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Background. �e number of incidental findings of pulmonary nodules using imaging methods to diagnose other thoracic or 
extrathoracic conditions has increased, suggesting the need for in-depth radiological image analyses to identify nodule type and avoid 
unnecessary invasive procedures. Objectives. �e present study evaluated solid indeterminate nodules with a radiological stability 
suggesting benignity (SINRSBs) through a texture analysis of computed tomography (CT) images. Methods. A total of 100 chest CT 
scans were evaluated, including 50 cases of SINRSBs and 50 cases of malignant nodules. SINRSB CT scans were performed using 
the same noncontrast enhanced CT protocol and equipment; the malignant nodule data were acquired from several databases. �e 
kurtosis (KUR) and skewness (SKW) values of these tests were determined for the whole volume of each nodule, and the histograms 
were classified into two basic patterns: peaks or plateaus. Results. �e mean (MEN) KUR values of the SINRSBs and malignant 
nodules were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. �e receiver operating characteristic (ROC) curve showed that the sensitivity 
and specificity for distinguishing SINRSBs from malignant nodules were 65% and 66% for KUR values >6, respectively, with an 
area under the curve (AUC) of 0.709 (�푝 < 0.0001). �e MEN SKW values of the SINRSBs and malignant nodules were 1.73 ± 0.94 
and 2.07 ± 1.01, respectively. �e ROC curve showed that the sensitivity and specificity for distinguishing malignant nodules from 
SINRSBs were 65% and 66% for SKW values >3.1, respectively, with an AUC of 0.709 (�푝 < 0.0001). An analysis of the peak and 
plateau histograms revealed sensitivity, specificity, and accuracy values of 84%, 74%, and 79%, respectively. Conclusions. KUR, SKW, 
and histogram shape can help to noninvasively diagnose SINRSBs but should not be used alone or without considering clinical data.

1. Introduction

Smoking is the most preventable cause of death globally, fol-
lowed by cancer and cardiovascular disease. Many case series 
have considered lung cancer as the leading cause of cancer 
mortality [1]. Fortunately, increased access to computed 
tomography (CT) and newly recommended low-dose CT 
screening has facilitated the detection of new cases and helped 
reduce mortality [2].

Solitary pulmonary nodules (SPNs) are masses ≤3 cm sur-
rounded by normal tissue. SPNs are generally asymptomatic 
and an incidental finding on the imaging results of the chest 
or upper abdomen [3, 4]. In fact, dozens of diseases might 
present in the nodular form, including infections such as 
tuberculosis, benign masses (e.g., hamartomas), and malig-
nancies (e.g., primary or metastatic lung cancer). Unfortunately, 
a significant proportion of these nodules are classified as inde-
terminate, with an intermediate density between fat and 
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calcium [3, 5]. For this type of nodule, the clinical stability 
criteria and risk factors for cancer are particularly important 
for diagnosis and treatment. According to the recommenda-
tions of the Fleischner Society, at least 2 years of tomographic 
follow-up study are required without significant changes to 
classify the nodule as benign [3–5].

International guidelines suggest that the diagnostic inves-
tigation of peripheral pulmonary nodules can be performed 
with both invasive transthoracic biopsy techniques (e.g., 
CT-guided transthoracic needle aspiration) and broncho-
scopic techniques [6, 7]. Endoscopic techniques are useful for 
diagnosing peripheral (also benign) lesions, particularly when 
guided by newer navigational methods such as endoscopic 
ultrasound radial probes, electromagnetic navigation bron-
choscopy, and others as well as when specific predictors of 
success are present (e.g., CT bronchus sign) [8]. Unfortunately, 
fine-needle aspiration biopsies of suspected benign nodules 
are relatively low in sensitivity and specificity because this 
method o�en cannot reach an aetiological diagnosis of the 
benign process; furthermore, it generates technical difficulties 
and complications, especially with regard to smaller nodules 
located deep in the lung parenchyma [9]. Hence, the need 
exists to use three-dimensional imaging technology to estab-
lish new lung nodule evaluation methods for more in-depth 
analyses of the textural features of the nodule by analysing the 
histogram data obtained on CT imaging [10].

With the onset of CT, nodule growth is o�en visualised 
more accurately through its largest diameter. Although a nod-
ule diameter measurement seems sufficient and is commonly 
used, it cannot determine the spatial growth of the nodule 
across its several axes, which can cause confusion with regard 
to a nodule that maintains its diameter in the � and � axes 
but progresses in the � axis perpendicular to the other axes 
[11]. Some studies have shown that thin CT sections (approx-
imately 1 mm) in the region of interest (ROI) of the nodule 
can determine its growth through volumetry [12, 13]. 
However, volume is not the only parameter measured because 
the texture can be evaluated with or without the administra-
tion of contrast [14].

In clinical practice, the evaluation of densities is frequently 
and briefly performed by delimiting a generally circular or 
elliptical area within an image (i.e., the ROI). One of the most 
simplified forms of texture analysis is the use of first-order 
grey-level statistics, which by definition uses the volumetric 
version of the pixel (voxel), one at a time. �e three-dimen-
sional structure of the voxel that results from the incorporation 
of thickness into the pixel provides information about radio-
logical density, enabling its study [15, 16]. A recent study ana-
lysed 60 CT sets and demonstrated the textural heterogeneity 
of SPN, concluding that this calculation is useful when differ-
entiating malignant from benign nodules [17]. In addition to 
the mean (MEN), other statistics of texture corresponding to 
the first-order grey levels rarely used in clinical practice such 
as kurtosis (KUR) and skewness (SKW) can be studied 
throughout the volume of the pulmonary nodules [18, 19]. 
�us, the present study evaluated solid indeterminate nodules 
with a radiological stability suggesting benignity (SINRSBs) 
through a texture analysis of CT images.

2. Materials and Methods

A total of 50 CT scans of SINRSBs and 50 CT scans of malig-
nant nodules from two image databases were retrospectively 
analysed. �e research ethics committee at our institution 
approved the protocol under the number 
 CAAE-36881414.1.0000.5259, and our procedure complies 
with current national and international standards.

2.1. CT-Scan-Acquisition Protocol. CT scans were obtained at 
our institution (University Hospital Pedro Ernesto of the State 
University of Rio de Janeiro, Rio de Janeiro, Brazil) using a 
helical acquisition apparatus (HiSpeed LX; General Electric 
Medical Systems, Milwaukee, WI, USA). �e acquisitions were 
performed along the axial plane with the patients in the dorsal 
decubitus position using the following parameters: 120 kV, 
100–200 mA (which varied according to the biotype of the 
patient) with automatic exposure control, a slice thickness 
of 1 mm, and a pitch of 2 mm from the jugular notch to the 
xiphoid process at full inspiration. �e gantry was inclined by 
43 cm. No intravenous contrast enhanced was administered 
during any of the examinations. A�er the scan acquisition, 
the CT images were reconstructed using a standard so� 
tissue kernel. In addition, a high-resolution reconstruction 
with a matrix of 512 × 512 points was performed using a high-
frequency algorithm, a window width of 1,500 HU, and a MEN 
centre level of −700 HU.

2.2. Database. �e SINRSB image database consisted of CT 
scans from 50 patients treated at our institution who presented 
with solid SPNs that met the stability criteria (minimal volume 
variation and volume doubling time >2,000 days) a�er at least 
3 years of observation. Scans with the following characteristics 
were excluded: nodules with findings suggestive of benignity 
(total, central, lamellar, or popcorn calcification) and those 
with characteristics suggestive of malignancy (spiculation, 
lobulation, or high irregularity); nodules with total or partial 
ground-glass opacity; scans with more than one nodule; and 
scans that did not include sections with a thickness between 
0.90 and 1.25 mm for the ROI of that nodule.

�e image database of malignant nodules consisted of 50 
CT scans whose diagnoses were confirmed via invasive meth-
ods and histopathology. �ese images were acquired from two 
databases, including that of our institution and that of the 
projects of the development of nodule detection programmes 
stored by the Cancer Imaging Archive (https://www.cancer 
imagingarchive.net), which is a server maintained by Siemens 
Healthcare™ that includes data from unidentified patients. �e 
Cancer Imaging Archive is a platform seeks to provide data 
for the research and development of image processing meth-
ods. CT scans are available in downloadable DICOM format, 
and the portal provides spreadsheets that contain various 
image-acquisition information. To maintain radiomics robust-
ness, we selected CT scans with a configuration similar to that 
of our institution’s database (including CT mode, no contrast 
enhancement, a section thickness between 0.9 and 1.25 mm, 
a matrix of 512 × 512 points, and a so� tissue reconstruction 
kernel).

https://www.cancerimagingarchive.net
https://www.cancerimagingarchive.net
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2.3. Segmentation and Imaging Processing. �e images were 
quantised in 12 bits (i.e., the equivalent of 12 grey levels) [15] 
and were later stored in DICOM format. �e digital data 
were transferred to Bebúi so�ware (Technological Centre, 
Federal University of Maranhão, São Luis, MA, Brazil) where 
the extraction of radiomic features based on the ROI was 
completed using in-house texture analysis algorithms. �e 
images were evaluated using Bebúi so�ware by fellowship-
trained readers (B.M.B. and R.A.N. with 14 and 20 years of 
experience, respectively). An ROI was carefully drawn in the 
nodule avoiding contact with its edges using a semiautomated 
process. �e so�ware provides tools that digitally subtract 
vessels, bronchi, fibrosis scars, and other structures that do 
not belong to the nodule for all of the slices that correspond 
to its volume. �e so�ware also shows the region growing 
processing and segmentation algorithm installed through 
a “seed” to generate a database of that nodule with volume 
and histogram data. During this process, if motion, contrast 
streaking, or beam-hardening artefacts were noted on the 
image with maximal dimensions, then another “artefact-free” 
image demonstrating the lesion was chosen.

Using the so�ware’s dialog box, the interval was defined 
in Hounsfield units (HUs) between −450 and +1500. �e seed 
voxel was placed within the nodule that analysed the neigh-
bouring voxels using a 3D region growing algorithm [17] for 
inclusion based on the contrast intervals and number of slices 
determined in the dialog box. �e location of the seed in the 
slice was automatically revealed based on the two-dimensional 
coordinates � and �.

A�er SPN segmentation, the radiomics features were 
extracted for each nodule, including first-order statistics to 
assess the distribution of CT or voxel values. Using the CT scans, 
KUR and SKW were determined for the whole volume of each 
nodule. By definition, KUR is the property of a frequency dis-
tribution that characterises its flattening relative to the Gaussian 
curve (i.e., it determines the degree of flattening of a distribution 
curve) [18]. �us, KUR measures the peakedness of the distri-
bution of values and is considered as a marker of vascularity 
and tumour angiogenesis, which in turn are essential factors 
that determine tumour aggressiveness and overall survival [19]. 
High KUR is related to several outliers, whereas low KUR sug-
gests a lack of outliers [18, 19]. A given curve is symmetrical 
when the distribution of values around the centre point is exact 
(i.e., the MEN, median, and mode coincide). �e deviation from 
symmetry is measured as SKW, which indicates the asymmetry 
in the distribution of voxel intensities [18].

KUR is mathematically defined as the fourth moment of 
statistical distributions and, unlike the as the standard devia-
tion, should not be considered as a measure of dispersion; 
rather, it is a distribution model. KUR is as a mass movement 
that does not affect the variance (VAR). Positive KUR is char-
acterised as the presence of a peak with heavy tails, whereas 
negative KUR is characterised by lighter tails and a flatter peak 
than the normal distribution [20].

KUR and SKW were calculated using the following 
formulas:

(1)KUR = 1
VAR

4

�퐺−1∑
�푖=0

(�푖 −MEN)4HU − 3,

where KUR = kurtosis, SKW = skewness, VAR = variance, 
MEN = mean, and HU = Hounsfield unit.

Additionally, CT scans were used to evaluate the histogram 
and obtaining data on the SPN texture patterns. �us, Portable 
Network Graphics (PNG) files were generated using Python’s 
Matplotlib tool (https://www.matplotlib.org).

Using Bebúi so�ware, the inter-observer reliabilities of the 
images acquired were compared with 25 retrospectively seg-
mented images for extraction of ROI-based morphological 
features by two independent readers (B.M.B. and R.A.N.) in 
a blinded form. �ese readers segmented the images and pro-
cessed the histogram data for KUR and SKW without a front 
end. �e semiautomatic calculation process minimized human 
intervention during the various histogram data processing 
events.

2.4. Statistical Analyses. Statistical analyses were performed 
using SPSS 16 (Chicago, IL, USA), which automatically 
generated the receiver operating characteristic (ROC) curve 
and calculated the best cut-off point by establishing test and 
state variables. �e histograms were analysed and separated 
into two patterns: (1) the peak pattern (i.e., leptokurtic) 
in which the data are symmetrical or skewed but with a 
predominance of an increase in values; and (2) the plateau 
pattern (i.e., platykurtic) in which the MEN was distributed 
within regular intervals without a sudden increase of the data. 
Interclass correlation coefficients (ICCs) were employed to 
study the reliability of radiomic features, and an ICC was 
considered as acceptable if it was ≥0.85 [21]. Statistical 
significance was considered as �푝 < 0.05.

3. Results

�e interobserver reliabilities for KUR and SKW were high 
(ICCs of 0.87 ± 0.10 and 0.91 ± 0.12, respectively). Regarding 
the data extracted for analysis, however, we used the data 
agreed upon by both readers.

�e MEN KUR of the 50 SINRSBs and malignant nodules 
were 3.37 ± 3.88 and 5.88 ± 5.11, respectively. �e ROC curve 
was obtained, showing that when KUR >6, the sensitivity and 
specificity for distinguishing between malignant nodules and 
SINRSBs were 65% and 66%, respectively, with an area under 
the curve (AUC) of 0.709 and �푝 < 0.0001 (Figure 1).

�e MEN SKW of the 50 SINRSBs and malignant nodules 
were 1.73 ± 0.94 and 2.07 ± 1.01, respectively. �e ROC curve 
enabled the establishment of a cut-off point that best fit the 
sensitivity and specificity values of the SKW, where 3.1 was 
the cut-off point for malignant nodules and SINRSBs. �is 
value was associated with a sensitivity of 62.7%, a specificity 
of 69%, and an AUC of 0.705 (�푝 < 0.005) to differentiate malig-
nant nodules from SINRSBs (Figure 2).

Additionally, a histogram analysis was performed between 
the peak and plateau patterns. Typical aspects of SINRSBs and 
malignant nodules are shown in Figure 3. Among the 50 

(2)SKW = 1
VAR

3{
�퐺−1∑
�푖=0

(�푖 −MEN)3HU}
2

,

https://www.matplotlib.org
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differentiating invasive adenocarcinoma from pre-invasive 
and minimally invasive adenocarcinoma. More recently, Yagi 
et al. [31] performed a similar study that confirmed the poten-
tial of this method for differentiating minimally invasive ade-
nocarcinoma from invasive adenocarcinoma [31].

Given the high morbidity and mortality associated with 
lung cancer, differentiating benign nodules from malignant 
nodules is crucial [22]. Alpert et al. [32] evaluated nodules 
with a lepidic pattern. In that study, 3D volumetry and first-or-
der grey-level statistics obtained a sensitivity of 81% and a 
specificity of 76.7% when differentiating lepidic lesions from 
invasive lung adenocarcinoma. In another study, Kamiya  
et al. [33] examined the KUR and SKW of solid nodules to 
differentiate malignant from benign nodules. Similar to our 
results, those authors noted that KUR tends to be higher 
among malignant nodules than benign nodules. �e AUC 
values of the ROC curve ranged from 0.71 to 0.83, and these 
results were similar to those of our study.

�e CT pixels or voxels that comprise the image are the 
result of X-ray beam attenuation as it passes through a small 
portion of living tissue [2, 10]. �e behaviours of the various 
attenuations are used to construct the histogram, and its study 
is only another step in the process of differentiating SINRSBs 
from malignant nodules, without ignoring the initial appear-
ance (spicules, lobules, MEN diameter, and visceral pleural 
retraction) that, when combined with the radiologist’s expe-
rience and the support of clinical data, contributes to the defi-
nition of probable malignancy. If doubt persists and the nodule 
is classified as indeterminate, then volumetric monitoring and 
the determination of the volume-doubling time are recom-
mended [2–4]. In this context, the histogram that does not use 
a contrast can be useful, especially for patients who present 
with characteristics that prevent the administration of 

malignant nodules, 42 presented with the peak pattern, and 
only eight presented with the plateau pattern. Among the 50 
SINRSBs, however, 37 presented with the plateau pattern, and 
only 13 showed the peak pattern. �e histogram analysis 
between the peak and plateau patterns revealed a sensitivity 
of 84%, a specificity of 74%, and an accuracy of 79%.

4. Discussion

�e present study revealed that a texture analysis of the CT 
images of patients with SINRSBs using easy-to-use so�ware 
aids in the assessment the nature of the lesion. �e KUR, SKW, 
and graphical analysis of histogram patterns might help dif-
ferentiate SINRSBs from malignant nodules in these patients.

Radiomics (the study of extracting computerised, algo-
rithm-based features to quantify the phenotypic characteris-
tics of lesions using medical images) [22, 23] has been used to 
construct predictive models that relate image characteristics 
to tumour characteristics. Its four quantitative descriptive 
characteristics are morphological, statistical, regional, and 
model-based [23]. Several recent studies have used KUR and 
SKW as diagnostic indicators for various purposes, including 
to analyse liver fibrosis due to hepatitis C virus infection [24], 
central nervous system injuries with tumour differentiation 
[25], substantia nigra lesions due to carbon monoxide expo-
sure [26], pancreatic tumour type differentiation [27, 28], and 
the association between metabolic patterns and several types 
of lesions in patients with cervical carcinoma [29]. Son et al. 
[30] collected tomographic measurements of lung tissue that 
included the KUR and SKW values associated with ground-
glass nodules with or without solid components. �ese authors 
found that statistical analyses are a useful tool for 
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Obviously, benign nodules can exhibit high-density tissue 
masses (e.g., fat) and high-volume calcifications (e.g., hamar-
tomas), thereby generating HU peaks. However, because the 
nodules in the present study were indeterminate and stable, 
their composition was likely more homogeneous and with less 
rich material in the cells. Naturally, this finding does not sug-
gest that these nodules do not experience slower changes over 
longer periods [36]. Interestingly, recent studies have shown 
that tumour heterogeneity estimation using the distribution 
of pixel values with radiomic features can be used as a marker 
of tumour aggressiveness and treatment response in this 
patient population [37, 38]. In particular, KUR might be useful 
for predicting and assessing response to antiangiogenic treat-
ment among patients with lung cancer [19]. More recently, 
Digumarthy et al. [19] demonstrated that a radiomics evalu-
ation adds incremental value to one’s clinical history and stand-
ard imaging features in predicting histology (i.e., distinguishing 
squamous and adenocarcinoma subtypes of nonsmall cell lung 
cancers) and epidermal growth factor receptor mutations.

One strength of our study is that we believe it is the first 
to show how histogram patterns differ between SINRSBs and 
malignant pulmonary nodules, likely contributing to the 
tomographic study of these lesions. As with any other study, 
however, ours also has limitations. First, the sample size was 
relatively small, although the size was justified by the strict 
imaging criteria used to exclude characteristically benign and 
malignant lesions to only evaluate indeterminate pulmonary 
nodules. Second, the benign nodules had no histological diag-
noses, and these diagnoses were made only at the radiological 
level based on stability criteria; thus, we chose to call these 
cases “SINRSB”. �ird, the radiomics reproducibility likely 
depends on the amount of data and the consistency of the 
parameters used to produce the images; therefore, slight 
changes in the imaging dataset can greatly affect the robustness 
of the radiomic features [23, 39]. In our study, the SINRSB 
data comprised a single image database, whereas the 

radiological contrast and hinder follow-up assessment. 
Interestingly, the histogram plots presented in our study 
demonstrate that malignant nodules showed a spiculated pat-
tern ranging from 0 to 100 HU, which corresponds to the range 
of predominant protein tissues such as so� tissue.

�e present study found that KUR and SKW can be used 
to differentiate SINRSBs from malignant benign nodules. 
Because the sensitivity and specificity values were close to 65%, 
however, KUR and SKW should not be used alone; rather, they 
should be combined with other parameters. �erefore, volu-
metric assessment and volume doubling time remain key ele-
ments in the evaluation of indeterminate pulmonary nodules 
[34, 35]. More recently, Mao et al. [23] evaluated the usefulness 
of a radiomic predictive model developed from baseline low-
dose CT screening. �ese authors observed that the sensitivity 
and specificity for predicting malignancy in SPNs were 81% 
and 92.2%, respectively. In that study, the benign nodules had 
greater SKW and less KUR compared with malignant 
nodules.

For efficient data processing, it was necessary to develop 
a specific tool that, in addition to aiding the calculation of 
KUR and SKW, generated PNG files using the Matplotlib tool 
for Python. �us, it was possible to separate peak and plateau 
patterns. In addition to the calculating KUR and SKW, the 
graphical appearance of the histograms for these two patterns 
helped differentiate nodules into groups of SINRSBs and 
malignant nodules with an accuracy of 79%. �e sensitivity 
and specificity values were encouraging in terms of the viable 
contribution of this method for identifying malignant lesions. 
However, it remains possible that the high protein level of the 
malignant nodules is related to increased protein synthesis by 
the cells (i.e., the small tissue portion that corresponds to a 
voxel in the image might also correspond to a group of cells 
with high protein synthesis). In this respect, positron emission 
tomography (PET) has demonstrated greater metabolic activ-
ity with protein synthesis in malignant lesions.
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