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Abstract

Prostate cancer is the most common cancer in men, and most patients have localized disease at the time of diagnosis.
However, 4% already present with metastatic disease. Epithelial-mesenchymal transition is a fundamental process in
carcinogenesis that has been shown to be involved in prostate cancer progression. The main event in epithelial-
mesenchymal transition is the repression of E-cadherin by transcription factors, but the process is also regulated by
microRNAs. The aim of this study was to analyze gene and microRNA expression involved in epithelial-mesenchymal
transition in localized prostate cancer and metastatic prostate cancer cell lines and correlate with clinicopathological
findings. We studied 51 fresh frozen tissue samples from patients with localized prostate cancer (PCa) treated by radical
prostatectomy and three metastatic prostate cancer cell lines (LNCaP, DU145, PC3). The expression of 10 genes and 18
miRNAs were assessed by real-time PCR. The patients were divided into groups according to Gleason score, pathological
stage, preoperative PSA, biochemical recurrence, and risk group for correlation with clinicopathological findings. The
majority of localized PCa cases showed an epithelial phenotype, with overexpression of E-cadherin and underexpression of
the mesenchymal markers. MiRNA-200 family members and miRNAs 203, 205, 183, 373, and 21 were overexpressed, while
miRNAs 9, 495, 29b, and 1 were underexpressed. Low-expression levels of miRNAs 200b, 30a, and 1 were significantly
associated with pathological stage. Lower expression of miR-200b was also associated with a Gleason score $8 and shorter
biochemical recurrence-free survival. Furthermore, low-expression levels of miR-30a and high-expression levels of Vimentin
and Twist1 were observed in the high-risk group. Compared with the primary tumor, the metastatic cell lines showed
significantly higher expression levels of miR-183 and Twist1. In summary, miRNAs 200b, 30a, 1, and 183 and the genes
Twist1 and Vimentin might play important roles in the progression of prostate cancer and may eventually become
important prognostic markers.
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Introduction

Prostate cancer (PCa) is one of the most common tumors in

men, and it accounts for 29% of all newly diagnosed cancers [1].

After the adoption of PSA screening, most patients present with

localized PCa, but 4% already have metastatic disease at the time

of diagnosis [1]. At present, clinicopathological features such as

staging, Gleason score (GS), and PSA levels are good prognostic

markers [2] and are used to make treatment decisions; however,

they are not sufficiently accurate to discriminate between tumors

that will remain indolent and those that will later progress to

become metastatic. Indeed, the unique biological features and

heterogeneous genetic backgrounds of PCa [3] can limit the

efficacy of conventional clinicopathological parameters as predic-

tive markers. For these reasons, molecular biomarkers have been

increasingly investigated to help understand and predict cancer

behavior.

The epithelial-to-mesenchymal transition (EMT) is a reverse

biological process that plays a role in invasion and metastasis

during carcinogenesis. Epithelial cell-cell adhesion is decreased,

and the cells acquire a spindle-shaped, highly motile fibroblast

phenotype and a greater capacity for migration and invasion [4].

The main feature of EMT is transcriptional silencing of E-

cadherin [5,6], which is controlled by the transcriptional

regulators ZEB1, ZEB2, SNAI1 (Snail), SNAI2 (Slug), and

TWIST1 [5,7,8]. Additionally, there is also upregulation of

mesenchymal markers, such as Vimentin and N-cadherin, a

process that is known as cadherin switching [9].

The roles of genes related to EMT in PCa are not completely

understood, and previous studies describe the loss of E-cadherin

[10] followed by increased expression of N-cadherin, Cadherin-11

and Vimentin [9] in immunohistochemistry analysis. The expres-

sion levels of ZEB1, a crucial regulator of EMT in PCa, are
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related to the GS [11], and Behnsawy et al proposed the use of

EMT gene expression profiles as markers of biochemical

recurrence after radical prostatectomy [12].

MicroRNAs (miRNAs), a new class of non-coding, regulatory

RNAs, have been shown to participate in many processes related

to the development and progression of cancer, including EMT

[13]. One of the main miRNAs involved in EMT is the miR-200

family, which is a potent inducer of epithelial differentiation. This

group comprises miR-200a, miR-200b, miR-429, miR-200c, and

miR-141, which are generated from two transcripts. The first three

are derived from chromosome 1, while the latter two are derived

from chromosome 12. The members of this group are highly

related in sequence, indicating that they likely target a similar

complement of messenger RNAs [14].

Among the targets of the miR-200 family are ZEB1 and ZEB2

[15–17]. miR-200 members inhibit the expression of ZEB at the

post-transcriptional level by binding to highly conserved target

sites in their 39UTRs [18,19]. Interestingly, miR-200 members are

transcriptional targets of ZEB1 and ZEB2. The close functional

link between the ZEB factors and the miR-200 family in a double-

negative feedback loop is known as the ZEB/miR-200 feedback

loop [18], in which the activation of one group negatively affects

the expression of the other group. Depending on the extracellular

signals, this loop can switch from one side to the other side and

stabilize either the epithelial or mesenchymal phenotype. Other

miRNAs have also been shown to participate in EMT, targeting

SNAI1 (miR-29b, miR-30a, miR-34a) [20,21], and SNAI2 (miR-

34a, miR-1, miR-200b) [22,23]. However, few studies have

assessed miRNAs involved in EMT in PCa.

Our aim is to decipher the role of genes and miRNAs related to

EMT in PCa to identify a profile that defines PCa behavior.

Materials and Methods

Patient selection
Fifty-one patients who had clinically localized prostate cancer

and underwent radical prostatectomy between 2000 and 2002

were selected. All patients were treated by the same surgeon (MS),

and all pathological specimens were analyzed by the same

uropathologist (KRML). The patients were followed up for a

mean time period of 63.06 months.

The control group consisted of ten samples from patients who

underwent surgery for benign prostatic hyperplasia, and had

prostate volume ,50 cm3 on ultrasound, PSA levels ,2,5 ng/ml,

and no malignancy in the pathological specimen.

Prostate tissue samples
All fresh-frozen PCa samples were obtained from our prostate

biobank, and written informed consent was obtained from all

patients. This study was approved by the institutional board of

ethics (CAPPesq – Comissão de Ética para Análise de Projetos de

Pesquisa) under the number 5907. The fresh-frozen tumors

originated from radical prostatectomy specimens, and a 1 cm3

fragment was isolated from the suspicious area and immediately

snap-frozen at 280uC. The remaining tissue was fixed in 10%

formalin, routinely processed, and stained with hematoxylin and

eosin for histological examination. The samples were subsequently

reviewed and graded using the modified Gleason grading system

[24], and the stage was determined following TNM 2010.

Cell lines
The prostate cancer cell lines LNCaP, DU145, and PC3 were

obtained from the American Type Culture Collection (ATCC).

LNCaP, DU145, and PC3 were maintained in RPMI, DMEM,

and MEM media (Invitrogen, Carlsbad, CA, EUA), respectively.

All media were supplemented with 10% fetal bovine serum and a

1% antibiotic/antimycotic solution (Sigma, St. Louis, MO, USA),

and the cultures were incubated at 37uC in an atmosphere of 5%

CO2.

RNA and miRNA isolation and amplification
Both RNA and miRNA were isolated from prostate tissues and

cell lines using the Ambion mirVana kit (Austin, TX, USA)

according to the manufacturer’s protocol. cDNA was generated

from RNA and miRNA using a TaqMan RNA Reverse

Transcription Kit and TaqMan MicroRNA Reverse Transcrip-

tion Kit, respectively. For gene and miRNA amplification, a

TaqMan Reagent Kit was used with the 7500 Fast Real-Time

PCR System (Applied Biosystems, Foster City, CA, USA). The

reactions were performed in duplicate, and B2M (b-2-micro-

globulin) and RNU-48 were used as endogenous controls for genes

and miRNAs, respectively.

Gene and miRNA expression levels were obtained by relative

quantification using the 2–DDct method. The formula employed is

DDCT = dCT1– dCT2, where dCT1 = CT of the target (tumor

sample) – CT of the mean of the endogenous control (tumor

sample), and dCT2 = CT of the mean of the normal controls

(benign prostate tissue) – CT of the mean of the endogenous

control (benign prostate tissue). For evaluation of the metastatic

cell lines, the ‘‘control’’ (dCT2) was considered to be the pT2

tumors. The final result was obtained by applying the 2–DDct

method. Findings greater or lesser than 1 were considered to

indicate overexpression or underexpression, respectively. All

values were standardized relative to the normal control values,

which were represented as a value of 1.

Gene and miRNA selection
The choice of miRNAs and genes evaluated in this study was

based on their role in the EMT process in various types of cancer.

We performed a literature search via PubMed and Web of Science

using the terms ‘‘epithelial-mesenchymal transition’’, ‘‘cancer’’,

and ‘‘miRNA’’. Based on the data published in the literature, we

selected 18 miRNAs that targeted the most important genes

involved in EMT. The data are presented in Table 1.

Statistical Analysis
To compare the clinicopathological features among patients

with localized PCa, the patients were divided into groups based on

their GS (GS #6 vs GS $8), pathological stage (pT2 vs pT3), pre-

operative PSA (,10 vs $10 ng/mL), and absence or presence of

biochemical recurrence, defined as PSA $0,02 ng/mL. The

patients were also classified into low-risk and high-risk disease

groups according to the presence of any unfavorable feature. In

this scenario, the expression values in the tumor tissue were

compared to those in the benign prostate tissue.

For the evaluation of metastatic tumors, three metastatic PCa

cell lines were analyzed together and designated as the metastatic

group. The expression levels of the genes and miRNAs between

the cell group and pT3 tumors were compared in relation to pT2

tumors, which were considered the ‘‘control’’ group. The rationale

was that the pathological stage might represent a practical

evidence of EMT, and by using this method, we could evaluate

which EMT markers are involved in the progression of a localized

tumor to metastasis.

The Mann-Whitney U and T tests were used to compare the

GS, pathological stage, pre-operative PSA levels, biochemical

recurrence, and risk groups. The distribution of gene and miRNA

expression levels was skewed, and the data were log-transformed
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for analysis. Kaplan-Meier curves were constructed to analyze

biochemical recurrence-free survival. The statistical significance

for all tests, as assessed by calculating two-sided P-values, was set

at ,0.05.

Results

Patient data
The mean age of the patients was 65 years. The mean and

median GS were 7.3 and 7, respectively. Twenty-two patients

(43%) were stage pT2, and 29 (57%) patients were stage pT3.

Seventeen (33%) patients had biochemical recurrence in a mean

follow-up period of 63.06 months. The data are illustrated in

Table 2.

miRNA and gene expression profiling in localized PCa
miRNAs 200a, 200b, 200c, 429, 141, 205, 203, 21, 183, and

373 were overexpressed in 35 (69%), 47 (92%), 38 (74%), 39

(77%), 42 (82%), 44 (86%), 38 (74%), 51 (100%), 38 (74%), and 33

(64%) samples, respectively. miRNAs 1, 29b, 9, and 495 were

underexpressed in 41 (80%), 41 (80%), 36 (71%), and 42 (82%)

samples, respectively. miRNAs 34a, 155, 30a, and 10b showed a

variable pattern of expression: miR-34a and miR-155 were

underexpressed in 55% and 57% of the samples, respectively,

and miR-30a and miR-10b were overexpressed in 51% of the

samples (Table S1 in File S1).

E-cadherin was overexpressed in 50 cases (98%). The genes N-

cadherin, TGFB1, and ZEB1 were underexpressed in 36 (71%)

patients, while SNAI2 and Vimentin were underexpressed in 42

(82%) and 41 (80%) patients, respectively. ZEB2, SNAI1, and

PDGFD showed variable patterns of expression. On the other

hand, TWIST1 was the only EMT-induced gene that showed

overexpression in the majority of cases (73%) (Table S1 in File S1).

miRNAs and genes associated with clinicopathological
features

Tables 3 and 4 illustrate the data regarding miRNA and gene

expression in relation to clinicopathological features, respectively.

Low levels of miR-200b, miR-30a, and miR-1 were associated

with pT3 disease. Of the 18 miRNAs studied, three were

significantly underexpressed in pT3 disease (miR-200b - 7.73 vs

23.86, P = 0.02; miR-30a - 1.73 vs 3.79, P = 0.048; and miR-1 -

0.72 vs 1.97, P = 0.04). However, regarding the genes, we could

not find any association between their expression and pathological

stage.

We assessed the association of GS with the miRNAs excluding

GS 7 because of their uncertain behavior. Fifteen patients (29%)

had a GS #6 and 23 (45%) had a GS $8. We found that miR-

200b expression was significantly lower in patients with a GS $8

when compared to patients with a GS #6 (6.94 vs 18.67,

P = 0.035). No association was found between GS and the other

miRNAs and genes.

When patients were grouped according to low-risk and high-risk

disease, the high-risk disease had significantly lower levels of miR-

30a (1.70 vs 6.37, P = 0.039). Also high levels of Vimentin and

TWIST1 were significantly associated with high-risk disease (0.27

vs 0.90, P = 0.017; 1.81 vs 8.89, P = 0.018).

Due to the significant association between miRNAs 200b, 30a,

and 1 with pathological stage and their potential as prognostic

markers, a survival analysis was performed. Kaplan-Meier analysis

revealed that patients with lower levels of miR-200b had

significantly shorter biochemical recurrence-free survival

(P = 0.049) (Figure 1).

Moreover, miR-183 and TWIST1 expression levels were

significantly higher in metastatic PCa cell lines compared to the

levels in patients with pT3 disease and high-grade tumors (Table

S2 in File S1). In cell lines, the miR-183 and Twist1 levels were

2.64 and 3.54, respectively, while in pT3 tumors, their levels were

Table 1. Selection of miRNAs and their main targets.

microRNA Target gene Reference

miR-200a ZEB1, ZEB2 Bracken et al, 2008; Gregory et al, 2008; Korpal et al, 2008

miR-200b ZEB1, ZEB2, SNAI2, PDGFD Bracken et al, 2008; Gregory et al, 2008; Korpal et al, 2008; Kong et al, 2009; Liu et al, 2012

miR-200c ZEB1, ZEB2 Bracken et al, 2008; Gregory et al, 2008; Korpal et al, 2008

miR-429 ZEB1, ZEB2 Bracken et al, 2008; Gregory et al, 2008; Korpal et al, 2008

miR-141 ZEB1, ZEB2 Burk et al, 2008; Gregory et al, 2008; Korpal et al, 2008

miR-205 ZEB1, ZEB2 Gregory et al, 2008

miR-203 ZEB1, ZEB2, SNAI2 Wellner et al, 2009; Saini et al, 2011; Zhang et al, 2011; Qu et al, 2013

miR-183 ZEB1 Wellner et al, 2009

miR-1 SNAI2 Liu et al, 2012; Tominaga et al, 2012

miR-29b SNAI1 Ru et al, 2012

miR-9 E-cadherin Ma et al, 2010

miR-21 SNAI1 Bornachea et al, 2012

miR-495 E-cadherin Hwang-Verslues et al, 2011

miR-30a SNAI1, Vimentin Kumarswamy et al, 2011; Cheng et al, 2012;

miR-34a ZEB1, SNAI1 Siemens et al, 2011; Hahn et al, 2013

miR-155 TGFB1 Kong et al, 2008; Johansson et al, 2013

miR-10b E-cadherin, TWIST1 Ma et al, 2007; Liu et al, 2012

miR-373 Involved in metastasis Huang et al, 2008; Yang et al, 2009

doi:10.1371/journal.pone.0113700.t001
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40.41 and 14.45, respectively (P = 0.009 and P = 0.049, respec-

tively).

Discussion

The importance of the EMT in carcinogenesis has been

extensively studied in the last few years, and it is now considered

one of the main mechanisms responsible for tumor progression

and metastatic dissemination. Our study aimed to evaluate the

significance of the expression patterns of multiple miRNAs and

genes involved in EMT in clinical specimens of localized prostate

cancer and in metastatic cell lines. Our findings are summarized in

Figure 2, which shows the main miRNAs and genes involved in

EMT in the progression of PCa and their possible mechanism of

action.

We have shown that miR-200b, miR-30a, and miR-1 were

significantly underexpressed in non-organ-confined tumors and

could constitute interesting prognostic factors. A recent study

supports our findings by showing that miR-200b and miR-1

induce mesenchymal-epithelial transition (MET) in mouse and

human PCa cells and are important regulators in prostatic

tumorigenesis and tumor progression [23].

miR-200b was overexpressed in PCa specimens, and this

finding is in agreement with previous studies on PCa [25,26].

The members of the miR-200 family are the most important

miRNAs involved in EMT [27], and studies in PCa cells have

shown that miR-200b inhibits EMT, growth, and metastasis

[23,28]. We hypothesize that miR-200b has the greatest potential

to become a prognostic marker because lower expression of miR-

200b was significantly associated with a high GS, pT3 disease, and

shorter biochemical recurrence-free survival. The role of miR-

200b has been described in other tumors, and its downregulation

is related to advanced disease stage [29] and shorter overall

survival [30–32]. Similar to our findings, Barron et al found that

miR-200a levels were reduced in patients who relapsed by

Table 2. Clinicopathological Features of 51 Patients with Localized Prostate Cancer Treated by Radical Prostatectomy.

Clinicopathological Features PCa Cases (51) Control (10) P

Age, years

Mean (SD) 65 (67.5) 71,9 (68.4)

Median 66 72

Min-Max 49–77 59–88

0.012

Clinical Stage (N, %)

T1c 22 (45)

T2a 13 (27)

T2b 9 (18)

T2c 5 (10)

PSA, ng/dL

Mean 8.19 (4.3) 1.05 (0.5)

Median 9 1.25

Min-Max 4.1–20 0.06–1.58

,0.001

,10 (N, %) 39 (76)

$10 (N, %) 12 (24)

Gleason Score (N, %)

Median GS 7

Score #6 15 (30)

Score 5 2

Score 6 13

Score 7 13 (25)

Score $8 23 (45)

Score 8 18

Score 9 3

Score 10 2

Pathologic T Stage (N, %)

pT2 22 (43)

pT3 29 (57)

Tumor recurrence (N, %)

Yes 17 (33)

No 34 (67)

doi:10.1371/journal.pone.0113700.t002
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studying miR-200a expression in formalin-fixed paraffin-embed-

ded tissue from patients with pT3 disease [33], supporting the

potential of miR-200 family as a marker of biochemical

recurrence.

Previous studies indicate that downregulation of miR-200 may

contribute to the progression of PCa [15] [34]. Xu et al observed

an 80% reduction in miR-200b levels in chemically castrated

LNCaP cells via RNA sequencing [35]. Emerging evidence

supports the involvement of EMT processes in the deregulation

of the androgen signaling axis, but data are still controversial. Zhu

and Kyprianou observed that androgens induce independently

EMT patterning within prostate cancer cells, resulting in

substantial changes in cellular invasion and motility [36]. The

activated androgen receptor (AR) has recently been shown to

promote EMT activation via suppression of E-cadherin expression

within breast cancer cells [37]. On the other hand, Sun et al found

that androgen deprivation causes EMT in vivo and acquisition of

mesenchymal features [38].

This is the second study relating miR-1 and prognosis in PCa.

Hudson et al previously found that lower expression levels of miR-1

were associated with earlier biochemical recurrence in PCa [39].

Now we showed that miR-1 was downregulated in the primary

tumor compared to benign prostate tissue, and was significantly

reduced in non-organ confined disease. It is thought that miR-1

regulating Slug [23], through histone methylation and acetylation

[39] and also having as target genes related to proliferation,

migration and invasion [40] plays an important role in EMT in

PCa.

Data regarding the role of miR-30a in PCa are scarce and

contradictory. In our study, miR-30a showed a variable pattern of

expression. miR-30a was described as being downregulated in the

study conducted by Porkka et al [41], while Carlsson et al reported

the upregulation of this miRNA [42]. Recently, Kao et al showed

that the ETS-related gene (ERG), which is the most frequently

overexpressed oncogene in PCa, is a direct target of miR-30 and

that overexpression of miR-30 in PCa cells suppresses EMT

phenotypes and inhibits cell migration and invasion [43]. miR-30

family also inhibits cell migration, invasiveness, and metastasis in
vitro in other tumors, such as lung, breast, and hepatocellular

cancer [21,44–46], by targeting SNAI1 [21,44] and Vimentin

[45,46]. In this study, the relationship observed between decreased

expression of miR-30, advanced pathological stage, and high-risk

disease confirms miR-30 as a tumor suppressor miRNA in PCa.

Cheng et al observed that low levels of miR-30a were predictors of

advanced stage and lymph node metastasis in invasive breast

cancer [45]. Wang et al showed that low expression levels of miR-

30a were significantly associated with a higher incidence of portal

vein tumor thrombus in hepatocellular carcinoma [46].

Regarding the genes, we observed overexpression of E-cadherin

in virtually all cases, and the majority of the mesenchymal

markers, including N-cadherin, TGFB1, ZEB1, Vimentin, and

SNAI2, were downregulated. This gene expression profile strongly

suggests that localized PCa maintains the epithelial phenotype

despite tumor differentiation and increasing stage. However,

TWIST1 was overexpressed in 73% of the cases. TWIST1 is a

helix-loop-helix transcription factor that activates EMT through

indirect inhibition of E-cadherin [47]. TWIST1 has been shown to

be overexpressed in PCa on immunohistochemistry assays and to

positively correlate with the GS [48,49]. It is interesting that a

gene with such importance in EMT and with prognostic value in

PCa is overexpressed in localized tumors. The early overexpres-

sion of TWIST1 may be attributed to its regulation by the NKX3-1
gene [50], a tumor suppressor that was found to be underexpressed

in the early stages of PCa [51,52]. However, the early upregulation
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of TWIST1 does not appear to be sufficient to initiate the EMT

process. According to Casas et al, TWIST1 induces SNAI2 to

promote EMT [53], but depletion of SNAI2 completely blocks the

ability of TWIST1 to suppress E-cadherin and induce EMT.

We have shown that high levels of TWIST1, as well as

Vimentin, are significantly associated with patients in the high-risk

group and TWIST1 were also significantly higher in the metastatic

cell lines. In a recent study, Behnsawy et al [12] showed that high

expression levels of TWIST1 and Vimentin evaluated by

immunohistochemistry is an independent factor related to shorter

biochemical recurrence-free survival, suggesting that these genes

might be potential markers of biochemical recurrence after radical

prostatectomy.

TWIST1 appears to play a role in various steps of EMT, and its

role in the progression of PCa [49]. In the study by Kwok et al,

TWIST1 expression was higher in tissues derived from metastatic

lesions from bones and lymph nodes [48]. The role of TWIST1 in

this later step of EMT might be explained by the activation of its

target, miR-10b. miR-10b not only represses E-cadherin [54] but

also inhibits the translation of the HOXD10 protein, permitting

the expression of the pro-metastatic gene product, RHOC [55].

We have also observed that expression levels of miR-183 were

significantly higher in the metastatic group. Ueno et al observed

that higher expression levels of miR-183 were significantly

associated with higher PSA, higher stage and shorter overall

survival after radical prostatectomy, but its behavior in PCa is

absolutely controversial some showing that miR-183 promotes

migration and invasion [56–58], while others indicate that it

inhibits migration, invasion, and metastasis [59–61]. Some targets

of miR-183 have been proposed, DKK3, SMAD4 [56], EGR1 and

PTEN [57], which turns miR-183 a context dependent miRNA.

Based on our results and according to previous studies in the

literature, we believe that miR-183 acts as an oncomiR in PCa,

and the mechanism might involve PTEN which is related to PCa

progression and development of metastasis [62]. Ding et al also

showed that concomitant PTEN and SMAD4 inactivation in the

prostatic epithelium is able to produce a fully-penetrant invasive

and metastatic PCa phenotype in mice [63].

In conclusion, it is important to understand that EMT

influences tumor progression in different steps through several

markers. Here, we described a comprehensive study of miRNAs

and genes related to EMT in PCa and found that the expression

levels of miR-200b, miR-30a, miR-1, TWIST1 and Vimentin

could be used in decision-making processes related to primary or

adjuvant treatments in the future.

Figure 1. Kaplan-Meier biochemical recurrence-free survival curve based on miR-200b mean expression (P = 0.049, Log rank test).
Patients with miR-200b expression levels #14.690 showed significantly shorter biochemical recurrence-free survival.
doi:10.1371/journal.pone.0113700.g001
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