
I. Introduction

Mobile phones are the most ubiquitous type of equipment 
in the world, 3.3 billion people—half of the earth’s inhabit-
ants—have at least one mobile phone. Mobile healthcare ap-
plications are becoming a growing trend as more people now 
own cell phones, smartphones or table PCs [1]. In particular, 
smartphone applications (apps), available on the Apple or 
Android app stores, have been developed for patients and 
physicians [2].
  The prevalence of dementia in modern society is showing 
a steady growing trend. In South Korea, the prevalence of 
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dementia among the elderly population will reach 1.14 mil-
lion by 2030. Among degenerative brain diseases that cause 
dementia, Alzheimer disease (AD) is the most common, 
and the occurrence rate doubles every 5 years [3,4]. As life 
expectancy increases, the number of AD patients increases. 
Therefore, early detection of AD patients is becoming more 
important.
  For an accurate classification, it is essential to choose eli-
gible features which clearly represent group differences. Re-
cently, there was a report that a structural change can be ob-
served in human brains a few years before any symptomatic 
awareness [5]. Therefore, this structural change is important 
for the detection of AD. Several classification methods based 
on cortical thickness data have been reported [6,7]. Subcor-
tical structures, such as hippocampi and certain regions of 
gray matter, are substantially more vulnerable in AD. Some 
studies have utilized hippocampal volumes or hippocampal 
shapes for AD classification [8,9]. Therefore, we adopt corti-
cal thickness data and hippocampus shape deformity for AD 

classification.
  Incremental learning-based versions of statistical tech-
niques, such as principal component analysis (PCA) and 
linear discriminant analysis (LDA), have been reported. Hall 
et al. [10] proposed an incremental PCA method which up-
dates the PCA transformation matrix sequentially with each 
of the additional training data. Pang et al. [11] proposed an 
incremental LDA scheme which can handle large amounts 
of training data. Cho et al. [12] proposed the incremental 
learning based on PCA and LDA. They showed that classifi-
cation accuracy increases incrementally with additional data.

Figure 1. Overview of the proposed method. AD: Alzheimer disease group, NC: normal control group, PCA: principal component analy-
sis, LDA: linear discriminant analysis, MRI: magnetic resonance image.

Table 1. Demographic characteristics of normal controls 
(NC) and patients with Alzheimer disease (AD)

Characteristic NC (n = 84) AD (n = 33)

Age (yr) 74.0 ± 4.5 76.2 ± 8.4
Sex (male:female) 49:36 14:19
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  The purpose of this study was to identify AD patients us-
ing magnetic resonance imaging in the mobile environment. 
We performed online classification for AD diagnosis and 
AD prediction by using the smartphone. Our classification 
method is based on incremental learning for AD diagnosis 
and AD prediction using the cortical thickness data and 
hippocampus shape. We constructed a classifier based on 
PCA and LDA [13]. Specifically, whenever a new data set is 
obtained, our classification method will train the classifier 
incrementally with the newly obtained data set. There are 
two main stages in our method, the initial learning part and 
the online learning part. We first performed initial learning. 
This process trains a group classifier with labeled MR vol-
umes. We performed the mobile classification step in which 
unlabeled subjects are classified.

II. Methods

1. Data Acquisition and Image Processing
To analyze cortical thickness and hippocampal shape in 
degenerative human brain diseases, we chose a group of 
117 subjects, including 84 healthy controls and 33 AD pa-
tients. The subjects underwent high-resolution T1-weighted 
volume magnetic resonance imaging at the Seoul National 
University Bundang Hospital, Seongnam, Korea. Table 1 
presents the demographic characteristics of the participants.
  The T1 images of each subject were processed to extract the 
cortical surface using the FreeSurfer pipeline [14,15]. This 
surface modeling pipeline includes several steps: removal of 
non-brain tissue [16], Talairach alignment, tissue segmenta-
tion, intensity normalization [17], tessellation of boundaries 
between the gray and white matter, automated topology cor-
rection [18,19], and surface deformation based on intensity 
gradients [14]. Once the cortical meshes were reconstructed, 
they were automatically parcellated into anatomical regions 
based on lobar and cortical folding structure. In addition to 
the cortical surface extraction, we constructed the hippo-
campal surface by employing the in-house software package.

2.	Overview
Here, we present an incremental classification method for 
AD diagnosis and AD prediction using cortical thickness 
and hippocampal shape analysis data. Figure 1 shows the 
overall structure of the proposed method. It comprises two 
parts: initial learning and mobile subject classification. In the 
first step, the classifier is trained with labeled MR volumes. 
We extract cortical thickness data and hippocampus from 
the MR volumes. Then, to remove noise, we filter out high 
frequency components from the cortical thickness data and 

hippocampus at vertices, and train the classifier with the re-
sulting data. In the latter part, we classify unlabeled subjects 
based on the training. We construct its feature vector repre-
senting the noise-filtered cortical thickness data and hippo-
campal shape by using our initial classifier training.

3. Initial Learning
First, we construct a feature vector from an MR volume. To 
achieve a high classification performance, a feature vector 
should reflect group differences. It should also be compact 
to achieve computational efficiency. To construct the feature 
vector, we extract the cortical thickness data and hippocam-
pal shape deformity, after which, we perform noise removal.
  Next, we perform initial learning. We train the classi-
fier with the feature vectors obtained from a set of labeled 
subjects. Our classification is based on PCA and LDA [20-
22]. Given feature vectors, xi, 1 ≤ i ≤ N belong to one V of 
two groups, normal control and AD, our group classifier is 
trained by performing PCA and LDA. We derived the fol-
lowing covariance matrix of the training data set X = {xi, ···, 
xn}:
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where x- - is the mean of all feature vectors.
  Given the PCA transformation matrix, Wp, a feature vec-
tor x in the feature space is converted to a vector y in a PCA 
space spanned by the column vectors of Wp  as follows:

y = WT
p x.

  Then, we conduct LDA with the training data set Y. LDA 
finds the coordinate axes which maximally separate the 
groups of the data set. LDA maximizes the between-classes 
variance of Y across the groups and minimizes the within-
class variance for each group. LDA finds an axis w that maxi-
mizes the following energy function [23]:
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where sbetween(w) denotes between-classes variance, and 
sbetween(w) denotes within-class variance. They are projected 
onto the axis w. The between-classes scatter matrix SB and 
the within-class scatter matrix SW are defined as
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  An input data y from the PCA sub-space is mapped onto 
the LDA space as

z = WT
L y,

where the matrix WL is the LDA transformation matrix.

4. Mobile Classification
Once the classifier is trained with the labeled MR volumes in 
the server, we classify each subject’s MR volume by employ-
ing the mobile classification method. Note that the mobile 
classification method is implemented on the smartphone 
device (see Section II-6 for details).
  We performed PCA and LDA in sequence to transform the 
feature vector x of the subject to a point z in the LDA space:

z = WT
LW

T
p x,

where WT
p and WT

L are given as defined in the initial learning 
section. Our new classifier maps the subject onto one of the 
groups when z is given in the LDA space.

5. Online Learning
After an unlabeled subject is classified, its result is validated 
by a clinician. It is time-consuming to train the classifier 
with the entire training data whenever new training data are 
added. Therefore, the initial learning method is modified to 
train a mobile classifier. In other words, the mobile classifier 
is trained incrementally without using the previously used 
training data; thus, the time efficiency is dependent only on 
the size of the new data.
  To update Wp, we modify x- (mean vector) and the covari-
ance matrix V. Then, we acquired the new PCA matrix [24]. 
The new mean x- is computed from the old mean x- as,
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  The new covariance matrix V' is
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  We refer the other reports for enhanced the computational 
efficiency for incremental PCA [10,24,25].

  To compute the LDA transformation matrix WL, we employ 
an incremental LDA method [11]. This method incremental-
ly computes the between- and within-class scatter matrices 
in the feature space and then maps the results onto the PCA 
subspace to finally compute WL.
  We describe how to convert SX

W in the feature space SW to in 
the PCA subspace using the PCA transformation matrix Wp:
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
        



 ∑   ∑    
 


  


 ,

where xik is the kth feature vector in the group Gi. Also, SX
B can 

be converted into SB:

SB = WT
pS

X
BWp.

6. Mobile Implementation
A platform comprises three main components, namely, a 
health avatar, broker, and agent. A health avatar is a user cli-
ent system. The avatar system was implemented on a iPhone 
5 (iOS 7.04) with the dual-core 1.3 GHz Swift CPU with 1 
GB memory. A broker is a monitoring system which moni-
tors a patient’s personal information and communication 
history. Our mobile classifier processes the patient’s data in 
our server. The classification result is sent to an agent. Final-
ly, the agent processes the patient’s acquired ID, gender, age, 
and brain data from the broker.

III. Results

We first used the cortical thickness data as a feature vector. 
Then, we used the combination of the cortical thickness data 
and hippocampal shape deformity as a feature vector. After 
training the classifiers, we assessed the sensitivity of each 
classification with the test as follows:

Sensitivity = 
number of true positives

number of true positives + number of false negatives ,

Specificity = 
number of true negatives

number of true negatives + number of false positives .

  Table 2 shows the results using two different feature vec-

Table 2. Classification accuracy for the two different features

Sensitivity (%) Specificity (%) Accuracy (%)

Feature 1. Cortical thickness 96.49 64.33 87.33
Feature 2. Cortical thickness + hippocampal shape 96.79 63.24 87.52
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tors. Feature 1 is cortical thickness data and feature 2 is the 
combination of the cortical thickness data and hippocampal 
shape. The sensitivity and the specificity were 94.49% and 
64.33% for feature 1, and 96.79% and 63.24% for feature 2. 
The accuracy was 87.33% for feature 1 and 87.52% for fea-
ture 2.
  We further demonstrated the effectiveness of our incre-
mental classification method. Figure 2 shows the accuracy, 
sensitivity, and specificity of the classifier using feature 2 
(combination of the cortical thickness data and hippocam-
pal shape deformity) as a feature vector. Since the values of 
feature 1 and feature 2 are very similar, we only show the fea-
ture 2 value. As seen in the figure, accuracy, sensitivity, and 

specificity tended to converge with those of the respective 
classifier trained with the entire training data as the number 
of used training patients approached those of the training 
patients. 
  Also, we extracted the cortex and hippocampus regions for 
our classifiers. Figure 3 depicts the discriminative regions on 
the atlas surface meshes for our classification.
  Figure 4 is a snapshot of our agent. Our agent’s name is ‘Ades’, 
which is composed of ‘AD’ and ‘Descriptor’. When touching 
the ‘START’ button on the first screen, the patient’s gender 
and age are shown (Figure 4A). Then, the user touches the 
‘Confirm’ button and waits for 24 hours. When the alarm 
‘Ades process is over!’ appears on the smartphone screen, one 
can access the feature data (the cortical thickness and hip-
pocampal shape deformity data in our experiments). After 
mobile classification, the agent system shows online learning 
classification result, such as patient’s distribution, severity 
chart and visualization (Figure 4B). The visualization part is 
composed of left and right cortex buttons as well as left and 
right hippocampus buttons. When each button is touched, 
one can see the patient’s corresponding feature. Figure 4C 
and D show the left and right cortex feature; Figure 4E and F 
show the left and right hippocampus feature.

IV. Discussion

Cuingnet et al. [26] compared ten classification meth-
ods: Voxel-Direct, Voxel-Direct_VOI, Voxel-Atlas, Voxel-
STAND, Voxel-COMPARE, Thickness-Direct, Thickness-At-

Figure 2. Accuracy, sensitivity, and specificity of classifiers using 
cortical thickness and hippocampus shape.

Figure 3. Discriminative regions in classification: (A) cortex and (B) hippocampus. Each figure visualizes the linear discriminant analy-
sis axes on the atlas meshes.
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las, Thickness-ROI, Hippo-Volume, and Hippo-Shape. The 
first five methods employed voxel-based segmented tissue 
probability maps. The next three methods employed cortical 
thickness data. Then, the last two methods used hippocam-
pal features [26]. Table 3 summarizes the classification per-
formance results of the ten classification methods together 
with those of ours. Our method achieved good sensitivity 
measure in classification. It was ranked in the first position; 
however, the specificity of our method was lower than other 
classification methods.
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Table 3. Classification sensitivity and specificity comparison of 
eleven methods

Method Sensitivity (%) Specificity (%)

Our method 97 63

Voxel-Direct 81 95

Voxel-Direct-VOI 71 95

Voxel-STAND 75 91

Voxel-Atlas 81 90

Voxel-COMPARE 72 89

Thickness-Direct 73 90

Thickness-Atlas 79 90

Thickness-ROI 69 94

Hippo-Volume 71 77

Hippo-Shape 69 84

Figure 4. Snapshot of the agent. When the user run the agent, (A) the patient’s gender and age are shown. Then, touching the ‘Confirm’ button, (B) 
online learning classification results are shown. The visualization part is composed of several buttons. When each button is touched, one 
can see the patient’s corresponding feature; (C) left cortex, (D) right cortex, (E) left hippocampus, and (F) right hippocampus feature.
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