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From 26 to 28 June 2021, an unprecedented atmospheric
heatwave coincided with the lowest low tides of the year
in the Pacific Northwest (i.e., the region consisting of the
northwestern corner of the contiguous United States and
southwestern Canada). This event broke numerous
all-time record high temperatures throughout the region
and would have been virtually impossible without
human-caused climate change (Philip et al., 2021). During
and immediately following the event, many scientists,

resource managers, and members of the public reported
dead and dying marine organisms, including barnacles,
mussels, clams, and oysters, on intertidal beaches through-
out the region (Figure 1). These observations raised alarms
among many stakeholders because these species support
important commercial, subsistence, and recreational fish-
eries and are major constituents of nearshore ecosystems.

In response, we developed and deployed a
semi-quantitative survey to a multiorganization network
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of collaborators to rapidly assess the postheatwave
condition of nearshore invertebrates across the coastal
Pacific Northwest and inland waters of Washington state
and British Columbia known collectively as the Salish
Sea (e.g., Strait of Juan de Fuca, Puget Sound, and the
Strait of Georgia). Our goal was to inventory shellfish
condition observations across a broad geographic scale to
document the effects of the extreme heatwave and to
serve as a starting point for future detailed quantitative
research and monitoring. We asked local scientists
(academic, tribal, and state and federal agencies) to rate
shellfish condition in terms of the degree of postheatwave

mortality (or, conversely, resilience) relative to what they
would consider typical based on their prior experience
with specific sites and species at the same time of year.
We directed participants to only submit observations
from locations where they possessed extensive local
knowledge. In these situations, expert knowledge is a
surrogate for empirical data collection because
practitioners can develop quantitative information from
the synthesis of their own observations, knowledge, and
mental models of the system in question (Drescher
et al., 2013). We used a five-point postheatwave rating
(PHWR) system to evaluate the condition of organisms:

F I GURE 1 Scenes of invertebrate mortality post 26–28 June heatwave. (a) Dead Manila clams (Ruditapes philippinarum). (b) Dead and

empty bay mussels (Mytilus spp.). (c) Dead Mytilus spp. (d) Empty and clean cockle (Clinocardium nuttallii). (e) Gaping cockle (C. nuttallii).

(f) Mixed bed of dead barnacles (Balanus glandula and Chthamalus dalli). (g) Empty and clean Pacific oysters (Crassostrea gigas).

(h) A healthy Olympia oyster (Ostrea lurida). (i) Turkey vultures foraging on tidelands in Sequim Bay, WA, following the heatwave event.

(j) Sand dollars (Dendraster excentricus) turning yellow a week following the heatwave event. Detailed descriptions, locations, and credits

can be found in Appendix S1.
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1 = much worse than normal, 2 = worse than normal,
3 = normal, 4 = better than normal, 5 = much better
than normal. Further information on our survey methods
and rationale is given in Appendix S1.

We collected 203 observations from 108 sites spanning
the outer and inner coasts (Figure 2), covering 24 species.
Here we focus our discussion on acorn barnacles (Balanus
glandula), California and so-called bay mussels (Mytilus
californianus, Mytilus spp.), butter clams (Saxidomus
gigantea), cockles (Clinocardium nuttallii), native littleneck
clams (Leukoma staminea), naturalized Manila clams
(Ruditapes philippinarum), Olympia (Ostrea lurida) oysters,
and naturalized Pacific oysters (Crassostrea
gigas = Magallana gigas). We define bay mussels generally
as Mytilus spp. due to difficulty differentiating M. trossulus,
M. edulis, and M. galloprovincialis in the field and because
of reports of hybridization between M. trossulus and
M. galloprovincialis (E. Carrington, personal communica-
tion, July 26, 2021; C. A. Speck, unpublished). These spe-
cies are conspicuous, well studied, and represent the
majority of our observations (N = 171). They are also eco-
logically important, span a range of intertidal habitats, and
support highly valued recreational, commercial,
subsistence, and ceremonial harvest. All observations are
reported in archived data (Raymond, 2022). We also note
that we consider Manila clams and Pacific oysters as
“naturalized” because they were introduced to the region
~100 years ago for aquaculture purposes but have
established naturally reproducing populations.

Region-wide patterns of intertidal shellfish conditions
reflect environmental gradients, the natural history of the
species, and the intersection between them. A key factor
that may contribute to these observed patterns is the
difference in the timing of low tide over the days of the
heatwave (Figure 3; Appendix S1: Figure S1). The outer
coast of Washington state and British Columbia experi-
enced low tide ~4 h before the inner coast sites of the
Salish Sea, where low tide occurred very close to solar
noon. Ambient air temperatures were also much higher at
inner coast sites, potentially compounding the effects of a
later low tide (Figure 3). Wave exposure, which is gener-
ally greater on the outer coast than the inner coast, may
have moderated postheatwave ratings, along with the
timing of low tide. The difference in the physical environ-
ment (tide timing and exposure) intersects the natural his-
tory of many of our focal species. For example, California
mussels, which are almost exclusively found at outer
coastal sites, largely avoided negative impacts (i.e., better
condition) as opposed to congeneric bay mussels, which
are found in more wave-protected inner coast sites and
were more likely to suffer negative impacts (Figure 2c,d).
Furthermore, species found higher in the intertidal zone,
such as acorn barnacles, were generally found in worse

condition than species found lower in the intertidal zone,
such as clams and oysters (Figure 2).Though we are not
able to separate species-specific effects here, this pattern
highlights the range of thermal environments experienced
by barnacles, mussels, clams, and oysters across the
region. Thermal conditions at sites within the western
Strait of Juan de Fuca (Figure 2) and along the outer coast
are often buffered by winds, wave splash, or fog, and the
only unusual barnacle mortality observed in this region
was restricted to one less wave-exposed, southeast-facing
shoreline (Figure 2b).

Observed postheatwave condition of bivalves, including
butter clams, cockles, native littleneck clams, Manila
clams, and Olympia and Pacific oysters, varied among
species in accordance with aspects of their natural history
(Figure 2e–j). Butter clams, which often burrow >15 cm
deep in sediment and live at lower tidal elevations than
other clam species (Dethier, 2006), were less affected
by the heatwave than surface-dwelling cockles. Being
buried deeper in the sediment, butter clams likely were
buffered from high solar irradiance, high surface tempera-
ture, and high desiccation stress relative to animals such as
cockles living on or near the surface. However, we did
observe a range in butter clam condition among sites sepa-
rated by ~30 km, indicating that local scale factors may also
contribute to postheatwave clam condition. Manila and
native littleneck clams varied in observed condition, but the
low sample size for these species, owing to the opportunistic
nature of our sampling or declining population size of
native littleneck clams (J. Barber, unpublished), makes
drawing broader conclusions difficult. Olympia oysters,
which tend to be found lower in the intertidal zone
(White et al., 2009), were less affected by the heatwave than
Pacific oysters (Figure 2i,j). However, both oyster species
experienced a range of observed conditions, again indicat-
ing the likely importance of local scale factors. Notably,
more Pacific oysters were observed in poor condition in
more southerly latitudes, which coincided with low tide
and peak air temperatures. This may reflect the difference
in air temperatures across the region, especially in southern
Puget Sound, where air temperatures were greater than in
northern Puget Sound (Figure 3). Pacific oyster observations
near the Duckabush and Dosewallips estuaries were
considered normal compared to other nearby locations in
southern Hood Canal (Figure 2j). Observations by several
contributing participants noted substantial increases to river
flows associated with snow melt during the heatwave at
these and other locations. Given these observations, it
is possible that increased flow of surface water or ground-
water could have provided thermal refuge for species at low
tide; this requires further investigation.

Thermal stress is a common and well-studied factor
in ecology, a major structuring force in intertidal and

ECOLOGY 3 of 7



N

km km km km

N N N

km

N

km

N

km

N

km km

N

km

N

N

(a) (b) (c) (d)

(e) (f) (g)

(j)(i)(h)

F I GURE 2 Study region (a) with locations of air temperature and water-level data. Maps of postheatwave assessment for (b) acorn

barnacles, (c) bay mussels, (d) California mussels, (e) butter clams, (f) cockles, (g) native littleneck clams, (h) Manila clams, (i) Olympia

oysters, and (j) Pacific oysters
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nearshore ecosystems (Connell, 1961; Harley &
Helmuth, 2003), and can affect the recruitment and
energetics of organisms and the prevalence of biotoxins
and infectious agents (references below). For example,
clam populations in the region exhibit population
synchrony at relatively large spatial scales, and adult
clam biomass likely reflects larval recruitment success
4 years prior (Barber et al., 2019). Given that all of the
bivalve species discussed here were likely reproductive
during the heatwave (Anderson et al., 1982), it is possible
that high mortality in certain species (e.g., cockles) may
manifest itself in reduced adult populations in ~4 years.
Because clam recruitment is naturally episodic (Hunt &
Scheibling, 1997), attributing this event to a loss in a
year class will require multiple years of population moni-
toring. Sublethal, but extreme, ambient temperatures also
have a direct effect on the metabolism of
marine invertebrates (Hand & Hardewig, 1996).
Therefore, it is reasonable to expect that many organisms
were under increased metabolic stress during the
heatwave, potentially leading to delayed mortality or
reduced overall condition, as documented in Manila and
related clams (Macho et al., 2016). Unmeasured biologi-
cal factors, such as biotoxins or infections, also could

have increased susceptibility to thermal stress-induced
mortality in some species (Go et al., 2017; Green
et al., 2019; King et al., 2021). For example, Pacific oysters
with infections of the bacteria Vibrio sp. have reduced
thermal tolerances compared to uninfected individuals
(Wendling & Wegner, 2013).

Multiple factors and organismal traits can enhance or
mitigate thermal stress in intertidal species, including
morphology (body size and shell color), behavior
(aspect), and environment (substrate, wind, and proxim-
ity to shade or freshwater runoff). Water quality factors,
including pH, turbidity, and salinity, may also contribute
to bivalve stress and mortality (Dethier et al., 2019).
These unmeasured factors may have influenced observed
postheatwave condition and may have delayed mortality
for many species. Thus, further investigation into these
factors and how they may have modulated thermal
stress during this and future heatwaves will be critical
for increasing our understanding of the effect of
extreme heat events on intertidal organisms in the
region. Moreover, the information could prove useful for
identifying local climate refugia and incorporating cli-
mate adaptation into shellfish management. Long-term
population and environmental monitoring data will be
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F I GURE 3 Air temperatures (red line) at outer (top row: Pruth Bay, Neah Bay, Toke Point) and inner coast sites (bottom row:

Vancouver, Port Townsend, Budd Inlet) measured over the course of the heatwave (26–28 June 2021) and surrounding days plotted with the

1991–2020 mean summer (June–August) high (orange) and low (blue) temperatures. Red shaded regions are temperatures greater than two

standard deviations above the 1991–2020 mean. Gray shaded regions are night. Vertical dashed lines are solar noon during the heatwave.

Gold bars at bottom of plots represent duration of intertidal exposure to air below +1 m tide elevation relative to mean lower low water

(MLLW). Temperature and tide data were obtained from multiple sources (Appendix S1).
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particularly useful in separating heatwave effects from
normal population fluctuations.

Our observations, though coarse, demonstrate the
widespread negative impacts post heatwave to intertidal
species across the waters of the Pacific Northwest and
Salish Sea. Our broad survey suggests that the June
2021 heatwave may have far-reaching and potentially
multiyear effects on nearshore ecology, cultural connec-
tions, and fisheries. These observations represent just
the beginning of our understanding of how the heatwave
may have affected intertidal species and may serve as a
bellwether for future extreme temperature events, which
are predicted to become more frequent and more severe
in a warmer climate (IPCC, 2021). The present work
highlights heatwave responses by naturally occurring or
enhanced sessile marine invertebrates; yet some of
these species support a robust aquaculture industry in
the Pacific Northwest. Identifying impacts on farmed
shellfish was beyond the scope of this effort, and such
impacts have yet to be examined. Continued population,
recruitment, disease, and environmental monitoring and
research will be needed to accurately assess species,
community, and ecosystem responses, as well as impacts
on human use. This project may also serve as a model for
the power of research across a broad coalition of partners
and as a method to rapidly assess unique or short-lived
weather events. The range of expertise, perspectives, and
geographic location of project partners enabled a research
product that will serve many user groups and has laid the
groundwork for future collaborations.
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