isotype an indicator of the underlying Th2 or Th1 response in mice16–18. Therefore, 
we chose to identify Th1- and Th2- associated antigens of C. neoformans by their reactivity specifically with either 
Th1-dependent IgG2a or Th2-dependent IgG1 from sera of infected wild-type and gene-deficient mice that lack 
either Th1 or Th2 responses. The proteomic approach allows separating the cellular proteins and the identification 
of immunoglobulins binding specific antigens19. Using this technique, distinct Th2- and Th1-associated fungal 
proteins were identified which are likely to play a role in shaping the Th cell response to C. neoformans and may 
be used for development of anti-fungal immunotherapy or vaccination regimens.

Results
Pulmonary infection with C. neoformans leads to dominant production of Th2-dependent IgG1 
and IgE.  In a BALB/c model of intranasal cryptococcal infection, IgG1/IgE and IgG2a have been shown to be 
valid indicators for preferential Th2 and Th1 responses, respectively5,20. Wild-type mice are susceptible to infec-
tion with the C. neoformans strain 18415,20, while IL-4Rα-deficient mice, characterized by a dominant Th1 and 
Th17 response, are resistant to pulmonary cryptococcal infection20. In contrast, IL-12p35- and IL-12p40-deficient 
mice do succumb significantly earlier to intranasal infection (unpublished data) accompanied by a stronger Th2 
response similarly as previously published for intravenously infected IL-12-deficient mice21. Sera from wild-type 
and knock-out mouse lines were used in order to rigorously distinguish specific Th1- and Th2-associated crypto-
coccal antigens. Levels of total IgG1 and IgE increased significantly in mice of all genotypes after infection with 
C. neoformans, except for IgE levels in IL-4Rα-deficient mice, which are unable to produce IgE20, underlining the 
overall Th2-biased immune response to this pathogen (Fig. 1a,b). In contrast, IgG2a levels were not influenced by 
cryptococcal infection (Fig. 1c). Comparison of total immunoglobulin levels revealed an increased Th2 response 
for IL-12p35- and IL-12p40-deficient mice, evidenced by the higher levels of total IgE in comparison with wild-
type mice and comparable levels of IgG1 (Fig. 1a,b). Opposite, infected IL-4Rα-deficient mice showed a marked 
diminution in their Th2-associated B cell response, with no production of IgE and notably lower levels of total 
IgG1 compared to wild-type mice (Fig. 1a,b), consistent with previously published experiments20. Among all 
three groups of infected mice, production of total Th1-dependent IgG2a was determined to be lower in IL-12-
deficient mice, while IL-4Rα-deficient mice produced the highest levels of this IgG isotype, although without 
statistical significance (Fig. 1c). When comparing the total levels of IgG1 and IgG2a in sera from infected IL-12- 
and IL-4Rα-deficient mice, a significant negative correlation between IgG1 and IgG2a was found (r = −0.5077, 
p = 0.0058**), confirming the opposite Th phenotypes in the selected mutant mice, while in sera from infected 
wild-type mice, there was no correlation between the two IgG isotypes (data not shown).

After quantification of total immunoglobulin concentrations, the titers of C. neoformans-specific IgG1 and 
IgG2a antibodies were determined, using a cryptococcal antigen-specific enzyme-linked immunosorbent assay 
(ELISA). Compared to wild-type and IL-12-deficient mice, titers for specific IgG1 antibodies against C. neofor-
mans were lower in infected IL-4Rα-deficient mice (Fig. 1d), while infected IL-12-deficient mice showed reduced 
levels of specific IgG2a antibodies compared to infected wild-type and IL-4Rα-deficient mice (Fig. 1e). Overall, 
titers for C. neoformans-specific IgG1 antibodies reached higher values in comparison to C. neoformans-specific 
IgG2a titers. Furthermore, titers of C. neoformans-specific IgG1 and IgG2a showed a significant increase upon 
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cryptococcal infection for all genotypes except for IgG2a detected in sera of IL-12-deficient mice (Fig. 1d,e). C. 
neoformans-specific IgG1 and IgG2a antibodies were absent in sera from naïve mice of all genotypes (Fig. 1d,e). 
A strong correlation was found between total and specific levels of IgG1 (r = −0.6638, ****p < 0.0001, Fig. 1f) 
but not between total and specific levels of IgG2a (r = 0.2037, p = 0.1957, Fig. 1g) in sera from infected mice of all 
genotypes, indicating an influence of C. neoformans on the production of IgG1 but not IgG2a antibodies. We did 
not determine C. neoformans-specific IgE titers in serum samples, as these are expected to be very low according 
to a previous study22. In conclusion, we could confirm the previously observed Th2-tilted immune response on 
the level of both, total and specific IgG1 and IgG2a antibodies upon C. neoformans infection.

Proteomic analysis reveals cryptococcal antigens specifically reactive with IgG1 or IgG2a anti-
bodies.  After determining the titers for specific IgG1 and IgG2a antibodies against C. neoformans proteins, 
representative serum samples from each group of infected mice, five from wild-type and two from gene-deficient 

Figure 1.  Total and C. neoformans-specific levels of Th2-dependent IgG1 and IgE predominate in sera from 
susceptible wild-type (WT) and IL-12-deficient mice with pulmonary cryptococcosis. Total IgG1 (a) and IgE 
(b) levels increased significantly after infection with C. neoformans for most genotypes, whereas IgG2a levels (c) 
were not influenced by C. neoformans. Compared to wild-type mice, IL-4Rα-deficient mice had markedly lower 
levels of immunoglobulin (Ig)G1 (a), no production of IgE (b) and similar levels of total IgG2a (c). Opposite, 
IL-12-deficient mice showed similar IgG1 and significantly higher IgE levels (a,b), while reduced levels of 
IgG2a (c), compared to wild-type mice. Titers of C. neoformans-specific IgG2a (d) and IgG1 (e) antibodies 
in infected (infec.) mice reflected the distribution observed for total immunoglobulin levels. C. neoformans-
specific IgG1 and IgG2a antibodies were absent in sera of naïve mice. A strong correlation was observed 
between total and C. neoformans-specific IgG1 levels (f) but not between total and C. neoformans-specific 
IgG2a levels (g) in infected mice of all genotypes. Each spot represents a serum sample of an individual mouse 
(2 to 14 animals per group from at least two independent experiments) with the line indicating the median. 
Serum samples were obtained from mice intranasally infected with 500 colony forming units of C. neoformans 
strain 1841 after about 56 days post infection. Statistical significance determined by Mann-Whitney U test is 
shown as following: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Correlation was determined by 
nonparametric Spearman’s correlation test.



www.nature.com/scientificreports/

4SCIENTIFIC Reports |  (2018) 8:2681  | DOI:10.1038/s41598-018-21039-z

mice, were tested by immunoblot analyses following one-dimensional (1D) gel electrophoresis. Serum samples 
that showed high titers of C. neoformans-specific antibodies and titers around the median value were chosen. 
Additionally, serum samples from naïve mice (one per genotype) were included. As expected, detection of 
IgG1-reactive proteins after 1D sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of cryp-
tococcal proteins and subsequent immunoblotting revealed several bands following incubation with sera from 
infected wild-type mice (Supplementary Fig. S1). No bands were visible after incubation of the membrane with 
sera from naïve wild-type mice, naïve IL-12-deficient mice and both, infected and naïve IL-4Rα-deficient mice 
(Supplementary Fig. S1). IL-12p35-deficient mice produced strong IgG1 responses, indicated by an increased 
number of IgG1-reactive protein bands visible after incubation with sera (Supplementary Fig. S1).

Analysis of IgG2a-reactive proteins revealed one band after incubation of the membrane with sera from naïve 
mice of all genotypes, indicating nonspecific reactivity with cryptococcal proteins (Supplementary Fig. S1). As 
expected, incubation with sera from infected mice of all genotypes resulted in additional protein bands, demon-
strating that IgG2a antibodies recognized several C. neoformans proteins.

To achieve sufficient resolution for identification of individual C. neoformans proteins, 2D gel electrophoresis 
and subsequent immunoblot experiments were performed. We decided to analyse sera from five wild-type, four 
IL-12-deficient and four IL-4Rα-deficient mice. Only immunoreactive spots, which could be accurately mapped 
on the corresponding Coomassie-stained SDS gels were taken into account for further analysis. Representative 
immunoblots of individual mice, which display most but not all immunoreactive spots observed in a total of four 
to five mice, are shown in Figures 2 and 3. Nine IgG1-immunoreactive protein spots were detected using sera from 
infected wild-type mice (Fig. 2a, bold numbers). When using sera from infected IL-12p35-deficient mice, seven 
additional IgG1-immunoreactive protein spots were identified (Fig. 2c, bold numbers). Importantly, as already 
indicated by 1D gel analysis (Supplementary Fig. S1), no proteins were found to be IgG1-immunoreactive with 
sera from naïve wild-type and naïve IL-12p35-deficient mice (Fig. 2b,d). Most IgG1-immunoreactive spots could 
be identified in several individual mice of different genotypes (Fig. 5). Sera from IL-4Rα-deficient mice were not 
tested for IgG1-reactive antigens, as no immunoreactive bands were detected after 1D analysis (Supplementary 

Figure 2.  IgG1-immunoreactive proteins from Cryptococcus neoformans were detected with sera from 
representative infected but not naïve wild-type and IL-12-deficient mice. Whole cell proteins of C. neoformans 
strain 1841 separated by 2D electrophoresis were transferred to nitrocellulose membranes, which were 
thereafter incubated with sera from infected and naïve wild-type and gene-deficient mice diluted 1:1,000. 
IgG1-immunoreactive proteins were detected using sera from an infected wild-type (a), a naïve wild-type 
(b), an infected IL-12-deficient (c), and a naïve IL-12-deficient (d) mouse. Protein abundance as shown in the 
Coomassie staining did not correlate with the strength of the immunoreactive signal (Fig. 4). Only the spots that 
could be mapped on Coomassie-stained gels were numbered in the blot images. Bold numbers indicate strictly 
IgG1-reactive proteins while italic numbers mark proteins reactive with both, IgG1 and IgG2a antibodies. 
Images were cropped to improve clarity. Full-length blots without numbered protein spots are presented in 
Supplementary Fig. 2. Abbreviation: MM = molecular mass.
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Fig. S1). Nine protein spots were determined to be exclusively IgG2a-immunoreactive (Fig. 3a,c,e), from which 
five were considered IgG2a-immunoreactive but not C. neoformans-specific, as they also reacted with sera from 
naïve wild-type, IL-4Rα-deficient, and IL-12-deficient mice (Fig. 3b,d,f, light, underlined numbers). Three pro-
tein spots were identified as infection-specific when using serum from an infected wild-type mouse (Fig. 3a, bold, 
underlined numbers), which were not detectable using sera from IL-12deficient mice (Fig. 3e). In contrast, incu-
bation with serum from infected IL-4Rα-deficient mice resulted in one additional spot (Fig. 3c). Notably, in con-
trast to IgG1-reactive proteins, infection-specific IgG2a-reactive spots only occurred in single animals without a 
high consistency (Fig. 5). To our surprise, only one protein spot (#18) was both IgG1- and IgG2a-immunoreactive 
in sera from infected wild-type mice. Few spots (#4–7, #17) were exclusively IgG1-immunoreactive in sera from 
infected wild-type mice (Fig. 2a,c, italic numbers), but showed reactivity with IgG2a when using serum from 

Figure 3.  IgG2a-immunoreactive proteins from Cryptococcus neoformans were detected with sera from 
representative infected and naïve wild-type, IL-4Rα-deficient, and IL-12-deficient mice. Whole cell proteins 
of C. neoformans strain 1841 separated by 2D electrophoresis were transferred to nitrocellulose membranes, 
which were thereafter incubated with sera from infected and naïve wild-type and IL-4Rα-deficient mice diluted 
1:1,000. IgG2a-immunoreactive proteins were detected using sera from an infected (a) and naïve (b) wild-type 
mouse, an infected (c) and naïve (d) IL-4Rα-deficient mouse, and an infected (e) and naïve (f) IL-12-deficient 
mouse. Protein abundance as shown in the Coomassie staining did not correlate with the strength of the 
immunoreactive signal (Fig. 4). Only the spots that could be mapped on Coomassie-stained gels were numbered 
in the blot images. Bold, underlined numbers mark IgG2a-reactive, C. neoformans-specific spots, while light, 
underlined numbers indicate IgG2a-reactive but C. neoformans-unspecific spots. Italic numbers mark spots 
reactive with both IgG1 and IgG2a antibodies. Images were cropped to improve clarity. Full-length blots without 
numbered protein spots are presented in Supplementary Fig. 3. Abbreviation: MM = molecular mass.
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infected IL-4Rα-deficient mice (Fig. 3c, (spots #4–7 not shown)). In conclusion, this suggests that the host geno-
type in some cases (i.e. under strong Th cell polarizing conditions) affects the regulation of the Th-dependent iso-
type, but, in the wild-type host, fungal antigens significantly determine the Th cell phenotype. Immunoreactivity 
of the different proteins spots, seen by the intensity on the membrane, did not correlate with the abundancy of 
the proteins in the microorganism, as evidenced by Coomassie staining of the proteins in the gel (Fig. 4). This 
indicates that the given protein abundancy does not influence the degree of immunoreactivity.

Mass spectra analysis of the 31 immunoreactive protein spots (Fig. 4) led to the identification of 17 unique 
cryptococcal proteins, as different isoforms of the same protein were identified in more than one spot. The fre-
quency of these proteins in C. neoformans-infected mice of different genotypes is displayed in Fig. 5. Ten cryp-
tococcal proteins were determined to be exclusively Th2-associated antigens as they reacted specifically with 
IgG1 antibodies (Table 1, Fig. 5), while only three proteins were exclusively immunoreactive with Th1-dependent 
IgG2a among the C. neoformans-specific proteins (Table 2, Fig. 5). From the five spots that were not C. 
neoformans-specific, but also exclusively IgG2a-reactive, one protein was identified (Table 2, Fig. 5). Identification 
of the six protein spots reactive with both, IgG1 and IgG2a antibodies (#4–7, #17, #18) revealed three immunore-
active proteins (Table 3, Fig. 5). Tables 1–3 give an overview of the immunological characteristics of these proteins 
or family of proteins as reported in previous studies of fungal infections including cryptococcosis. The proteins 
identified herein have various functions in cellular metabolism, growth as well as stress resistance and viru-
lence. Eight out of the 17 identified proteins were previously identified in immunoproteomic studies on immu-
noreactive antigens of C. neoformans and C. gattii13–15,23. Taken together, using a proteomic approach we could 

Protein (MW; UniProt ID)
Number of 
isoforms (spot #) Immunological characteristics previously reporteda,b,c Ref.

14-3-3 protein, putative 
(29.0 kDa; Q5K8Z6) 1 (#16)

aRecognized as an antigen in mice infected with C. neoformans H99γ 
and in C. gattii infection in humans and koalas.
cAntibodies against this protein are induced in the course of the natural 
infection of schistosomiasis.

13,15,26,52

Elongation factor 1-beta 
(24.4 kDa; Q5KKD1) 1 (#15)

aRecognized as an antigen in patients with cryptococcosis caused by C. 
gattii and as a non-specific antigen in C. gattii infection in koalas.

15,26

Expressed protein Q5K7Y6 
(14.9 kDa; Q5K7Y6) 1 (#35) Not reported to date

Glyceraldehyde-3-phosphate 
dehydrogenase (36,308 kDa; 
J9VRH1)

1 (#44)

aRecognized as an antigen in patients with cryptococcosis caused by 
C. gattii.
b Immunoreactive protein identified in mice inoculated with Candida 
albicans and in sera from patients with paracoccidioidomycosis.
bThis protein appeared not to be a suitable target for the development 
of immunotherapeutic strategies against candidiasis, despite being an 
immunodominant component that induces antibody response against 
C. albicans.
bThe most abundant allergen from Aspergillus fumigatus in human sera.
cCommon immunogenic antigen among Eimeria species. This protein 
was evaluated in form of DNA vaccine, which induced effective 
protection against single and mixed infection of these species.
cAntibodies against this protein are induced in infection of 
schistosomiasis. This protein is considered a target of protective 
immunity in humans against Schistosoma mansoni and S. haematobium.

19,26,53–57

Hsp71-like protein (69.6 kDa; 
J9VZ70) 1 (#19)

a70-kD Hsp family from C. neoformans described as a major target 
molecule of the humoral response in mice.
aHsp70 recognized as an antigen in mice infected with C. neoformans 
H99γ and C. gattii.
aHsp70 identified as immunodominant protein in mice immunized 
with C. gattii cell wall and cytoplasmic protein preparations.

13–15,23,26,37,58

Hsp72-like protein (69,513; 
J9VU43) 1 (#20)

a70-kD Hsp family from C. neoformans described as a major target 
molecule of the humoral immune response in mice.

37

Phosphopyruvate hydratase 
(Enolase) (47.7 kDa; Q5KLA7) 2 (#11, #12)

aRecognized as an antigen in mice infected with C. neoformans H99γ 
and in C. gattii infection in humans and koalas.
aImmunodominant protein identified in mice immunized with C. gattii 
cell wall and cytoplasmic protein preparations.
bStimulates protective IgG2a in sera from vaccinated mice with 
systemic candidiasis.
bA major antigen of fungal infection (A. fumigatus and C. albicans)

13–15,23,26,39,59

Thioredoxin-dependent 
peroxide reductase (21.6 kDa; 
Q5KEB3)

1 (#47) Not reported to date 15

Transaldolase (35.3 kDa; 
Q5K952)

4 (#30–32, #43, 
#46)

aRecognized as an antigen in mice infected with C. neoformans H99γ.
aImmunodominant protein identified in mice immunized with C. gattii 
cell wall protein preparations.
bIdentified as an allergen of Fusarium proliferatum and Cladosporium 
and Penicillium species.

13,23,60,61

Uncharacterized protein 
J9W025 (14.8 kDa; J9W025) 2 (#36, #37) Not reported to date.

Table 1.  IgG1-immunoreactive proteins from Cryptococcus neoformans. Ten cryptococcal immunogenic 
proteins were identified to react specifically with IgG1 antibodies from mice infected with C. neoformans. MW: 
Molecular weight; UniProt ID: Identification number in the UniProt database. aDescribed in proteomics studies 
of cryptococcosis, bother mycoses, and cother infections.
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identify ten IgG1- and three IgG2a-reactive C. neoformans-specific antigens using sera from infected wild-type 
and gene-deficient mice, which can be associated with either Th2- or Th1-mediated immune responses.

Discussion
Cryptococcosis remains one of the prominent infectious diseases in both, industrialized and developing coun-
tries. Even though overall outcome of antifungal therapy is effective, the rates of morbidity, mortality and relapse 
episodes among cryptococcosis patients continue to be remarkably high7. The search for alternative treatments 
for this mycosis and the prevention of cryptococcal dissemination by immunotherapy or vaccination is therefore 
of significant importance. Previously, attempts have been made to establish a protective vaccine against crypto-
coccosis by using capsular polysaccharides for immunization of mice, which turned out to elicit immunological 
unresponsiveness24. This could be overcome by linking cryptococcal polysaccharides to carrier proteins (i.e. using 
conjugate vaccines). In contrast to carbohydrate antigens, immunoreactive protein antigens are capable of elic-
iting direct T cell-dependent responses25, which is critical for the control of cryptococcal infection. In contrast 
to previous studies identifying immunoreactive cryptococcal antigens13–15,26, the immunoproteomic approach 
utilized in the present study is the first of its kind for the discrimination of cryptococcal Th2- and Th1-associated 
antigens seen by their reactivity with antibodies of the murine isotypes IgG1 or IgG2a, respectively. We confirmed 
the previously observed capacity of the fungus to induce a biased Th2 response in BALB/c mice4,5 demonstrated 
by the significantly increased levels of total IgG1 and IgE levels upon infection with C. neoformans and higher 
levels of IgG1 than IgG2a antibodies specific for cryptococcal antigens. We also identified a larger number of 
IgG1-reactive C. neoformans-specific antigens, which also occurred with enhanced consistency throughout dif-
ferent animals in comparison to IgG2a-reactive C. neoformans-specific antigens.

The induction of Th2-tilted immune responses by C. neoformans has been associated with cell wall and 
capsular components such as chitin and glucuronoxylomannan27–29. In addition to these carbohydrate factors, 
several proteins have been identified, such as (i) Pik1, Rub1 and Ena1, which deletion resulted in a decreased 
Th2-response upon infection30, (ii) laccase and urease, which promoted Th2 polarization31,32, or (iii) Ssa1, that 
was shown to promote macrophage M2 skewing during the afferent phase of the immune response against C. 
neoformans33. From these immunomodulatory proteins, the Hsp70 protein Ssa1 (annotated as Hsp71-like pro-
tein) was also identified in our study.

Interestingly, we were able to identify distinct Th1- and Th2-associated cryptococcal antigens throughout mice 
of different genotypes, which seemingly contrasts the immunological paradigm that the process of Th cell dif-
ferentiation is mainly influenced by the surrounding cytokine milieu rather than the immunogenic antigen34. As 
the differentiation of T cells occurs after the interaction with antigen-presenting cells (APCs)35, distinct antigens 
may influence APCs to produce certain cytokines driving either Th1- or Th2-differentiation. It is conceivable that 
cellular vs. secreted cryptococcal proteins could target different APCs. However, presently it is not clear which of 
the identified proteins are either cell-associated or secreted. Other parameters influencing Th cell differentiation 
are the dose and binding strength of the antigen to the T-cell receptor resulting in different strength of T-cell 
receptor signalling and therefore distinct activation of downstream signals and transcription factors34,36. At this 
point it remains unclear how the identified Th1- and Th2-associated immunoreactive fungal antigens exert their 
influence on immune cells, but we hypothesize distinct direct interactions with APCs during the process of T cell 
differentiation. Future experiments therefore will include direct stimulation of APCs and T cells with the identi-
fied recombinantly expressed Th1- or Th2-associated C. neoformans antigens and furthermore the recombinant 
antigens will be used in vivo for immunization of mice.

IgG1-specific antigens are promising targets for specific immunotherapies addressed to restrain Th2-type 
responses, which are associated with exacerbation of disease, by skewing the Th cell differentiation towards a 
protective Th1 response. The IgG1-immunoreactive antigens identified in our study include proteins that 
are essential for growth and virulence of C. neoformans as they are involved in metabolism, oxidative stress, 

Protein (MW; UniProt ID)
Number of 
isoforms (spot #) Immunological characteristics previously reporteda,b Ref.

C. neoformans-specific

 Hsp60-like protein 
(61.4 kDa; J9VJ21) 1 (#40)

bVaccination with recombinant Hsp60 protects mice against a lethal 
intravenous inoculum of Histoplasma capsulatum yeast cells.
bIgG1 and IgG2a monoclonal antibodies significantly prolonged the survival of 
mice infected with H. capsulatum.

40,43

 Phosphoglucomutase 
(60.5 kDa; J9W313) 2 (#2, #21) bRecognized as an antigen in A. fumigatus. 39

 Pyruvate decarboxylase 
(67.6 kDa; J9VTH3) 1 (#3)

bStimulates protective IgG2a in sera from vaccinated mice with systemic 
candidiasis.
bRecognized as an antigen of Aspergillus fumigatus.

39,59

C. neoformans-unspecific

 ATP synthase subunit beta 
(58.7 kDa; J9VPP7) 5 (#24–26, #33–34)

aRecognized as an antigen in mice infected with C. neoformans H99γ, an 
antigen in humans infected with C. gattii and as a non-specific antigen in C. 
gattii infection in koalas.

14,15,26

Table 2.  IgG2a-immunoreactive proteins from Cryptococcus neoformans. Four cryptococcal immunogenic 
proteins were identified to react specifically with IgG2a antibodies. Three of them were determined as C. 
neoformans-specific and one was regarded as C. neoformans-unspecific, as it reacted strongly with sera from 
naïve wild type, IL-12- and IL-4Rα-deficient mice. MW: Molecular weight; UniProt ID: Identification number 
in the UniProt database infec.: infected. aDescribed in proteomics studies of cryptococcosis and bother mycoses.
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protein synthesis, and to maintain cell wall integrity (Table 1, Fig. 5). From those, six proteins, phosphopyru-
vate hydratase (enolase), elongation factor 1-β, 14-3-3 protein, Hsp71-like protein (Ssa1), transaldolase and 
glyceraldehyde-3-phosphate dehydrogenase, have been previously reported to be immunogenic in C. neofor-
mans and its sibling species C. gattii13–15,23,26, although their association with Th phenotypes remained unclear in 
these studies. Nevertheless, this supports the immunodominant nature of these proteins and their role in induc-
ing a Th-dependent antibody response, therefore rendering them excellent candidates for future experiments. 
Surprisingly, Hsp71-like protein (Ssa1) is among those proteins reactive only with Th2-dependent IgG1 anti-
bodies, although Ssa1 has been reported to influence the immune response to C. neoformans during the afferent 

Figure 4.  Protein profile of Cryptococcus neoformans with indicated immunoreactive protein spots. Whole 
cell proteins of C. neoformans strain 1841 were separated by isoelectric point and molecular weight. After 
2D gel electrophoresis, gels were stained with Coomassie Brilliant Blue G250. Numbered spots in the stained 
gel represent all antigenic proteins that were identified in this study. Bold non-underlined and bold underlined 
numbers indicate IgG1- and IgG2a-immunoreactive proteins, respectively. The spots in italic were reactive with 
both isotypes as shown in Figures 2 and 3. Light underlined numbers indicate IgG2a-immunoreactive proteins, 
which were not specific for C. neoformans. Abbreviation: MM = molecular mass.

Figure 5.  Frequency of cryptococcal proteins, reactive with IgG1, IgG2a, or with IgG1 and IgG2a antibodies 
in Cryptococcus neoformans-infected mice of different genotypes. Immunoreactive cryptococcal proteins 
were identified using sera from infected mice of different genotypes. Proteins were grouped according to their 
reactivity with IgG1, IgG2a, or with IgG1 and IgG2a antibodies. The isotype which showed reactivity in the 
individual animal is indicated by plain bars (IgG1) or hatched bars (IgG2a). Three IgG2a-reactive proteins 
reacted exclusively with sera from infected mice, while one protein also showed reactivity with sera from naïve 
mice (marked with an asterisk (*), see also Fig. 3). Sera from IL-4Rα-deficient mice were not tested by 2D 
analysis for IgG1-reactive proteins, as no immunoreactive protein bands for this isotype could be detected when 
investigating these sera in 1D analysis (Supplementary Fig. S1). Sera from infected animals were taken from 
at least three independent experiments in late infection state (at least 56 days post infection). Abbreviations: 
Glyceraldehyde-3-phosphate dehyd. = Glyceraldehyde-3-phosphate dehydrogenase; Thioredoxin-dependent 
peroxide reduct. = Thioredoxin-dependent peroxide reductase.
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phase, but not during the efferent phase, eliciting no influence on adaptive immune response33. Additionally to 
antigens previously identified, this is the first time that Hsp72-like protein, a member of the highly immunogenic 
Hsp70 family37, thioredoxin-dependent peroxide reductase and two uncharacterized proteins (expressed protein 
Q5K7Y6, uncharacterized protein J9W025) are recognized as immunoreactive antigens in cryptococcal species. 
The identification of Th2-associated pathogenic proteins is of major therapeutic interest as a recent study could 
show that infection with a C. neoformans mutant strain lacking three chitin deacetylases and therefore chitosan, 
a component of the fungal cell wall and virulence factor, led to the development of a predominant Th1-type 
response and as a consequence to robust protective immunity if challenged with a C. neoformans wild-type 
strain38. Similarly, infection of mice with C. neoformans mutants characterized by a decreased Th2 bias after 
deletion of the respective genes, resulted not only in a prolonged survival of the animals but also in a predominant 
Th1-mediated immune response and decreased dissemination to the CNS, although in these cases prolonged 
immunity was not tested30,31. The proteins identified in our study may therefore serve as targets for the generation 
of C. neoformans knock-out mutants that could be used for similar vaccination-challenge experiments.

Three C. neoformans-specific antigens were found to be associated with a Th1 response as they reacted spe-
cifically with IgG2a antibodies (Table 2, Fig. 5). The protein phosphoglucomutase has been described so far only 
in Aspergillus fumigatus as an antigen expressed during invasive aspergillosis39. Vaccination with recombinant 
Hsp60-like protein has been associated with an improved course of disease in murine Histoplasma capsulatum 
infections40, underlining the potential protective influence of Hsp60-like protein also witnessed by its associa-
tion with Th1-dependent IgG2a antibodies. Pyruvate decarboxylase is, to our knowledge, newly recognized as 
a fungal antigen. Further studies are necessary to test these IgG2a-reactive antigens in vaccination approaches 
for induction of a protective Th1 immune response. The identified IgG2a-reactive but C. neoformans-unspecific 
antigen ATP synthase subunit β could also be of particular interest for future studies, as this protein could be 
cross-reactive with different fungal species. Given the fact that this antigen was exclusively IgG2a-reactive and 
reactive with sera from all mice tested, indicating an immunodominant role, this protein could represent an 
excellent candidate for a protective vaccine against C. neoformans and potentially other fungal species. Previous 
studies demonstrated that immunization using protein fractions of C. neoformans and C. gattii prolongs the sur-
vival of mice against pulmonary cryptococcal infection14,23, but it has not been possible to elicit long lasting and 
effective protection. This suggests that a future vaccine should consist of fungal antigens selected for association 
with a protective Th1-response, rather than whole protein preparations.

Three proteins, Hsp90-like protein, spermidine synthase, and an uncharacterized protein (J9VHM5), were 
recognized by both IgG1 and IgG2a antibodies (Table 3, Fig. 5). Hsp90 has been identified as major immunogenic 
antigen not only in C. neoformans13,14 but also in A. fumigatus39. Reactivity with both isotypes could depend on a 
high fungal or microbial immunogenicity as evidenced by the high number of individual mice recognizing these 
antigens. Our study is the first to compare cryptococcal antigens recognized by sera of individual mice in contrast 
to other studies, which used pooled sera for their investigations. We found that several immunoreactive proteins, 
especially IgG1- or IgG1- and IgG2a-reactive proteins were observed with a high consistency throughout sera 
of individual mice. A likely explanation for this observation is the uniform major histocompatibility complex 
(MHC) haplotype (H-2d) of BALB/c inbred mice used in this study. Other immunoproteomic studies also used 
BALB/c mice13,14 for their experiments, which resulted in the identification of a number of identical antigens, 
underlining the importance of the MHC haplotype for antigen recognition by Th cells and development of anti-
microbial antibodies. A recent immunization/challenge study proposed to combine multiple protein antigens in 
light of a critical role of MHC-II haplotype diversity for protection41.

We chose to identify immunoreactive cryptococcal antigens using sera from mice infected with C. neoformans 
for at least 56 days to mimic a prolonged interaction of the fungus with the immune system, as it occurs within the 
human population. We do not expect a different pattern of immunoreactive proteins in earlier stages of infection, 
as hallmarks of a Th2-polarisation, like IL-13 and IL-5 production as well as expression of GATA3 in Th cells are 
present in wild-type mice infected with C. neoformans already on day 21 post infection (dpi)42. Furthermore, 
there was no obvious influence of the susceptibility and fungal burden on the pattern of immunoreactive proteins 
identified, as we could observe several proteins recognized by sera from mice of all genotypes despite their under-
lying predominant immune response, different courses of disease and fungal burden in the lung.

Although most of the proteins identified in this study are associated with cytoplasmic functions, it is known 
that proteins like 14-3-3 protein, heat shock proteins, pyruvate decarboxylase, and phosphopyruvate hydratase 
(enolase) can be found in the cell wall of fungi43,44. The protein export mechanisms of these proteins may serve to 

Protein (MW; UniProt ID)
Number of 
isoforms (spot #) Immunological characteristics previously reporteda,b Ref.

Hsp90-like protein (79.2 kDa; J9VVA4) 1 (#18)
aHsp90 recognized as an antigen in mice infected with C. 
neoformans H99γ.
bA major antigen of A. fumigatus.

13,14,39

Spermidine synthase, putative (82.4 kDa; Q5KEA8) 4 (#4–7) Not reported to date.

Uncharacterized protein J9VHM5 (73.0 kDa; J9VHM5) 1 (#17) Not reported to date.

Table 3.  Cryptococcus neoformans proteins immunoreactive with both, IgG1 and IgG2a antibodies. Three 
cryptococcal immunogenic proteins were identified to react with both IgG1 and IgG2a antibodies from mice 
infected with C. neoformans. Immunological characteristics of the proteins or protein family compared to 
previous studies of fungal infections, including cryptococcosis, are given. MW: Molecular weight. UniProt ID: 
Identification number in the UniProt database. aDescribed in proteomics studies of cryptococcosis, and bother 
mycoses.
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promote microbial interaction with the host to stimulate an immune response. As previously reported in other 
studies, no mannoproteins were found to be immunoreactive with either IgG1 or IgG2a antibodies14, indicating 
that the method used for protein extraction in this study may underrepresent these scarce proteins or other 
immunoreactive proteins45.

To conclude, our study resulted in the identification of a significant number of antigens that are associated 
with Th2-dependent IgG1 antibodies and potentially may serve for fungus-specific immunotherapy strategies. In 
addition, selected antigens reactive with Th1-dependent IgG2a can be used for protective immunization exper-
iments. Besides, some of the identified Th1- or Th2-associated serological antigen-specific responses may have 
the potential to be used as diagnostic markers to monitor the prognosis or antifungal treatment response of 
patients with cryptococcosis. At the same time, the finding of distinct IgG1- and IgG2a-immunoreactive fungal 
proteins provides molecular candidates to study immunomodulatory mechanisms of fungal antigens during the 
process of Th cell differentiation.

Materials and Methods
Sera collection.  Serum samples, obtained after at least 56 dpi from wild-type and gene-deficient adult female 
BALB/c mice (H-2d) previously infected by nasal inhalation with a single inoculum of 500 colony forming units of 
C. neoformans strain 1841 (serotype D) yeasts21, were utilized through the study. Sera from infected immunocom-
petent wild-type mice, which have shown to develop a strong Th2 response with high levels of IgE5,22, were tested. 
In addition, sera from infected IL-12-deficient mice (IL-12p35−/− and IL-12p40−/−), which present a strong Th2 
biased immune response upon pulmonary infection with C. neoformans21 were included. Sera from infected 
IL-4Rα-deficient mice (IL-4Rα−/−), which show a reduced Th2-immune response in pulmonary cryptococco-
sis20,46 were also tested to enlighten the cryptococcal specific isotype production in a Th1 driven environment. All 
BALB/c wild-type mice succumbed to intranasal infection starting at 70 dpi (median survival time 74 dpi, unpub-
lished data). In contrast, death of IL-12p35−/− and IL-12p40−/− mice started at significantly earlier time points 
(median survival time 52 dpi, unpublished data), whereas all IL-4Rα-deficient mice survived the pulmonary 
cryptococcal infection, but maintained detectable levels of cryptococcal cells in their lungs20. As negative controls 
sera from naïve mice of all three genotypes were used. Per group, 14 infected and 9–14 naïve mice from at least 
two different infection experiments were analysed. The mice were maintained under specific pathogen-free con-
ditions, according to the guidelines authorized by the Animal Care and Usage Committee of the “Landesdirektion 
Sachsen” (www.lds.sachsen.de, Chemnitz, Germany) with food and water ad libitum. All infection experiments 
were carried out in accordance with the guidelines of the Committee of the “Landesdirektion Sachsen” according 
to the approved protocols with numbers 24-9168.11-TVV 5/01 and 24-9168.11 TVV 15/05.

Protein extraction.  C. neoformans strain 1841 was recovered from 10% fetal calf serum stocks stored 
at −80 °C and grown for 48 h in Sabouraud dextrose agar medium while shaking gently at 30 °C. For ELISA, 
yeast cells were harvested by centrifugation and washed twice with 250 mM sucrose. After washing, yeast pel-
lets were resuspended in lysis buffer containing 10 mM Tris/HCl pH 7.5 supplemented with 5 mM EDTA and 
1x protease-inhibitor cocktail (Roche, Basel, Switzerland). Thereafter, the suspension was transferred into a 
lysis-tube containing a mix of 0.1 mm glass beads together with 1.4 mm ceramic beads (PEQLAB, Erlangen, 
Germany) and cells were lysed by homogenization in the Peqlab-homogenizer at 4 °C (Precellys® 24). The sus-
pension was centrifuged twice transferring every time only the supernatant. The protein concentration was esti-
mated using the Bradford reagent (Carl Roth, Karlsruhe, Germany) and samples were stored at −30 °C.

For one- and two-dimensional (1D and 2D) gel electrophoresis, some modifications were done to the protein 
extraction methodology in order to increase and maintain the solubility of the proteins. Yeast cells were harvested 
as previously mentioned and after washing, in addition to the lysis buffer, the pellets were mixed with an equal 
volume of a solution containing 8% CHAPS and 100 mM DTT. This suspension was disposed into a mortar and 
cells were frozen with liquid nitrogen and homogenized with a pestle twice. The homogenates were centrifuged 
and the protein suspensions were recovered. Protein content was estimated using the Bradford reagent (Carl 
Roth, Karlsruhe, Germany). Finally, proteins were precipitated overnight at −20 °C with 100% TCA (final con-
centration of 10% w/v) and washed three times with cold acetone to remove impurities or interfering substances. 
Pellet samples were kept at −30 °C until further analyses.

Immunoglobulin isotyping.  Total levels of Th2-dependent IgG1 and IgE and Th1-dependent IgG2a were 
determined in mice sera as previously described5. Briefly, 96 well round button plates were coated overnight 
at 4 °C with goat anti-mouse-IgG1, -IgE or -IgG2a, respectively (SouthernBiotech, Birmingham, AL, USA) in 
carbonate buffer. The plates were washed once with phosphate buffered saline (PBS) containing 0.05% Tween-20 
(PBST) and blocked with PBS containing 0.5% BSA and 0.1% gelatine for 1 h at room temperature. Mouse IgG1, 
IgE, and IgG2a (SouthernBiotech, Birmingham, AL, USA), were used as standards, respectively. Sera were diluted 
in blocking buffer containing 0.05% Tween-20 up to 1:25,000 for IgG1 and IgG2a and up to 1:90 for IgE. The 
plates were incubated with the serum samples for 1.5 h at room temperature and washed three times with PBST. 
Detection was done with goat antibodies labelled with horseradish peroxidase (HRP) and specific for mouse 
IgG1, IgE, and IgG2a, respectively (SouthernBiotech, Birmingham, AL, USA), diluted 1:4,000. After 2 h incu-
bation, the plates were washed four times with PBST and developed with 3,3′,5,5′-tetramethylbenzidine (KPL, 
Gaithersburg, MD, USA). Immediately after the wells with the higher concentration of the standard antibody 
reached an OD of 1.3 at 650/480 nm, developing of the plates was stopped by adding 1M H3PO4. A final reading 
of the plates was done at 450/630 nm and the concentration of each immunoglobulin isotype was calculated per 
serum sample47.

http://www.lds.sachsen.de
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Additionally, titers of C. neoformans-specific IgG1 and IgG2a antibodies were determined for all serum sam-
ples as previously described47, with some modifications. ELISA plates were coated overnight with 0.5 µg of C. 
neoformans 1841 protein extract per well. Blocking was done with 5% skim milk dissolved in PBS (SM). Sera from 
infected mice were diluted in SM containing 0.05% Tween-20 (SMT) starting from 1:100 up to 1:409,600 for IgG1, 
due to expected higher titers, and starting from 1:50 up to 1:25,600 for IgG2a. Sera from naïve mice were diluted 
in SMT starting from 1:50 up to 1:25,600 for both isotypes. Detection was done with goat anti-mouse IgG1, 
human ads-HRP or goat anti-mouse IgG2a, human ads-HRP, respectively (SouthernBiotech, Birmingham, AL, 
USA). Development of the plates was done with 3,3′,5,5′-tetramethylbenzidine (KPL, Gaithersburg, MD, USA) 
for 45 min at room temperature and stopped with H3PO4 prior to OD determination at 450/630 nm47. The titer of 
C. neoformans-specific immunoglobulins was defined as the highest dilution at which the OD still showed a linear 
reduction. ELISA experiments to determine C. neoformans-specific IgE titers were not carried out, as previous 
studies of our group indicate that the expected concentration of C. neoformans-specific IgE is very low22. For all 
ELISA experiments, wells incubated without serum samples but with all other reagents were used as blanks. All 
experiments were done in technical duplicates.

One-dimensional electrophoresis and immunoblot analysis.  In order to assess the reactivity of 
serum IgG1 and IgG2a antibodies against specific cryptococcal proteins, one-dimensional (1D) SDS-PAGE and 
western blot were performed, according to methods previously described48,49. Briefly, C. neoformans protein pel-
lets were dissolved in PBS to a final concentration of 1 mg/ml, mixed with the same volume of 2x Lämmli buffer 
and heated for 5 min at 95 °C. In each well of a 12.5% acrylamide gel 10 µg of protein were applied. Proteins were 
separated in Tris-glycine-SDS running buffer using the Owl™ Dual-Gel Vertical Electrophoresis Systems P8DS 
equipment (ThermoFisher Scientific, Waltham, MA, USA). For immunological detection, the separated pro-
teins were transferred onto a nitrocellulose membrane by electroblotting using the Mini Trans-Blot equipment 
(BioRad, Hercules, CA, USA). After blotting, membranes were blocked overnight at 4 °C with 5% skim milk dis-
solved in distilled water (blocking buffer). Subsequently, membranes were incubated for 3 h at room temperature 
with sera from infected and naïve mice, respectively, diluted 1:1,000 in blocking buffer containing 0.1% Tween-20. 
Membranes were washed with PBST and incubated 1 h at room temperature with 1:4,000 goat anti-mouse IgG1 
or goat anti-mouse IgG2a antibodies coupled to HRP (SouthernBiotech, Birmingham, AL, USA) to detect spe-
cific IgG1 or IgG2a antibodies, respectively, which bind to one or more C. neoformans proteins. Development of 
the membranes was done with SuperSignal® West Pico Chemiluminescent Substrate (ThermoFisher Scientific, 
Waltham, MA, USA).

Two-dimensional electrophoresis.  Sera with C. neoformans specific immunoglobulin levels near to the 
median values of all samples of a genotype, in order to guarantee representative results for all samples, were fur-
ther analysed by 2D gel electrophoresis. Additionally, serum samples with high titers of specific antibodies for 
C. neoformans were also investigated by 2D gel electrophoresis to see if sera with high titers are reactive with an 
increased number of C. neoformans proteins. In total, five serum samples from infected wild-type mice and four 
sera from infected mice of each gene-deficient mouse strain were studied. From naïve mice, one serum sample 
per genotype was included.

Per gel, a pellet of 100 µg of C. neoformans proteins was resuspended in 125 µl of rehydration buffer (7M 
urea, 2M thiourea, 4% CHAPS, 50 mM DTT, 1% BioLyte® (BioRad, Hercules, CA, USA), 0.001% bromophenol 
blue) and applied onto an IPG strip (BlueStrips 3–10 NL/7 cm, SERVA, Heidelberg, Germany). Strips were rehy-
drated for 6 h at room temperature and proteins were focused overnight using the PROTEAN IEF cell (BioRad, 
Hercules, CA, USA) under the following conditions: active rehydration, 50 V for 6 h; Step 1, 150 V, rapid ramp 
for 1 h; Step 2, 300 V, rapid ramp for 1 h; Step 3, 1,000 V, linear ramp for 1 h; Step 4, 3,000 V, linear ramp for 2 h; 
Step 5, 3,000 V, rapid ramp for 2 h; and Step 6, 500 V for 12 h. Following isoelectric focusing, strips were soaked 
twice in equilibration buffer containing 6M urea, 2% SDS, 50 mM Tris/HCl pH 8.8 and 20% glycerol for 15 min. 
For the first equilibration step 2% DTT was added to the equilibration buffer and for a second equilibration 
step 2.5% iodoacetamide was added to the equilibration buffer. After equilibration, strips were soaked briefly in 
Tris-glycine-SDS running buffer and placed separately on a 12.5% acrylamide SDS gel. Proteins were separated 
in a second dimension in the Owl™ Dual-Gel Vertical Electrophoresis Systems P8DS equipment (ThermoFisher 
Scientific, Waltham, MA, USA). Proteins in the gels were stained with Coomassie Brilliant Blue G250 dissolved 
in 10% acetic acid and 50% methanol and subsequently destained with a solution containing only 10% acetic acid 
and 50% methanol followed by washing with water, or alternatively transferred onto a nitrocellulose membrane 
for further detection of immunoreactive proteins, as described above. Membranes were incubated with sera from 
infected mice diluted 1:1,000 in blocking buffer containing 0.1% Tween-20. Sera from naïve mice diluted 1:500 
were also tested.

Identification of proteins by mass spectrometry.  Spots of interest were mapped by overlaying 
Ponceau-stained nitrocellulose membranes, immunoblots and Coomassie-stained gels. Mapping was carried 
out with the software Delta2D (DECODON, Greifswald, Germany). The spots were excised manually from 
Coomassie-stained gels and digested in situ with trypsin. As described previously50, the resulting peptides were 
eluted out of the gel, concentrated by vacuum centrifugation, and analysed using a hybrid mass spectrometer 
(QExactive HF, ThermoFisher Scientific, Waltham, MA, USA) equipped with a chip-based electrospray device 
(TriVersa NanoMate, Advion) and coupled to a nano-ultra-performance liquid chromatography system (Dionex 
UltiMate 3000 RS, ThermoFisher Scientific, Waltham, MA, USA). A mass spectra (MS) database search was 
conducted using the MaxQuant software (version 1.4.1.2)51 against a concentrated UniProt database, which con-
tains all reviewed and unreviewed C. neoformans proteins (crytococcusneoformans.uniprot.fasta). For the search, 
the following parameters were included: trypsin digestion, up to two missed cleavages, fixed modifications: 
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carbamidomethylation as well as oxidation and the following variable modifications: first search peptide toler-
ance of 10 ppm, FTMS/MS/MS match tolerance of 10 ppm, a minimum of two peptides/protein, including at least 
one unique protein.

Statistical analysis.  Mann-Whitney U test was performed to determine the significance of the differences 
in the total level of immunoglobulins between wild-type, IL-12-deficient and IL-4Rα-deficient mice according 
with the ELISA results, as the data did not show a Gaussian distribution. Data are presented as individual points 
and medians. A nonparametric Spearman’s correlation test was done to determine the strength and direction of 
association between total and specific levels of IgG1 and IgG2a. The degree of significance was annotated as fol-
lowing: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. GraphPad PRISM v7 software was used for statistical 
analyses (GraphPad Software, La Jolla, CA, USA).

Data availability statement.  The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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