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ABSTRACT Marine oil spills can impact both coastal and offshore marine environ-
ments, but little information is available on how the microbial response to oil and
dispersants might differ between these biomes. Here, we describe the compositional
and functional response of microbial communities to different concentrations of oil
and chemically dispersed oil in coastal and offshore surface waters from the Texas-
Louisiana continental shelf. Using a combination of analytical chemistry and 16S
rRNA amplicon and metatranscriptomic sequencing, we provide a broad, compara-
tive overview of the ecological response of hydrocarbon-degrading bacteria and
their expression of hydrocarbon-degrading genes in marine surface waters over time
between two oceanic biomes. We found evidence for the existence of different
ecotypes of several commonly described hydrocarbon-degrading bacterial taxa
which behaved differentially in coastal and offshore shelf waters despite being ex-
posed to similar concentrations of oil, dispersants, and nutrients. This resulted in the
differential expression of catabolic pathways for n-alkanes and polycyclic aromatic
hydrocarbons (PAHs)—the two major categories of compounds found in crude oil—
with preferential expression of n-alkane degradation genes in coastal waters while
offshore microbial communities trended more toward the expression of PAH degra-
dation genes. This was unexpected as it contrasts with the generally held view that
n-alkanes, being more labile, are attacked before the more refractory PAHs. Collec-
tively, our results provide new insights into the existence and potential conse-
quences of niche partitioning of hydrocarbon-degrading taxa between neighboring
marine environments.

IMPORTANCE In the wake of the Deepwater Horizon oil spill, the taxonomic re-
sponse of marine microbial communities to oil and dispersants has been extensively
studied. However, relatively few studies on the functional response of these micro-
bial communities have been reported, especially in a longitudinal fashion. Moreover,
despite the fact that marine oil spills typically impact thousands of square kilo-
meters of both coastal and offshore marine environments, little information is
available on how the microbial response to oil and dispersants might differ be-
tween these biomes. The results of this study help fill this critical knowledge gap
and provide valuable insight into how oil spill response efforts, such as chemi-
cally dispersing oil, may have differing effects in neighboring coastal and off-
shore marine environments.
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Crude oils are complex mixtures of thousands of different compounds, ranging from
saturated alkanes and aromatic hydrocarbons to complex, heteroatom-containing

resins and asphaltenes (1). While some of these compounds are recalcitrant to degra-
dation, many can be utilized as a carbon or energy source by microorganisms (2).
Microbial biodegradation is one of the primary means by which both natural and
anthropogenic oil releases are bioremediated in nature. However, many crude oil
hydrocarbons are poorly soluble, which lowers their availability to microorganisms and
limits biodegradation rates. As such, chemical dispersants have been used after marine
oil spills to disperse oil into the water column with the aim of dramatically increasing
the surface area for microbial attack (3). Despite this, studies have reported conflicting
results on whether chemical dispersants improve rates of or suppress oil biodegrada-
tion by microbes (4–8).

The Deepwater Horizon (DwH) oil spill involved the release of �780,000 m3 crude
oil into the Gulf of Mexico after which 7,000 m3 chemical dispersants were used during
the spill response effort (9, 10). The magnitude of the spill led to a surge of research into
the microbial ecology of marine oil spills and dispersant usage in both deep-sea
habitats (11–15) and shoreline environments such as beaches (16–19) and salt marshes
(20, 21). However, much less information is available on the responses of microbial
communities in surface waters on the continental shelf (22). These areas in the Gulf of
Mexico range from river-dominated, nutrient-rich waters along the coasts to near-
oligotrophic waters on the continental shelf edge. Oil spills can affect many thousands
of square kilometers of both open ocean and coastal habitats, and the microbial
communities which inhabit these respective marine biomes can differ substantially in
composition, structure, and metabolic potential (23, 24). As a result, natural biodegra-
dation of oil spills likely varies considerably across different shelf water regimes.
Understanding how microbial communities inhabiting these different ocean biomes
respond to oil and dispersants consequently represents an important research need.

To better define the ecological and functional response of marine microorganisms
to oil, we conducted mesocosm experiments using coastal seawater collected from the
continental shelf (here referred to as Coastal) and offshore waters on the edge of the
shelf (here referred to as Offshore) of the northwestern Gulf of Mexico (see Fig. S1 and
Data Set S1, Tab 1, in the supplemental material) and amended them with oil or
chemically dispersed oil. The responses of the microbial communities were subse-
quently followed over time using cell counts and 16S rRNA amplicon and metatran-
scriptomic sequencing. This analysis allowed us to identify which groups of bacteria
responded to oil with and without dispersant and also characterize the functional
response of hydrocarbon-degrading microbes within the communities. We found
evidence for the existence of different ecotypes—amplicon sequence variants (ASVs)
belonging to the same genus occupying the same niche— of several well-known
hydrocarbon-degrading bacterial taxa which behaved differentially in coastal and
offshore shelf waters. Our results revealed that these ecotype differences between the
coastal and offshore communities resulted in differential expression of alkane and
polycyclic aromatic hydrocarbon (PAH) catabolic pathways between these oceanic
biomes and that the response to dispersants was variable by location.

RESULTS

Four treatments were prepared in triplicate for each experiment: (i) Control, con-
taining only seawater; (ii) Water Accommodated Fraction (WAF), containing seawater
amended with the fraction of oil accommodated after physical mixing alone; (iii)
Chemically Enhanced WAF (CEWAF), seawater amended with the fraction of oil accom-
modated after dispersal with Corexit; and (iv) Diluted CEWAF (DCEWAF), a 1:10 dilution
of the CEWAF treatment. Because the concentration of oil in the CEWAF treatment was
so high, we included the DCEWAF treatment in order to observe the effects of a
chemically dispersed oil, but at a concentration more commonly encountered at sea
after an oil spill (25).
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Hydrocarbon chemistry. We tracked total alkane and PAH concentrations over
time using a combination of gas chromatography-flame ionization detection (GC-FID)
and GC-mass spectrometry (GC-MS), respectively (Fig. 1; Data Set S1, Tab 2). In the
Control treatments of both experiments, these concentrations were �5 �g liter�1 for
both classes of compounds with one exception: the seawater used in the Coastal
experiment contained a variable concentration of n-alkanes, ranging from 3.2 to 24 �g
liter�1, with an average odd/even ratio of 1.3, indicating a mixture of biogenic and
petroleum sources. The biogenic n-alkanes appear to be both marine (e.g., n-C17) and
terrestrial odd-chained (e.g., n-C27) n-alkanes. In the WAF treatments of both experi-
ments, alkane concentrations were also very low and did not differ substantially from
those observed in the Controls. Initial PAH concentrations were elevated to �50 �g
liter�1 but rapidly dropped after 24 h, likely due to the evaporation of volatile PAHs
entrained into oil droplets during WAF production. In the DCEWAF and CEWAF treat-
ments, chemically dispersing the oil increased initial alkane concentrations to �325 �g
liter�1 and �3,000 �g liter�1, respectively. Initial PAH concentrations within these two
dispersed oil treatments were also increased, but more modestly, to �100 �g liter�1

and �400 �g liter�1, respectively.
Microbial cell abundance. Average cell abundances (Fig. S2) were typical for

seawater, �106 cells ml�1 (26, 27). The average abundance in the Coastal experiment
([2.4 � 0.7] � 106 cells ml�1) was 2-fold that in the Offshore experiment
([1.3 � 0.5] � 106 cells ml�1). Between treatments, cell abundances were �1.7-fold
higher in the Coastal CEWAF treatment [F(3,20) � 11.5, P � 0.001] than in the Control,
WAF, and DCEWAF treatments, where cell abundances were similar [F(2,18) � 1.22,
P � 0.32]. In the Offshore experiment, cell abundances were instead slightly lower
(1.6-fold) in the Control treatment [F(3,32) � 3.03, P � 0.04], while those in the WAF,
DCEWAF, and CEWAF remained similar [F(2,24) � 0.78, P � 0.47]. Using linear regres-

FIG 1 Measured concentrations (�g/liter) of total alkanes and total PAHs over time in both mesocosm experi-
ments. Error bars denote standard deviations.
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sion, we found cell abundances increased over time in the Offshore DCEWAF, Offshore
CEWAF, and the Coastal CEWAF while those in the Control and WAF treatments of both
experiments generally decreased (Data Set S1, Tab 3). However, in all cases, these
changes were relatively small (�0.6% per hour).

Microbial community composition. We profiled the composition and structure of
the microbial communities using 16S rRNA amplicon sequencing (Fig. 2). Nonmetric
multidimensional scaling (NMDS) ordination of Bray-Curtis dissimilarities (BC-D) con-
firmed that the Coastal and Offshore experiments harbored distinct microbiomes
(Fig. S3). In the Offshore experiment, samples formed four distinct clusters organized
sequentially by the four treatments (Fig. S4A and E). Relative to the Control treatments,
communities exposed to WAF were the most similar (BC-D: 0.30 � 0.09, average
[avg] � standard deviation [SD]), followed by DCEWAF (0.47 � 0.13) and finally CEWAF
(0.59 � 0.14). A similar pattern was observed in the Coastal experiment. Communities
exposed to CEWAF were the most distinct from the Controls (0.82 � 0.10), followed by
the DCEWAF (0.58 � 0.14) and WAF (0.39 � 0.09), respectively. Differences in commu-
nity structure observed at the first time point (0 h) indicate that some shifts in
microbiome composition and structure occurred during the preparation of WAF,
DCEWAF, and CEWAF (�24 h). These shifts were comparatively larger in the Offshore
experiment, indicating that the offshore communities were more impacted by treat-
ment preparations than the coastal communities.

In total, we detected 2,880 ASVs across both experiments. Compositionally, Gam-
maproteobacteria was the most abundant group observed, constituting an average of
77.4% and 67.0% of the overall communities within the Offshore and Coastal experi-
ments, respectively (Fig. 2 and Fig. S5). Within this class, dominant taxa included
Alteromonadales (Alteromonas, Marinobacter, and Aestuariibacter), Thiotrichales (Methy-
lophaga and Cycloclasticus), Oceanospirillales (Alcanivorax, Oleibacter, and Thalassoli-
tuus), and Xanthomonadales (Polycyclovorans) (Fig. S6).

Identification of oil-enriched ecotypes. ASVs from the same genus often varied in
how they responded to oil or dispersed oil (Data Set S1, Tab 4). These differences
occurred both between treatments and between the two experiments. In order to more
accurately define potential ecotype responses, we used redundancy analysis (RDA)
modeling to narrow our data set and identify only those ASVs which were directly
enriched by oil within the WAF, DCEWAF, and CEWAF treatments. In each model,
variables for both time and initial oil concentration contributed significantly (P � 0.001)

FIG 2 Relative abundances of abundant microbial lineages observed in each experiment. Each bar is the average from triplicate treatments. Community
composition in the original seawater samples collected for each experiment is shown under category “SW.” The plot was built to display the highest-resolution
classification for the most abundant taxa. The plot was constructed as follows. First, ASVs were clustered at the genus level and any genera having a relative
abundance of �15% in at least one of the samples were plotted. This procedure was subsequently repeated with the remaining unplotted ASVs at the
taxonomic levels of family, order, class, and phylum. Any remaining rare ASVs left after this procedure were not plotted.

Doyle et al.

July/August 2020 Volume 5 Issue 4 e00668-20 msystems.asm.org 4

https://msystems.asm.org


to the RDA models (Fig. S4B to D and F to H). Using scalar projections of ASVs onto the
Oil vector in each model, we identified 30 oil-enriched ASVs between the two exper-
iments, 8 of which were identified in both the offshore and coastal shelf water
mesocosms (Fig. 3).

The response of many oil-enriched ASVs to each treatment was notably different
between the two experiments. For example, we found that three Alcanivorax-related
ASVs were enriched by oil only in the Coastal experiment; in the Offshore experiment
these either were very rare (e.g., ASV33 and ASV36) or were not significantly more
abundant in the oil-amended treatments than in the Control (ASV16). Likewise, ASV8
(Polycyclovorans)—an obligate hydrocarbon-degrading taxon which inhabits the phy-
cosphere of marine diatoms and dinoflagellates (28)—was present in both experiments
but was enriched only in the Offshore DCEWAF treatment. We also found several
ecotypes which exhibited differential responses to oil between the two experiments.
For example, ASV2 (Marinobacter) was highly abundant in the Coastal experiment

FIG 3 Heatmap displaying the relative abundances of the 30 ASVs identified as being oil enriched using the RDA models. ASVs identified in both experiments
are highlighted with a gray bar. Colored stars on the left side indicate the treatment(s) in which an ASV’s relative abundance over time was significantly enriched
versus the Control. ASV read counts were averaged among replicates and transformed with a Hellinger transformation in order to facilitate a clearer visual
comparison between abundant and sparse taxa.
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(11.9%, average relative abundance), where it was enriched in all three oil-amended
treatments. In contrast, ASV2 was comparatively sparse Offshore (0.3%) and was instead
enriched only in the DCEWAF and CEWAF. Meanwhile, another Marinobacter-related
ASV (ASV19) was abundant in the Offshore WAF, DCEWAF, and CEWAF treatments but
was restricted to only the WAF treatment in the Coastal experiment. Lastly, ASV11
(Cycloclasticus) increased in relative abundance over time similarly in both the Coastal
and Offshore WAF and DCEWAF treatments but had an opposite response to CEWAF
between the two experiments. In the Offshore CEWAF, ASV11 exhibited a large bloom
from �0.1% to 10.3% relative abundance over the course of the experiment, while in
the Coastal CEWAF, it instead decreased over time from 0.5% to 0.1%.

Identification of hydrocarbon degradation gene transcripts. We parsed the
metatranscriptome data sets to identify and quantify the expression of hydrocarbon
degradation gene transcripts within the mesocosms. A GHOSTX query of the KEGG
database identified 6,195 transcripts affiliated with hydrocarbon degradation genes. An
additional 163 transcripts were identified as alkane-hydroxylating P450 genes from the
CYP153 family through a custom BLASTP search. We compared the abundances of
these hydrocarbon degradation gene transcripts between each oil-amended treatment
and its respective control treatment and used an outlier analysis to estimate the
number of upregulated genes at each time point (Fig. S7). Within both experiments,
this number was generally higher in the DCEWAF and CEWAF treatments than the WAF
treatments. We also observed that the number of upregulated genes increased over
time in dispersant-amended treatments but decreased over time in WAF.

We next sought to test if the amount of upregulation among these upregulated
hydrocarbon degradation genes was affected by treatment. Highly expressed hydro-
carbon degradation gene transcripts were on average 10.4-fold more abundant in the
oil-amended treatments than in the Controls. However, using a factorial analysis of
variance (ANOVA) test with pairwise comparisons of the oil-amended treatments, we
found only a single significant difference between the Coastal WAF and CEWAF, which
was small [1.2-fold; t(4) � �3.44, P � 0.03]. In other words, the expression of upregu-
lated hydrocarbon degradation genes was higher in the WAF, DCEWAF, and CEWAF
treatments than in the Controls, but by about the same amount per oil-amended
treatment (Fig. S8). This suggests a high degree of functional redundancy among
community members and indicates that the expression of hydrocarbon degradation
genes was primarily structured by microbial community turnover—as we observed in
our 16S rRNA amplicon data set.

Coastal versus offshore expression of n-alkane and PAH degradation path-
ways. To compare differences in the expression of hydrocarbon catabolic pathways in
our experiments, we consolidated the identified gene transcripts into four metabolic
categories: (1) n-alkane activation, (2) beta-oxidation of fatty acids, (3) ring-hydroxylat-
ing/cleaving dioxygenases, and (4) PAH degradation (Fig. 4). Alkane degradation begins
with terminal oxidation of the substrate to a primary alcohol with a hydroxylase or
monooxygenase enzyme (e.g., AlkB). The resulting alcohol is further oxidized to a fatty
acid by alcohol and aldehyde dehydrogenases before entering the beta-oxidation
pathway (29). Likewise, PAH degradation typically begins with ring hydroxylation and
subsequent cleavage with dioxygenase enzymes (30), the products of which are then
channeled through various complex, multistep catabolic pathways (31). Hence, these
four categories together represent the activation (1 � 3) and subsequent degradation
(2 � 4) pathways for saturated hydrocarbons (i.e., linear and cycloalkanes) and PAHs,
respectively, to central metabolism intermediates.

Alkane activation gene transcripts were observed primarily in the DCEWAF and
CEWAF treatments of the Coastal experiment where they were produced almost
entirely by Marinobacter and Alcanivorax (Fig. 4). In comparison, expression of alkane
degradation genes in the Coastal WAF and Control treatments was very low (�28
transcripts per million transcripts [tpm]). This was consistent with the very low total
alkane concentrations we measured in these two treatments (�14 �g/liter) (Fig. 1). In
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the Offshore experiment, expression of genes involved with alkane activation was
instead comparatively low across all four treatments.

Expression of fatty acid beta-oxidation genes was the highest of the four metabolic
categories. We observed transcripts from a wide range of taxa, reflecting the nearly
universal taxonomic distribution of this pathway (32). In the Coastal experiment,
highest expression levels were again observed in the DCEWAF and CEWAF with
comparatively lower expression levels in the WAF and Control treatments. Similar to the
alkane activation genes, fatty acid beta-oxidation genes in the Coastal experiment were
expressed in large part by Marinobacter and Alcanivorax (Fig. 4). However, significant
expression of Alteromonas, Aestuariibacter, Oleibacter, and Pseudomonas-assigned tran-
scripts was observed in this category as well. In the Offshore experiment, abundant
transcripts were detected from Alteromonas in all four treatments, while those from
Marinobacter, Aestuariibacter, and Alcanivorax were mainly observed in DCEWAF and
CEWAF.

In contrast to the alkane degradation categories, overall expression for ring cleav-
age/hydroxylation dioxygenase and PAH degradation genes was significantly higher
[t(2,760) � 6.28, P � 0.001] in the Offshore experiment (Fig. 5). Cycloclasticus, a genus
of obligate PAH degraders (33), was the primary source of detected ring cleavage/
hydroxylation dioxygenase gene transcripts (�27% of all transcripts in these two
categories) across both experiments. These Cycloclasticus-derived dioxygenase gene
transcripts were observed in every sample except the Controls and the Coastal CEWAF.
This pattern was also observed in our 16S rRNA amplicon data set wherein the relative
abundance patterns of ASV11 (Cycloclasticus) were substantially lower in the Coastal
CEWAF treatments (Fig. 3). Other taxa to which a significant portion of dioxygenase and
PAH degradation gene transcripts were assigned were Halomonas, Halioxenophilus,
unclassified Gammaproteobacteria, and unclassified Bacteria (Fig. 4).

In both experiments, the alpha diversity of taxa expressing alkane degradation
genes decreased as oil concentrations increased (Control 	 WAF 	 DCEWAF 	 CEWAF)
(Fig. 6). In the categories for PAH degradation, we also observed a drop in alpha

FIG 4 Coastal and offshore microbial communities exhibited differential expression of alkane and PAH catabolic pathways after exposure to oil. Taxonomic
affiliations and abundances of hydrocarbon degradation gene transcripts are shown within four metabolic categories. y axes are individually scaled for each
category (row). Transcripts belonging to minor taxa (�2% total abundance) were grouped together into the “All others” category.
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diversity when oil was present, but the difference between the three oil-amended
treatments was minimal. These patterns indicate that as oil concentrations increase, a
smaller subset of hydrocarbon-degrading taxa are selected for and become functionally
dominant.

DISCUSSION

In this study, we found initial oil concentration strongly structured the microbial
communities. Many of the identified bacteria belong to hydrocarbon-degrading taxa
which are known to bloom in seawater during oil spills or near natural oil seeps (2, 34,
35). However, we also found evidence that many of these taxa were composed
of ecotypes which responded remarkably differently to oil and dispersants in coastal
and offshore shelf waters. These differences were reflected in the expression of
hydrocarbon-degrading genes, where we observed unexpected differences in alkane
and PAH degradation pathways between the two oceanographic zones. Interestingly,
patterns in the taxonomic diversity of expressed hydrocarbon degradation genes did
not vary substantially between environments, indicating that some aspects of the
response of microbial communities in marine surface waters to oil or chemically
dispersed oil exposure may be common between locales. Overall, these findings
highlight that natural remediation processes such as microbial biodegradation are not
uniform across different ocean biomes (36) and reinforce the need for a better
understanding of the spatial and temporal variances in natural oil remediation pro-
cesses.

FIG 5 Summary overview of the taxonomic distribution and summed abundances, between all four treatments, of expressed hydrocarbon degradation genes
involved in the transformation of n-alkanes (orange arrows) and PAHs (green arrows) to central metabolism intermediates.
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Ecotype dynamics. Following the distinct clustering we observed in the NMDS
ordinations, many of the oil-enriched taxa (e.g., Marinobacter, Alteromonas, Alcanivorax,
and Polycyclovorans) appeared to bloom in response to increasing oil concentrations,
while others such as Methylophaga appeared to be either inhibited or outcompeted by
other organisms with larger relative abundances. Alteromonas and Aestuariibacter were
identified as oil enriched in our 16S rRNA data set (Fig. 3) and have been repeatedly
identified in laboratory and field-based 16S rRNA surveys of marine oil spills (2, 37–40).
In our metatranscriptomes, these two taxa were almost exclusively responsible for
expression of fatty acid oxidation genes. This suggests that these two taxa were
primarily secondary alkane degraders relying on other community members to activate
alkanes (41). Halomonas was detected in the CEWAF treatments but was not abundant
elsewhere. It was not one of the ASVs enriched by oil and is not known for PAH
degradation, so it may also have responded to secondary metabolites in the CEWAF
treatments.

In our experiments, we found three Alcanivorax-related ASVs that were enriched by
oil. Two of these, ASV33 and ASV36, differed by only a single nucleotide position (see
Data Set S1, Tab 5, in the supplemental material) and had similar responses to the three
coastal shelf water oil treatments: they grew well in the DCEWAF but remained
relatively rare in the WAF and CEWAF. As such, these two ASVs probably represent a
single ecotype of Alcanivorax which grows optimally at moderate oil concentrations but
only in coastal shelf waters, as they remained rare (�0.7%) in all Offshore treatments.
The third ASV (ASV16) differed from the other two ASVs at nine nucleotide positions
and grew in not only the Coastal DCEWAF but the Coastal CEWAF treatment as well.
Because Alcanivorax genomes typically contain 2 or 3 copies of the 16S rRNA gene (42),
we sought to test if ASV33 and ASV36 might represent polymorphic 16S rRNA gene
copies from a single Alcanivorax species. If this was the case, the relative abundance
ratio between these two ASVs would be consistent across all samples. However, a
one-way ANOVA found this was not the case [F(65,129) � 2.45, P � 0.001], indicating
ASV33 and ASV36 are likely from separate but very closely related species of Alcaniv-
orax.

Halioxenophilus is known to degrade xylene (43), but this newly discovered genus
has not been reported to degrade PAHs in an environmental context previously. In our
study, PAH degradation gene transcripts assigned to Halioxenophilus indeed belonged
to the xylene degradation pathway (Fig. 5) and were detected in equal abundance in
both the Coastal and Offshore experiments. However, the total abundance of this

FIG 6 Alpha diversity of hydrocarbon degradation gene transcripts within the four metabolic categories. Boxplots
display variation between time points for each treatment. Transcripts within each category were taxonomically
classified using Kaiju (minimum score 65) and then clustered by genus before calculating Inverse-Simpson indices,
a metric for effective species number (i.e., the number of equally common taxa).
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pathway was substantially lower than that of the benzoate degradation pathway,
indicating this genus likely catalyzes a secondary “shunt” for PAH degradation inter-
mediates.

Differential expression of alkane and PAH catabolic pathways. Several factors
are at play when considering the ecological dynamics of alkane- and PAH-degrading
microorganisms in marine environments. First is the relative metabolic complexity of
these two processes. The catabolic pathway for alkane degradation is comparatively
simple: the activation of an alkane to a fatty alcohol is a single-step process through the
action of an alkane hydroxylase (44). Once an alkane is activated, the subsequent fatty
alcohol quickly feeds through a couple of intermediates into the beta-oxidation path-
way to produce several molecules of acetyl coenzyme A (acetyl-CoA), a central tricar-
boxylic acid (TCA) cycle intermediate. In contrast, PAH degradation involves a complex
series of multienzyme ring hydroxylation and ring cleavage steps (31). Considering the
energetic costs with synthesizing these enzymes, there is likely a fitness cost associated
with biodegrading PAHs, especially those of high molecular weight, compared to
biodegrading alkanes. This is consistent with patterns of crude oil weathering typically
observed in the environment, where the alkane fraction of crude oil typically disappears
faster than the PAH fraction (45–48).

One of the most striking results from our metatranscriptomic data sets was the
difference in the expression of alkane and PAH catabolic pathways between the Coastal
and Offshore experiments. In particular, the substantially lower expression of alkane
activation genes concurrently with increased expression of PAH degradation genes in
the Offshore experiment (Fig. 5) was unexpected as it contrasts with the above notion
that n-alkanes are more labile and are attacked before the more refractory PAHs. This
is not due to a lack of alkane-degrading taxa— known alkane-degrading species such
as Marinobacter (49), Thalassolituus (50), and Oleibacter (51) were present in both
experiments (Fig. 3).

Laboratory studies have estimated that the input of phytoplankton-derived alkane
production into marine surface waters is �100-fold greater than the combined inputs
from oil spills and natural oil seeps (52) and can sustain populations of alkane-
degrading bacteria which rapidly expand upon exposure to crude oil (53, 54). Thus, the
differences in alkane activation transcripts we observed between the two experiments
may be due to a priming effect from the larger abundances of phytoplankton typically
observed in Gulf of Mexico coastal shelf waters. Three lines of evidence in our data
support this hypothesis: (i) ASVs classified as Cyanobacteria and/or chloroplasts were
substantially more abundant in our Coastal mesocosms than our Offshore mesocosms
(Fig. 2), (ii) transcripts for aldehyde-deformylating oxygenase—the key enzyme in
cyanobacterial alkane biosynthesis (55, 56)—were exclusively observed in our coastal
metatranscriptomes, and (iii) the concentration of naturally present alkanes (i.e., in the
Controls) was approximately 10-fold higher in our coastal seawater samples than those
collected offshore (Fig. 1 and Data Set S1, Tab 2).

With regard to the expression of PAH degradation pathways in our metatranscrip-
tomes, a major difference between the Coastal and Offshore experiments appeared to
be due to a differential response of Cycloclasticus ecotypes. Our data initially appear to
suggest that members of this genus are sensitive to highly concentrated (�50-ppm)
CEWAF preparations and instead prefer the lower oil concentrations present in WAF
and DCEWAF. We have seen this before in a previous mesocosm experiment we
conducted with near-shore seawater: Cycloclasticus-related operational taxonomic units
(OTUs) were nearly completely absent in CEWAF treatments but thrived in WAF and
DCEWAF (37). However, in the current study, this sensitivity enigmatically was not
consistent between the Coastal and Offshore experiments. In our metatranscriptomes,
the Offshore CEWAF treatment contained the largest abundance of Cycloclasticus-
affiliated dioxygenase and PAH degradation gene transcripts while the Coastal CEWAF
treatment contained virtually none. In our 16S rRNA data sets, Cycloclasticus-related
ASVs bloomed from 0.05% to 10.3% relative abundance in the Offshore CEWAF but
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were absent in the Coastal CEWAF (Fig. 3). Although there is evidence that some
Cycloclasticus species are sensitive to high concentrations of inorganic nutrients (57) or
differences in temperature (58), this does not provide a valid explanation for our
findings as we amended all mesocosms with f/20 medium and both experiments were
performed at the same temperature. Taken together, these new findings indicate that
a strong selective pressure against Cycloclasticus sp. occurred in coastal seawater at
high concentrations of chemically dispersed oil, but this negative selection was not
solely due to nutrient concentrations, the presence of chemical dispersants, or high
concentrations of oil. Further research will be needed to elucidate the cause of this
apparent niche partitioning by Cycloclasticus ecotypes. Possibilities include variable
physiological responses to oil exposure under different environmental regimes or
ecological competition with other microorganisms.

Conclusions. In this study, we showed that prokaryotic communities can respond in
different ways to oil spills depending on the location of the spill, which is tightly tied
to the starting initial community. In our experimental design, season, oil, dispersant,
and inorganic nutrients were controlled for between the two experiments. Only
community composition and potentially chemical characteristics not measured here
were different, indicating that these were responsible for the different responses
observed. This is important because oil spills can and do spread out over multiple
marine realms (e.g., 2010 Deepwater Horizon, 1979 Ixtoc-1, Gulf War, and 1978 Amoco
Cadiz oil spills). The response of microbial communities within those realms may vary,
and this should weigh in management and mitigation decisions during and after an oil
spill. As was shown here, different ecotypes may respond differently to oil and/or
dispersant. Gene expression can vary on the community level between different
environments facing the same spill. Previous work has shown that niche partitioning
may be important to compositional responses to oil spills (7, 37), but this work is the
among the first to show that gene expression is also impacted. We conclude that niche
partitioning and ecotype dynamics play a critically important role in how marine
environments respond to past and future oil spills.

MATERIALS AND METHODS
Mesocosm experiments and sampling. Surface seawater (1 m) for the Coastal and Offshore

mesocosm experiments was collected at 29°38= N, 93°50= W, on 16 July 2016 and at 29°53= N, 94°20= W,
on 9 July 2016, respectively (see Fig. S1 and Data Set S1, Tab 1, in the supplemental material). The
seawater was transferred to a holding tank in the Texas A&M University at Galveston Sea Life Facility,
covered, and stored at room temperature overnight prior to experiment initiation. Four treatments were
prepared in triplicate as described previously in the work of Doyle et al. (37): (i) Control, containing only
seawater; (ii) WAF, containing seawater and oil supplied as a water-accommodated fraction; (iii) CEWAF,
containing seawater, oil, and Corexit supplied as a chemically enhanced water-accommodated fraction
in a dispersant-to-oil ratio of 1:20; and (iv) DCEWAF, a 1:10 dilution of the CEWAF treatment. The WAF
and CEWAF were prepared by adding 25 ml (5 ml every 30 min for 2.5 h) of unweathered Macondo
surrogate oil (WAF) or oil plus dispersant (CEWAF) into 130 liters of seawater in duplicate baffled
recirculation tanks (BRTs) and allowing the oil and seawater to mix for �24 h (59). Mesocosm tanks were
then filled by withdrawing WAF from the bottom of the recirculation tanks in order to avoid including
any nonaccommodated oil floating on the surface of the BRTs. Each mesocosm tank contained 90 liters
of seawater supplemented at the start of the experiment with 9 ml of f/20 nutrient medium (N, P, Si)
prepared using the method of Guillard and Ryther (60). This increased inorganic nitrogen concentrations
by approximately 2.7-fold and 3.8-fold, respectively, in the Coastal and Offshore experiments. Likewise,
silicate and inorganic phosphate concentrations were increased by approximately 1.5-fold in both
experiments. This was done to ensure microbial communities would not be nutrient limited during the
experiment. In order to minimize potential bottle effects, 90-liter mesocosms were chosen so that no
more than 10% of the total volume was removed by sampling during the course of the experiment.
Full-spectrum fluorescent lamps (UV-visible [UV-Vis] 375 to 750 nm; Sylvania Gro-Lux; Wilmington, MA,
USA) provided a 12-h light/12-h dark cycle (50 to 80 �mol photons m�2 s�1), and the room was kept at
�21°C.

T0 sampling for each experiment began immediately after the generation of the WAF, DCEWAF, and
CEWAF treatments was complete, corresponding to 24 h after oil addition. Each experiment was run until
the remaining oil concentration within the CEWAF treatment (highest oil concentration) reached �20%
of the initial oil concentration (61, 62). This was 72 h and 96 h for the Coastal and Offshore experiments,
respectively. For each experiment, starting at time zero and every 12 h thereafter, �1 liter of water was
collected from each mesocosm in a clean, opaque Nalgene bottle through a polytetrafluoroethylene
(PTFE)-lined spigot mounted on the side of each tank (10 cm above bottom). For cell count samples,
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10 ml of this water was fixed with formalin (final concentration 2%) and stored at 4°C. For DNA samples,
the collected water was prefiltered through a 10-�m filter to exclude zooplankton and large eukaryotic
cells followed by filtering 200 ml onto a 47-mm, 0.22-�m Supor polyethersulfone (PES) membrane (Pall,
Port Washington, NY, USA). For RNA samples, up to 800 ml (or until clogged) of the remaining
10-�m-prefiltered water was filtered onto 47-mm, 0.22-�m Supor PES membranes. After collection, all
filters were placed in cryotubes and stored at �80°C. RNA filters were immersed in 1 ml of TE buffer
(10 mM Tris, 1 mM EDTA, pH 7.5) before freezing.

Analysis of hydrocarbon chemistry. Samples (1 to 3.5 liters) were collected every 24 h in amber
bottles with Teflon-lined screw caps from each of the triplicate treatment tanks and immediately
amended with �20 ml of dichloromethane (DCM). Prior to extraction, PAH surrogates (d8-naphthalene,
d10-acenaphthene, d10-phenanthrene, d12-chrysene, and d12-perylene) and aliphatic surrogate stan-
dards (deuterated nC12, nC20, nC24, and nC30) were added (63). The DCM mixture was reduced,
exchanged into hexane, and then transferred to silica gel/alumina columns for purification (59). Hydro-
carbons were eluted with 200 ml of a 1:1 pentane/DCM solution, evaporated, and exchanged with
hexane (64, 65). Aliphatic hydrocarbons were then analyzed on an Agilent 7890 gas chromatograph with
a flame ionization detector (GC-FID) according to the work of Wade et al. (64) with updates in the work
of Morales-McDevitt et al. (63). PAHs were analyzed on a Hewlett-Packard 6890 gas chromatograph
coupled with a Hewlett-Packard 5973 mass selective detector. A laboratory reference sample was
analyzed with each batch of samples to confirm GC-MS selected ion monitoring system performance and
calibration (64, 65). Alkylated PAHs were quantitated based on the response of the parent PAH
compound (63).

Cell abundance. Formalin-preserved samples were stained with 4=,6-diamidino-2-phenylindole
(DAPI) (45 �M final concentration), filtered onto black polycarbonate filters (25 mm, 0.2 �m), mounted on
a glass microscope slide with 2 drops of CitiFluor AF1 antifade agent, and directly counted with an
epifluorescence microscope (Axio Imager M2; Zeiss, Jena, Germany). A minimum of 10 fields were
randomly counted per sample.

16S rRNA gene amplicon sequencing. The V4 hypervariable region of the 16S rRNA gene was
amplified from each sample (n � 190) following the protocol previously described in the work of Doyle
et al. (37). Briefly, filters were sliced into small pieces using a sterile scalpel and subsequently extracted
using FastDNA Spin kits (MP Biomedical, Santa Ana, CA, USA). Five sample-free filters were processed as
protocol blanks. Universal (Bacteria and Archaea) V4 primers 515F and 806R were used for amplification
(66). Sequencing was performed on the Illumina MiSeq platform (500-cycle, V2 chemistry) at the Georgia
Genomics Facility (Athens, GA, USA). Raw read curation and processing into ASVs were performed by
following the standard pipeline of the DADA2 package (67) in R (details below). All ASV tables were
subsampled without replacement to an even depth (n � 7,754, minimum value of samples, mean
�60,000) (Data Set S1, Tab 6) before downstream ecological analyses were performed with a combina-
tion of mothur v1.42.1, phyloseq v1.28, and/or vegan v.2.5-6 (68–70).

16S rRNA amplicon sequence analysis. Raw reads were processed in DADA2 v.1.12.1 using
standard filtering parameters (maxN � 0, truncQ � 2, rm.phix � TRUE, and maxEE � 2). Quality profiles
of the forward (R1) and reverse (R2) reads were manually inspected, and then reads were truncated to
the length after which the distribution of quality scores began to drop: 240 bp and 160 bp, respectively.
Error rates for the filtered and trimmed R1 and R2 reads were calculated using the learnErrors function
and subsequently used to denoise reads using the DADA2 sample inference algorithm. The denoised R1
and R2 reads, free of substitution and indel errors, were then merged together into amplicon sequence
variants (ASVs) using a global ends-free alignment. Paired reads containing any mismatches in the
overlapping region were removed from the data set. Chimeric ASVs were identified and removed by
using the consensus method within the removeBimeraDenovo function. The number of reads that made
it through each step in the pipeline for each sample is detailed in Data Set S1, Tab 7. As a final curation
step, any ASVs of which �0.1% of its reads were from one of the protocol blanks were removed. A total
of 11,654,656 sequences passed our quality control steps, corresponding to an average of 59,716
sequences per sample, and were used to construct a curated library containing 2,880 ASVs (Data Set S1,
Tab 4). Rarefaction curves for all samples indicated that any unsampled diversity contained only rare
members (Fig. S9). A consensus taxonomy for each ASV was assigned using the naive Bayesian classified
method (71) trained on release 128 of the SILVA reference database (72).

Redundancy analysis. Redundancy analyses (RDAs) were performed to investigate the relationship
between microbial community compositions, hours of incubation, and initial oil concentrations and to
identify ASVs associated with the presence of oil. For these analyses, ASVs without an average relative
abundance of �0.2%, after subsampling, in at least one sample were excluded. ASV counts were
transformed using a Hellinger transformation, and an RDA model was calculated using hours and initial
oil concentration as variables (73). The significance of each RDA model was assessed using a permuta-
tional ANOVA test (74), and the variance explained by each variable was estimated by variance
partitioning with partial RDAs (75). ASVs associated with the presence of oil were identified as those
whose RDA-weighted average loading scores were positively correlated with the presence of oil and
were greater than the equilibrium contribution of the RDA model (the proportion of variance which
would be explained by a random canonical axis).

RNA extraction and metatranscriptome sequencing. For each mesocosm experiment, three time
points, corresponding to the start, middle, and end of the experiment, were selected for metatranscrip-
tomic sequencing (0 h, 36 h, and 72 h for the Coastal experiment and 0 h, 48 h, and 96 h for the Offshore
experiment). To ensure that an adequate quantity of RNA was recovered for sequencing, the triplicate
samples for each treatment were combined into a single extraction. A customized phenol-chloroform
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RNA extraction was used to isolate RNA. Before thawing samples for RNA extraction, �-mercaptoethanol
was added to each sample to a final concentration of 1% (vol/vol). Once thawed, filters were sliced into
small pieces using a sterile scalpel and placed into a bead-beating tube along with the TE buffer (1 mM
EDTA, 10 mM Tris; pH 6.3) in which they were frozen and �1 g of sterilized 0.1-mm-diameter zirconia-
silica beads (BioSpec Products, Bartlesville, OK, USA). Samples were then homogenized in a BioSpec
Mini-Beadbeater for 2 min at maximum speed. After bead beating, crude extracts were amended with
2 volumes of chilled (4°C) denaturing buffer (4 M guanidine thiocyanate, 50 mM Tris, 10 mM EDTA, 1%
[wt/vol] N-lauroylsarcosine, 1% �-mercaptoethanol). Insoluble material was pelleted via centrifugation
(4,500 � g for 5 min at 4°C), and the supernatant was collected. The pellet was washed with 3 ml of
chilled denaturing buffer and centrifuged again, and the resulting supernatant was pooled with the first.
This pooled lysate was then extracted with an equal volume of phenol-chloroform-isoamyl alcohol
(25:24:1, pH 6.6), followed by a second extraction with chloroform-isoamyl alcohol (24:1). Nucleic acids
were purified from these extracts via an overnight isopropanol precipitation with 3 M sodium acetate (pH
6.0) and a subsequent 70% ethanol wash, followed by resuspension in 100 �l of TE buffer. Genomic DNA
was eliminated from RNA samples with Turbo DNA-free kits (Ambion, Waltham, MA, USA) followed by
purification with MEGAclear transcription cleanup kits (Ambion). The resulting purified total RNA extracts
were processed with MICROBExpress kits (Ambion) to reduce the amount of 16S and 23S rRNA transcripts
within the samples and then sent to the University of Delaware DNA Sequencing & Genotyping Center
(Newark, DE, USA) for Illumina HiSeq 2500 sequencing (paired-end 150-bp reads).

We obtained 576 million paired reads across 24 samples from RNA sequencing. rRNA reads were
filtered from the data set using SortMeRNA v2.1 (76) with all eight prepackaged rRNA reference
databases and an E value threshold of 1e�20 (Data Set S1, Tab 8). The resulting rRNA-depleted
paired-end reads were quality filtered and trimmed with Trimmomatic v0.36 (77) to remove Illumina
adapters and low-quality base pairs with the following parameters: Sliding Window:4:5, Headcrop:10,
Leading:5, Trailing:5, Minimum Length:115. Successful removal of adapter sequences and low-quality
reads was confirmed with FastQC v0.11.9 (78).

Metatranscriptome analysis. De novo transcriptome assembly was performed with the curated
paired reads using Trinity v2.5.1 (79) with default parameters, producing 648,351 contigs ranging
between 201 and 54,422 bp in length. Contig abundances within each sample were then quantified by
mapping reads to the metatranscriptome assembly with kallisto v0.44.0 (80). Read counts were normal-
ized for contig length into TPM (transcripts per million transcripts) values as previously described (81) and
scaled for cross-sample comparison using the trimmed mean of M-values (TMM) method described by
Robinson and Oshlack (82). Open reading frames were identified and translated into amino acid
sequences using Prodigal v2.6.3 in anonymous mode (83). Functional annotations were performed using
a GHOSTX v1.3.7 search against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database using
the single-directional best hit assignment method targeted to prokaryotes. A custom R script was then
used to select all transcripts whose functional annotation belonged to a KEGG pathway involved in the
degradation of saturated hydrocarbons (alkanes and cycloalkanes), PAHs, or their metabolic intermedi-
ates to central metabolism (glycolysis, TCA cycle) substrates (Data Set S1, Tab 9). We also searched for
genes involved in the initial oxidation of alkanes using a BLASTP (single best hit �1E�20, alignment
length �100, bit score �50) search of a custom database (Data Set S1, Tab 10) of soluble cytochrome
P450 alkane hydroxylases of the CYP153 family (49). These proteins would have been missed from the
above KEGG-based analysis as there are currently no KEGG orthologs specific to this family of enzymes
(84). Identified hydrocarbon degradation gene transcripts were taxonomically classified using Kaiju v1.6.3
in greedy mode (5 substitutions allowed) with the NCBI nonredundant database (�eukaryotes) as a
reference (85). Transcripts with identically scored matches to different taxa were classified to the least
common ancestor in the phylogenetic tree. Following the method described in the work of Jenior et al.
(86), an outlier analysis was performed to estimate the number of highly expressed transcripts within
each sample.

Data availability. Data are publicly available through the Gulf of Mexico Research Initiative Infor-
mation and Data Cooperative (GRIIDC) at http://data.gulfresearchinitiative.org under https://doi.org/10
.7266/N77D2SPZ (Coastal 16S rRNA libraries), https://doi.org/10.7266/N7C53JDP (Offshore 16S rRNA
libraries), https://doi.org/10.7266/9EDJRA3Q (metatranscriptome sequences), https://doi.org/10.7266/
N74X568X (Coastal alkane and PAH measurements), and https://doi.org/10.7266/N78P5XZD (Offshore
alkane and PAH measurements).
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