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Abstract: The human gut microbiome is intricately linked to systemic and organ-specific
immune responses and is highly responsive to dietary modulation. As metagenomic
techniques enable in-depth study of an ever-growing number of gut microbial species, it has
become increasingly feasible to decipher the specific functions of the gut microbiome and
how they may be modulated by diet. Diet exerts both supportive and selective pressures
on the gut microbiome by regulating a multitude of factors, including energy density,
macronutrient and micronutrient content, and circadian rhythm. The microbiome, in turn,
contributes to local and systemic immune responses by providing colonization resistance
against pathogens, shaping immune cell activity and differentiation, and facilitating the
production of bioactive metabolites. Emerging research has strengthened the connections
between the gut microbiome and cardiometabolic disorders (e.g., cardiovascular disease,
obesity, type-2 diabetes), autoimmune conditions (e.g., type-1 diabetes, rheumatoid arthritis,
celiac disease), respiratory disease, chronic kidney and liver disease, inflammatory bowel
disease, and neurological disorders (e.g., Alzheimer’s, Parkinson’s disease, depressive
disorders). Here, we outline ways in which dietary factors impact host response in diseases
through alterations of gut microbiome functionality and composition. Consideration of
diet-mediated microbial effects within the context of the diseases discussed highlights the
potential of microbiome-targeted treatment strategies as alternative or adjunct therapies to
improve patient outcomes.

Keywords: fermentable fiber; short-chain fatty acids; probiotics; fecal microbiota transfer;
circadian rhythm

1. Introduction
In the 12th century, the physician and philosopher Maimonides wrote, “No disease

that can be treated by diet should be treated with any other means” [1]. There has long been
an understanding of the connection between diet and the maintenance of health, and while
it is rarely the case that diet is relied upon as the primary treatment of modern diseases,
recent research developments are shedding light on the nuanced role that diet can play
in modulating disease outcomes. Beyond providing the macromolecules, nutrients, and
energy necessary to sustain life, diet is an integral form of communication between the
external environment and the host’s biological processes. This communication between
dietary input and the host is not accomplished directly but instead interfaces via the activity
of the trillions of microbes that inhabit the human gut [2,3]. The human microbiome, often
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referred to as a superorganism within our own bodies, facilitates digestion, metabolite
production, maintenance of mucosal barriers, and maturation of the gut-associated lym-
phoid system [4,5]. The human gut microbiome primarily develops over the initial three
years of life, with gradual exposure to diverse microbial species playing an essential role
in educating the nascent immune system [6]. Diet impacts the microbiome from a very
early age, with each major shift in infant microbiome composition being precipitated by
dietary milestone events (e.g., transitioning from milk to solid foods) and the microbiome
adapting to optimize nutrient utilization from various sources [7]. The mature human gut
microbiome is primarily comprised of the phyla Firmicutes (Bacillota), Bacteroidetes (Bac-
teroidota), Actionobacteriota, Proteobacteria (Pseudomonata), and Verrucomicrobiota [8].
While Firmicutes and Bacteroidetes phyla typically account for more than 90% of human
gut microbes, there is staggering diversity at finer taxonomic levels, with hundreds of
families and thousands of unique species identified as common colonizers of the gut [9].

This wealth of data and the proliferation of metabolomic analysis techniques in the
past 25 years has yielded a flurry of research unearthing associative relationships between
microbiome composition and disease [2,10,11]. Shifts in gut microbiome functionality and
composition, i.e., dysbiosis, have been shown to have significant effects on the disease
etiology of autoimmune and inflammatory diseases, chronic obesity, diabetic conditions,
neurological disorders, and infectious diseases. Microbiota exert their influence on disease
progression through various mechanisms, including the production of secondary bile acids,
microbial metabolites, and short-chain fatty acids (SCFAs), as well as by activating the tran-
scription factors, membrane permeability, immune tolerance, production of inflammatory
cytokines, and the circadian rhythms of host tissues [12–16]. These effects are not confined
to the gut, as gut microbiota can also exert their effect systemically through a variety of
pathways, such as the gut–liver and gut–brain axis [17,18].

In clinical applications, the modulation of microbiome composition can play a piv-
otal role in promoting immune response or serving as an adjuvant in support of other
treatment modalities. Leveraging microbiome–disease relationships in treatment, however,
is complicated by both the variability in microbiome composition between individuals
and the diversity of metabolic pathways involved [19]. Established treatment methods,
such as fecal microbiota transplantation (FMT) and live biotherapeutics, have potential
applications in reversing dysbiotic conditions in various diseases; however, they have yet
to be approved for clinical use outside of specific treatment cases such as recurrent gastroin-
testinal tract (GI) infection. Additionally, the efficacy of these therapies in peripheral use
cases has been shown to be dependent on individual and dietary factors and encounters
challenges in chronic diseases due to lack of recurrent treatment [20,21]. One step towards
unpacking this complex relationship between the microbiome and disease is by gaining a
better understanding of how dietary inputs modulate microbiome composition and func-
tionality. Diet is the quintessential external factor responsible for shaping environmental
conditions in the gut and is capable of inducing both short and long-term changes to the
microbiome [22,23]. Although the gut microbiome’s response to dietary changes varies
according to individual, cultural, and environmental factors, broad patterns have been
identified. In this review, we provide an overview of the gut microbiome’s involvement in
immune response, how dietary composition mediates microbial activity, and discuss how
targeted dietary interventions may reshape the microbiome to enhance host immunity and
ameliorate specific disease conditions.

2. The Gut Microbiota–Immune Axis: Key Players and Interactions
The gut microbiota comprises trillions of microorganisms, including bacteria, viruses,

and fungi, that occupy a specific niche in synergy with the host [24]. The microbiota
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interacts with host immune cells to maintain immune homeostasis and influence immune
responses through various mechanisms: (i) direct interactions with intestinal epithelia;
(ii) modulation of immune cell functions; (iii) the production of bioactive metabolites like
SCFAs, secondary bile acids, and indole. These processes are crucial for maintaining mu-
cosal immunity, regulating systemic immune responses, and preventing immune-related
disorders. The interaction between the gut microbiota and the intestinal epithelia produces
continuous immune signaling [25]. The regulation of this immune response, alongside
the maintenance of epithelial barrier integrity and permeability, is crucial for intestinal
homeostasis [26]. The intestinal epithelia, as accessory immune cells, are vital media-
tors of intestinal homeostasis that maintain an immunological environment permissive to
colonization by commensal bacteria and protect against invasion from pathogenic microor-
ganisms [27] (Figure 1). The epithelial barrier is comprised of several components: (i) The
outer mucus layer surrounds the commensal microbiota and contains antimicrobial proteins
(AMPs) and secretory immunoglobulin A (sIgA). (ii) The central epithelial layer consists of
various types of cells like epithelial cells, goblet cells (secrete mucins), Paneth cells (syn-
thesize AMPs), enterocytes (absorb water and nutrients), enteroendocrine cells (produce
hormones), and microfold cells (i.e., M cells, specialized for antigen presentation). (iii) The
inner layer consists of lamina propria (LP), which includes both innate (e.g., macrophages,
natural killer cells) and adaptive (T cells, B cells), providing an immune-ready environment
to respond to potential threats [28]. In the gut, mucosal immune cells are either present in
gut-associated lymphoid tissues (GALT), where they carry the antigen-specific adaptive
immune responses, or accumulate in the LP as a network of innate and adaptive effector
cells. Organized GALT consists of various lymphoid follicles, like mesenteric lymph nodes,
Peyer’s patches (PPs), and isolated lymphoid follicles (ILFs) [28].

Gut microbiota plays a critical role in shaping the activity and responsiveness of
immune cells, influencing their ability to mount effective immune responses to pathogens or
modulate inflammation. The interactions between the host immune system and microbiota
are mediated through the recognition of pattern-recognition receptors (PRRs). PRRs are
a diverse family of extracellular and intracellular receptors that detect specific microbe-
associated molecular patterns (MAMPs). These receptors include Toll-like receptors (TLRs),
nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and C-type
lectin receptors (CLRs) [29]. Upon activation, PRRs trigger the induction of chemokines
and cytokines that orchestrate a protective immune response. TLRs play a vital role in
regulating several key processes in the gut immune response. They actively contribute
to the secretion of mucus and AMPs, which are essential for maintaining the intestinal
barrier and defending against pathogens. TLR activation also promotes IgA class switching,
which enhances mucosal immunity by producing secretory IgA antibodies that opsonize
bacteria in the lumen, thus preventing their access to the LP. Furthermore, TLRs induce
the expression of the polymeric immunoglobulin receptor, facilitate the translocation of
tight junction proteins to strengthen the intestinal epithelial barrier, and stimulate the
expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. This leads
to the production of reactive oxygen species (ROS), which further support the immune
defense against pathogens [30–32]. Studies have shown that Bacteroides fragilis (B. fragilis)
activates the TLR pathway of T lymphocytes to establish host-microbial symbiosis and
influences T cell development and differentiation [33,34]. MyD88 is the key signaling
adapter protein in the innate immune response, acting as a central intermediary between
TLRs and downstream signaling pathways. Most TLRs utilize MyD88 for signaling, except
for TLR3 [35]. In addition, MyD88-dependent signaling pathways are imperative for the
activation of NF-κB, leading to the production of inflammatory cytokines and the activation
of immune responses. MyD88 deficiency results in an impaired innate immune response
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and increased susceptibility to infections [36,37]. Study shows that MyD88 signaling in T
cells controls IgA-mediated control of the microbiota [38].

 

Figure 1. Gut homeostasis is maintained through the intricate interplay between the gut microbiota,
dietary factors, and the immune system: (A) Gut homeostasis is maintained by a thriving population
of beneficial (commensal) microbes and minimal presence of harmful (pathogenic) bacteria. The
Firmicutes to Bacteroidetes (F/B) ratio is reduced in homeostasis conditions. These commensals
contribute to gut health by generating key metabolites, including short-chain fatty acids (SCFAs),
which support various physiological functions. In parallel, intestinal epithelial cells (particularly
Paneth cells, PC) secrete antimicrobial peptides (AMPs) that help control pathogenic microbes and
sustain microbial equilibrium. Goblet cells (GC) produce mucin, a critical component for maintaining
intestinal barrier integrity and permeability. The gut lining consists of epithelial cells, forming a
barrier that restricts the movement of luminal substances and microbes. Beneath this epithelial
layer lies the lamina propria, densely populated with immune cells. SCFAs contribute to immune
regulation by inhibiting the histone deacetylase (HDAC) pathway, thereby helping to balance both
innate and adaptive immune responses. Dietary components such as vitamins, fermentable fibers,
probiotics, and polyphenols also play a key role in maintaining gut homeostasis and supporting
immune surveillance. (B) Gut microbiota dysbiosis occurs when beneficial microbes reduce and
pathogenic species proliferate. The F/B ratio is increased in dysbiosis conditions. This disruption
can result from various factors, including dietary imbalances, such as high-fat diets, deficiencies in
vitamins or dietary fiber, and increased intake of microbial toxins like lipopolysaccharides (LPS), as
well as antibiotic use and other external or genetic influences. As dysbiosis advances, the production
of SCFAs and AMPs is reduced, compromising the integrity of the intestinal epithelial barrier.
This weakened barrier allows pathogenic microbes and microbial products to translocate into the
lamina propria. In response, resident immune cells trigger an inflammatory cascade (increased
macrophage activation, elevated Th17 cells, and lowed Tregs), recruiting additional immune cells
and promoting tissue inflammation. Within this figure (↑) and (↓) indicates increase and decrease
respectively, in the abundance of the microorganisms, metabolites, or cytokines listed. Certain
microbial metabolites, including trimethylamine N-oxide (TMAO), indoxyl sulfate (IxS), p-cresyl
sulfate (pCS), and secondary bile acids (SBA), are implicated in the pathogenesis of various chronic
diseases such as cardiovascular disease (CVD), chronic kidney disease (CKD), type 2 diabetes (T2D),
metabolic-associated fatty liver disease (MAFLD), inflammatory bowel disease (IBD), and colorectal
cancer (CRC).

Adaptive immune cells (T and B lymphocytes) play a pivotal role in the maintenance
of immune homeostasis by modulating antigen-specific responses and supporting the struc-



Biomedicines 2025, 13, 1357 5 of 51

tural and functional integrity of the barrier functions of the gut mucosa. Gut microbiota
can modulate the differentiation of T cells into distinct subsets, such as T-helper (Th) cells
(Th1, Th2, Th17) or regulatory T cells (Tregs) [39]. Conversely, gut dysbiosis can disrupt
this immune balance, leading to aberrant T cell responses that can contribute to the devel-
opment of immune-mediated disorders [40]. Moreover, intricate alterations occur in T cells
with increasing age, including epigenetic and metabolic disorders, which can affect naive,
memory, and effector T cell populations [41,42]. Furthermore, the T cell receptor (TCR)
repertoire diminishes with age, and this is accompanied by an increase in the frequency of
senescent or exhausted T cells, which are functionally inactive [43]. This immunosenescence
contributes to the impaired immune system and heightens the risk of chronic inflammation.
Butyrate, a short-chain fatty acid (SCFA) produced by commensals, plays a significant
role in counteracting this process by promoting the differentiation of peripherally induced
Tregs, which in turn inhibits the development of systemic inflammation [44]. In addition
to butyrate, de novo Treg-cell generation was also potentiated by propionate but not by
acetate [44]. SCFAs, in general, are also capable of reprogramming the metabolic activity of
immune cells, leading to the induction of regulatory B cells (Breg) and enhancing IL-10 (a
pleiotropic cytokine) production and suppressing Th17 cells, which are important processes
in controlling the inflammatory bowel diseases (IBD) and autoimmune disorders [45]. In
the context of host–pathogen interactions, commensal activation of memory T cells and traf-
ficking to inflamed sites is critical for protecting against bacterial infections. IL-10-mediated
anti-inflammatory responses by commensals also play a protective role in inflammatory
conditions. Additionally, studies have shown that microbiota-derived ATP promotes the
differentiation of lamina propria Th17 cells [46], bacteria-derived tryptophan metabolites
can induce intraepithelial CD4+ CD8+ T cells, and bacterial polysaccharides can expand
Tregs [47]. In vivo studies have demonstrated that Bifidobacteria species play crucial roles
in regulating immune responses, including balancing Th1 and Th2 responses, promoting
Th17 cell polarization, and activating CD8+ T cell effectors. In mouse models, specific
Bifidobacteria species have been shown to potently induce the development of intestinal
Th17 cells [48,49]. For instance, mice fed with Bifidobacterium longum exhibited a significant
increase in CD4+ T cells and a decrease in CD4+CD8+ T cell levels in mesenteric lymph
nodes and Peyer’s patches [50]. Additionally, Bifidobacteria has been implicated in tumor
inhibition. Studies have demonstrated that Bifidobacterium-treated mice displayed signifi-
cantly improved tumor suppression compared to untreated counterparts [51], suggesting a
potential role for these bacteria in modulating anti-tumor immune responses. Moreover,
Bifidobacterium-treated mice exhibited significantly improved tumor suppression, with
efficacy comparable to anti–PD-L1 therapy. Notably, the combination of Bifidobacterium
treatment and checkpoint blockade produced a synergistic effect, resulting in enhanced
control of tumor growth [51].

Interactions between the gut microbiota and gut-associated lymphoid tissue (GALT)
are essential to the regulation of B cell maturation, activation, and functions within the
intestinal immune environment. B cells are important for adaptive immunity due to
their capacity to differentiate into antibody-producing plasma cells that generate a sub-
stantial amount of IgA antibodies, which are released within the mucosa. Gut commen-
sals determine the type of IgA response: pathobionts with invasive properties induce
T cell-dependent IgA responses, whereas most bacteria induce T cell-independent IgA
responses [52]. IgA plays a crucial role in maintaining gut homeostasis by neutralizing
pathogens, preventing bacterial adhesion to the intestinal epithelium, and modulating
immune responses to commensal microbes; therefore, any disbalance in IgA response will
impact the microbial abundance and diversity in the gut mucosa, leading to dysbiosis [53].
Within the GALT, B cells undergo class switching to IgA in response to microbial and
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dietary antigens, a process influenced by cytokines such as TGF-β [54]. TGF-β contributes
to maintaining gut microbiota and immune tolerance-promoting IgA production by B cells,
which in turn creates a barrier that restricts the adhesion, growth, and entry of potential
pathogens and their harmful derivatives [40]. Moreover, B cells play an important role in
immune regulation by interacting with T cells, antigen-presenting cells (APCs, like DCs),
and releasing secretary cytokines. Bregs suppress excessive inflammation through IL-10
production and maintain immune homeostasis [55], thus preventing immune-mediated
diseases such as IBD and other autoimmune conditions.

3. Mechanisms Linking Diet, Gut Microbiota, and Immunity
3.1. Macronutrients

Every aspect of gastrointestinal function, from nutritional absorption to metabolic
activity to immunity, is influenced by the gut microbiome, and the gut microbiome is
similarly subject to dietary modulation. The gut microbiome is not just a beneficiary po-
sitioned to harvest nutrients from our diet but an indispensable contributor that enables
efficient adaptation to dietary changes and facilitates energy harvest and storage. Beginning
broadly, the macronutrient composition of the diet dictates the most basic environmental
conditions for the gut microbiome. Simple ecological mechanisms have been proposed to
underpin the response of the gut microbiome to dietary intake, whereby energy density
and nutrient scarcity apply the primary selective pressure on the gut microbiome [56]. In-
terestingly, dietary protein and carbohydrate intake have been found to have a significantly
greater impact on gut microbial abundance and diversity than dietary fat intake. Reduced
dietary protein intake intensifies microbial competition for nitrogen, leading to a compo-
sitional shift toward a bacterial community characteristic of nitrogen-limited conditions,
referred to as a ‘limitation-type’ bacterial cohort [56]. Microbial taxa associated with this
low-energy-density, low-protein diet demonstrate associations with improved intestinal
function and are also capable of metabolizing proteoglycans from the host’s mucosal sur-
face [57]. Researchers have proposed a feedback-loop model in which reductions in dietary
nitrogen availability resulted in improved intestinal functions, increasing the availability
of endogenous nitrogen sources to support microbes that can thrive in limited nitrogen
conditions. This model enabled the classification of broad microbial cohorts based on their
response to nutrient scarcity without accounting for ecological interactions across higher
taxonomic levels. While macronutrient availability imposes fundamental selective pressure
that shapes the gut microbiota, the complexity of these interactions is further amplified by
the distinct substrate utilization of bacterial taxa across different phyla.

Allocation of daily calories between macronutrient groups dictates the environmental
conditions for the gut microbiome. High protein diets, which are often low in carbohy-
drate and fiber content, have been shown to decrease the levels of beneficial fiber-derived
metabolites such as butyrate and shift the gut microbiome composition toward dysbio-
sis [58–60]. Conversely, when paired with calorie restriction, high protein diets have been
found instead to have positive effects on microbial diversity [61]. Furthermore, the source
of dietary protein, whether animal or plant-based, has been shown to distinctly influ-
ence the composition and diversity of the gut microbiome [22,62]. From an energetics
perspective, gut microbiota tends to favor carbohydrate metabolism as a primary source
of energy, often reserving amino acids for anabolic processes to avoid energy-intensive
amino acid biosynthesis [63]. This is further evidenced by the gross abundance of unique
carbohydrate-activating enzymes in microbial genomes [64,65]. Humans are highly reliant
on the carbohydrate-degrading function of gut microbes, as the human genome encodes
relatively few enzymes for complex carbohydrate breakdown. Indeed, the structural form
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and complexity of dietary carbohydrates significantly affect the outcomes of microbial
fermentation and the composition of gut microbiota.

Resistant starches (RS) and dietary fiber, both composed of complex carbohydrates
and resistant to human digestion, are critical in maintaining the function of the gut micro-
biome. RS passes through the small intestine in an undigested form to selectively stimulate
saccharolytic microbes and reduce the production of potentially harmful branched-chain
amino acids (BCAAs) [66,67]. Similarly, fiber-rich diets enhance microbiome functional-
ity by upregulating microbiome activity, providing precursors for SCFA synthesis, and
downregulating BCAA production [68–71]. Conversely, chronic dietary fiber deficiency
results in a significant reduction in microbial diversity with effects that can accumulate
across generations [68]. Non-digestible fiber describes carbohydrates that pass through
the small intestine intact, while the term prebiotics refers to a subset of non-digestible
fiber that promotes microbial function. Within the category of non-digestible fiber, there
are also distinctions between high-fermentable fiber, sometimes referred to as microbiota-
accessible carbohydrates (MACs), and low-fermentable fiber. Each fiber subset interacts
with gut microbiota in unique ways, with high-fermentable fiber contributing to microbe
energetics and SCFA production and low-fermentable fibers promoting the efficacy of FMT
treatments [21,70,72]. A comprehensive understanding of the relationship between fiber
and the gut microbiome is still a work in progress, but fiber serves a clearly established
critical role in providing substrates and energy necessary for a diverse and functional gut
microbiome [68].

3.2. Short Chain Fatty Acids

SCFAs are the products of microbial fermentation of dietary fibers and resistant
starches in the gut [73]. SCFAs are weak organic acids that differ in carbon chain length,
with acetate being the most abundant, followed by propionate and butyrate. Acetate and
propionate are predominantly produced by Gram-negative Bacteroidetes, while butyrate
is primarily produced by Gram-positive Firmicutes [74]. SCFA production in the gut is
approximately 35 µmol/kg body weight/hour [75] and can contribute up to 10% of human
caloric requirements [76]. SCFAs are absorbed by the gut epithelium, where acetate and
butyrate are rapidly metabolized into acetyl-CoA. Following absorption, propionate is sub-
sequently transported to the liver and serves as a substrate for gluconeogenesis. Butyrate
and propionate demonstrate the greatest potency of beneficial effects and play integral roles
in metabolic regulation along the gut–liver axis, innate immunity, inflammatory response,
and circadian rhythm. SCFAs exert their signaling effects through G-protein-coupled
receptors (GPCRs) in colonic epithelial cells [74,77]. Propionate inhibits enzymes in the
hepatic gluconeogenesis pathway through GPCR mediated signaling [78]. SCFA infusions
increased secretion and upregulated genes involved in production of glucagon-like peptide-
1 (GLP-1) in human cell lines, and increased fat oxidation, energy expenditure, plasma
peptide YY (PYY) in human studies [74,79,80]. The effects of SCFAs on the secretion of
GLP-1 and PYY are reported to occur through the FFAR2 GPCR signaling, although this
specific mechanism requires further validation [81].

SCFAs are also associated with the amelioration of GI inflammatory markers through
repression of TLR-activated mechanisms and by promoting mucus secretion and tight-
junction integrity [82,83]. While all SCFAs demonstrate anti-inflammatory activity, the
concentration threshold necessary for butyrate and propionate to induce these effects was
significantly lower than acetate and lactate. SCFAs modulate the production of proinflam-
matory cytokine from TLR-activated intestinal epithelial cells, as well as secretion from TLR-
activated macrophages, and reduce TLR-mediated CD40 upregulation [84]. SCFAs are also
involved in transcriptional regulation through entrainment of systemic circadian rhythm,
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a process mediated through the inhibition of histone deacetylases (HDACs) [82,85–87].
Butyrate and propionate derived from microbial fiber fermentation have been shown to
induce differentiation of both T-follicular regulatory cells in GALT and extrathymic Treg
cells, as well as promote IL-22 production by CD4+ T cells, all mediated through GPR41/43
signaling for HDAC inhibition [44,88–90]. A recent study demonstrated that butyrate en-
hances hepatic lipid metabolism via the GPR41/43 pathway, suggesting that butyrate could
be protective in the progression of metabolic dysfunction-associated fatty liver disease
(MAFLD) induced by the Western-style diet [91].

3.3. Micronutrients

Colon-targeted delivery of vitamins such as vitamins B2 (riboflavin), B9 (folate), B12
(cobalamin), and K has shown potential in modulating gut microbial composition and
functions [92]. Vitamin C supplementation has been strongly correlated with increased
SCFA production and greater α-diversity within gut microbiota [92]. Vitamins C and E
have both been linked to improved intestinal barrier integrity. To directly influence the
microbiota population in the GI tract, these vitamins are often administered via colon-
targeted formulations. In addition, vitamins A and D contribute to GI health by modulating
immune responses and maintaining gut homeostasis [93]. One study comparing the
gut microbial composition in children with autism spectrum disorder (ASD) before and
after a single high dose of vitamin A showed a significant difference in the levels of
Bifidobacterium [94], although the mechanism was unclear. In a South African study, vitamin
A supplementation was associated with a reduction in bacterial diversity; however, paired
studies have also reported that fungal (mycobiome) α-diversity increased under similar
conditions, suggesting a differential impact on distinct microbial communities within
the gut [95,96]. A recent study of 380 Cambodian schoolchildren found that vitamin A
deficiency was linked to a distinct gut microbiota profile based on fecal samples, further
underscoring its role in shaping microbial communities [97]. Vitamin D has both immune-
modulating and anticancer properties, as vitamin D-activated genes are correlated with
improved response to cancer treatments as well as increased survival. A study examining
the potential of vitamin D as a determinant of cancer immunity and immunotherapy
success found that it positively correlated with cancer resistance and a favorable gut profile
rich in Bacteroides fragilis in mice [98].

Low vitamin B3 dietary intake in obese subjects has been correlated with reduced
α-diversity and Bacteroidetes levels. One study examining the potential therapeutic effects
of gut-targeted vitamin B3 supplementation showed positive effects on systemic insulin
sensitivity and metabolic inflammation [99]. There is robust evidence for microbial synthe-
sis pathways and the sharing of vitamin B with both the host and other commensals within
the gut [100,101]. Some studies suggest that dysbiosis may result in vitamin B deficiencies,
but microbial production of B12 is estimated to supply only about 2% of human needs [102].

Polyphenols are a diverse class of plant-derived micronutrients commonly found
in fruits, vegetables, teas, chocolate, and other plant-based foods. Polyphenols provide
protection from reactive oxygen species through their radical scavenging activity and are
a subject of significant research activity widely studied due to their broad biochemical
effects [103]. Beyond their well-established antioxidant and anti-inflammatory properties,
polyphenols have demonstrated potential in treating non-communicable diseases, from
Alzheimer’s to atherosclerosis to IBD [104]. These effects are thought to be mediated
through microbiota-dependent pathways such as increasing SCFA production [105], down-
regulating inflammatory cytokines [106], improving gut barrier integrity [107], and shaping
microbiota composition [108].
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3.4. Diets (Western vs. Mediterranean, Animal vs. Plant Based)

The microbiome and its associated metabolic activities shift rapidly to adapt to changes
in dietary profile. Diet-driven changes to the microbiome generally occur within 4 days of
dietary intervention [22,66]. Interestingly, switching between animal-based and plant-based
diets dictates changes in fundamental metabolic pathways. Metabolomic analysis of the
gut microbiome under plant-based diets showed an upregulation of oxaloacetate (OAA)
conversion to phosphoenolpyruvate (PEP), supporting de novo synthesis of aromatic amino
acids. In contrast, microbial responses to animal-based diets promoted the reverse pathway
and enhanced amino acid catabolism. An animal-based diet has been shown to increase the
abundance of bile-tolerant microorganisms such as Alistipes, Bilophila, and Bacteroides while
reducing populations of Firmicutes species involved in the fermentation of dietary plant
polysaccharides, including Roseburia, Eubacterium rectale, and Ruminococcus bromii [22]. The
fascinating ability of the microbiome to adapt to available nutrient profiles likely conferred
a significant advantage on ancestors with inconsistent access to nutritional resources. In
addition to modulating the microbiome through energy and nutrient availability, dietary
intake can serve as an important source from which to introduce and maintain microbial
diversity. Direct gut colonization by microbes derived from fermented foods has been
demonstrated with regard to strains associated with cheeses and cured meats, such Lac-
tobacillus and Pediococcus spp. [22,109]. There is enormous variability in the nutritional
choices and dietary patterns on which humans subsist. Dietary patterns with high compo-
sitional diversity are highly correlated with microbiome stability, whereas consumption
of a monotonous diet, such as meal-replacement beverages, is detrimental to microbiome
stability [19].

The widely studied Mediterranean diet is characterized by whole grains, abundant
fruits and vegetables, minimally processed foods, and lean proteins [110]. In studies
examining the effects of a Mediterranean diet, adherence for the duration of one year
was correlated with a decrease in the Firmicutes/Bacteroidetes ratio, along with an in-
creased relative abundance of notably SCFA-producing strains such as Dorea, Roseburia,
and Coprococcus [111]. The increase in SCFA-producing microbiota observed with the
Mediterranean diet was not reproduced in a parallel group following the same diet under
calorie restriction, signifying that energy deprivation alters the microbiome’s response
to dietary interventions [111]. A Western-style diet, on the other hand, is characterized
by greater consumption of animal protein, saturated fats, and sugars, correlated with
lower microbiota abundance and decreases in SCFA production [112]. Several studies
have shown that high-fat diets can disrupt the gut microbiome, often leading to reduced
microbial diversity and enrichment of pro-inflammatory taxa [113,114]. However, it is
important to note that not all high-fat diets exert the same effects; variations in fat type
(e.g., saturated vs. unsaturated), source, and overall dietary composition can differentially
shape the microbiome [115]. Administration of a Mediterranean diet enriched with olive
oil over the course of one year led to a significant reduction in plasma BCAA levels [116].
BCAAs have been established as activators of nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) mediated inflammatory signaling, as well as contributing to
insulin resistance through activation of mammalian target of rapamycin (mTOR) complex-
1 [117,118]. It is noteworthy that an animal-based diet resulted in a significant upregulation
of bile salt hydrolases, enzymes that are required for the production of deoxycholic acid
(DCA), which, in addition to causing increased liver cancer risk, suppresses the abundance
of beneficial microbiota [22,119]. In addition, animal-based diets are rich in protein and
saturated fat, which may cause the production of detrimental microbial metabolites, such
as trimethylamine N-oxide (TMAO) and secondary bile acids, potentially promoting the
risk of cardiovascular and liver diseases [120] (Figure 1).
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Dietary patterns have a significant impact on metabolic function, chronic inflamma-
tion, immune system, and gut microbiota composition in human health. Western diets
can promote the growth of microbiota enriched in pro-inflammatory bacteria and are as-
sociated with reduced microbial diversity and a shift toward less beneficial microbiome
profiles [112,121]. This is further supported by findings from Vangay et al. (2018), which
demonstrated that immigration to the U.S. and subsequent dietary Westernization led to
significant loss of gut microbial diversity and increased abundance of Western-associated
taxa [122]. In addition, the Western diet also promotes secondary-bile acid-producing
bacteria such as Bilophila wadsworthia and Alistipes, which are associated with a high risk
of metabolic syndrome and inflammation [121]. Importantly, Western-style diets high in
saturated fats and simple sugars are associated with endotoxemia and elevated circulat-
ing levels of lipopolysaccharide (LPS), an endotoxin and a pro-inflammatory microbial
molecule [123,124]. LPS can cross the intestinal barrier and stimulate inflammatory media-
tors in various tissues and organs via activation of the TLR pathway, which is present in
most cells and macrophages. On the contrary, plant-derived diets support the growth of
fiber-metabolizing bacteria and short-chain fatty acid (SCFA)-producing bacteria, including
Faecalibacterium prausnitzii and Roseburia, which promotes anti-inflammatory effects and
gut barrier integrity [121]. Plant-derived diets, which are generally high in polyphenols,
omega-3 fatty acids, and fermented products, help mitigate inflammation and maintain
mucosal immune homeostasis [125]. These results emphasize the significance of dietary
approaches that prioritize diverse, fiber-rich, and marginally processed foods to improve
resilient microbiome and reduce inflammatory and metabolic disease risk.

3.5. Ultra-Processed Foods

The Western diet is increasingly characterized by high consumption levels of ultra-
processed foods (UPFs). The “ultra processed” classification within the NOVA system
indicates the use of exclusively industrial processes to convert high-yield crops into compo-
nents or products with extremely high longevity and palatability [126,127]. Examples of
ultra-processed components include modified sugars, protein isolates, and hydrogenated
oils, as well as emulsifying agents and synthetic color and flavor additives. Foods classified
in the ultra-processed category include frozen and premade meals, reconstituted meat
products, soft drinks, and packaged snacks and cookies. Studies estimate that approxi-
mately 60% of calories consumed by the US population were sourced from ultra-processed
foods, with even higher consumption levels observed in younger and lower-income co-
horts [128,129]. The ubiquitous presence of UPFs in modern diets prompts health concerns
due to the additives present and nutrient profiles.

Ultra-processed food consumption has been associated with a broad spectrum of
adverse health outcomes. In a comprehensive meta-analysis, greater exposure to UPFs
is linked with a higher risk of all-cause mortality, cardiovascular events, mental health
outcomes, and metabolic disorders [130]. A large prospective cohort study spanning more
than a decade found that UPF consumption level was positively associated with an in-
creased risk of cancer and cardiometabolic disease [131]. Within this analysis, specific food
subgroups such as sugar-sweetened beverages and animal-based products demonstrated
the most significant associations with multimorbidity risk. The pronounced impact of
UPF consumption on the gut microbiome composition suggests that UPF–microbiome
interactions are a potential mechanism for disease pathogenesis [132,133]. Gut microbiome
alterations mediated by UPF consumption have been implicated in the development of dia-
betic conditions [134], metabolic disorders [132], IBD [135–137], and allergic disease [138].

Accumulating evidence highlights the role of dietary additives commonly present in
UPFs in disrupting gut microbiome function, potentially contributing to the pathogenesis
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of various diseases. A large prospective cohort study recently described significant associ-
ations between emulsifiers (e.g., carrageenan, sodium citrate, guar gum) and the risk of
Type-2 diabetes [139]. Emulsifying agents can act similarly to non-ionic detergents, disrupt-
ing mucus barrier function and altering epithelial membrane permeability. For example,
degradation products of carrageenan demonstrate pro-inflammatory properties that pro-
mote intestinal permeability and reduce insulin sensitivity in high BMI patients [140]. The
emulsifying agent polysorbate-80 exhibits similar effects on gut permeability, decreasing the
expression of proteins involved in promoting epithelial integrity and allowing for increased
absorption of endocrine toxins [141]. In mouse models, polysorbate-80 administration
facilitated the rapid onset of hepatic steatosis and significant increases in LPS, flagellin, and
the intestinal inflammation marker serum lipocalin-2 [142]. Rather than affecting epithelial
permeability, carboxymethylcellulose directly interacts with the human gut microbiome,
promoting inflammatory capabilities and reducing both commensal abundance and SCFA
production [143,144].

In addition to emulsifiers, common additives such as nanoparticles, colorants, and
modified starches have been shown to disrupt the gut microbiome and are increasingly
linked to disease development. Inorganic nanoparticle additives such as titanium dioxide
and aluminosilicates can act as adjuvants to bacterial toxins to intensify inflammatory
cytokine responses [145–147]. TiO2, an additive used to enhance white color in desserts and
toothpaste, does not demonstrate direct host toxicity but has been shown to accumulate in
commensal gut microbes, potentially altering microbial composition and SCFA production
in mouse models [148,149]. These effects are more pronounced in obese mice, where TiO2

treatment resulted in distortion of intestinal epithelial structure, significant immune cell
infiltration, increased levels of pro-inflammatory cytokine IL-12, and decreased levels of
anti-inflammatory cytokine IL-10 [148]. The gut microbiome is also directly involved in the
processing and absorption of synthetic colorants such as Red 40 and Yellow 6. The microbe-
facilitated reduction in these additives contributes to the development of IBD in conditions
of IL-23 expression [137]. Heavily modified carbohydrate additives have also demonstrated
negative effects on gut functionality. Maltodextrin, a partially hydrolyzed starch used as
a textural additive in a vast number of UPF products, can contribute to intestinal disease
susceptibility by disrupting mucin production, inhibiting anti-bacterial cellular responses,
and promoting the adhesion of pathogenic microbes [150–152]. In addition to emulsifiers,
nanoparticles, and colorants, UPFs often contain antimicrobial preservatives to extend
the shelf life of products, and exposure to these preservatives understandably affects
gut microbial species. Chronic consumption of preservative compounds that contribute
to dysbiosis by upregulating Proteobacteria species, inducing glucose intolerance, and
significantly dysregulating microbial metabolite production [134].

Beyond their harmful additives, diets with elevated UPF content also promote dys-
biosis and disease pathogenesis by contributing to nutrient and fiber deficiencies [153,154].
Diets high in UPFs are linked to increased caloric intake [155], often displacing potential
health benefits provided by minimally processed foods. Generally possessing lower fiber
content than minimally processed foods, UPFs are more efficiently absorbed and do not
contribute the soluble fiber that is a crucial energy source for commensal microbes. UPF
consumption alters microbiome composition and metabolite profiles, but further investiga-
tion is needed to directly implicate UPF consumption with decreased SCFA production in
humans [133,156]. A recent randomized control trial studying fermentable carbohydrates
versus maltodextrin highlighted the pervasive impact that UPFs can have on human health.
Over the course of 5 weeks, administration of inulin-type fructans was associated with
improved anxiety and depression indices when compared to maltodextrin-treated control
groups [157]. These groups exhibited significant differences in gut microbiome compo-
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sition, with upregulation of beneficial and SCFA-producing taxa such as Bifidobacterium,
Roseburia, and Faecalibacterium prausnitzii in the fermentable fiber-treated group. These
findings underscore the multifaceted impact of UPFs on the gut microbiome, highlighting
how both harmful additives and nutrient-poor profiles may contribute to dysbiosis and
disease development.

3.6. Probiotics and Antibiotics

Probiotics are defined as “Live microorganisms which when administered in adequate
amounts, confer a health benefit on the host” [158]. It is important to note that not all probi-
otics are derived from fermented foods, and conversely, not all fermented foods contain
live beneficial strains and thus are not necessarily considered probiotics. In population
studies, without the ability to certify the health benefits of every microorganism-containing
food, fermented food is often used as a placeholder for probiotic consumption. Individuals
with fermented food-rich diets exhibit significant increases in microbial diversity, as well
as decreases in several key cytokines and associated inflammatory factors, notably IL-6,
IL-10, IL-12b, and TNF-α [71,159]. Direct gut colonization by microbes derived from fer-
mented foods has been demonstrated with regard to strains associated with cheeses and
cured meats, such Lactobacillus and Pediococcus spp. [22,109]. In some studies, the increased
microbiota diversity was not reflective of the species present in the consumed probiotics,
suggesting that probiotics may promote beneficial shifts in the gut environment that favor
the emergence or growth of other commensal strains rather than acting solely through
direct colonization [71]. This could be a result of differential receptivity to microbiome colo-
nization. Upon reaching the gut, probiotics encounter significant mucosal resistance from
the existing microbiome, which results in highly individualized colonization patterns [160].
There can be significant differences in the reported success of probiotic colonization based
on whether fecal or mucosal sampling methods were used, as dietary strains can still be
detected as washout in the feces following failure to colonize the gut [160].

The mechanisms of probiotic benefit are typically related to supporting microbial
diversity and stability, shifting the microbiome towards a beneficial gut metabolite profile.
The metabolomic analysis found significant increases in conjugated linoleic acid (CLA)
abundance in fecal samples of fermented food consumers [109]. CLA is found in high
abundance in ruminant animal products due to the high abundance of species with fatty-
acid conjugation activity in the ruminant gut microbiome [161]. Strains of Lactobacillus,
Bifidobacterium, and Roseburia, among others found in the human gut microbiome, have
demonstrated CLA production activity [162,163]. Multiple studies suggest that endogenous
production of CLA does not reach sufficient levels to exert its beneficial effects beyond
the environment in which it was produced [162,164]. CLA has been proposed to have
anti-tumorigenic effects by promoting the accumulation of p53 and subsequent cell growth
arrest [165]. D-phenyllactic acid (D-PLA), a metabolite of lactic acid bacteria (LAB) that is
highly enriched in LAB-fermented foods, is a potent agonist of a G-protein coupled receptor
of hydroxycarboxylic acid (HCA3) that plays an important role in neutrophil chemotaxis
and adipocyte lipolysis regulation [166,167]. The highest levels of HCA3 expression in
the body are found in neutrophils and monocytes, and increased plasma concentrations
of D-PLA following consumption of LAB-fermented foods were sufficient to activate the
chemotactic response mediated by HCA3 [168].

There is evidence of the efficacy of probiotic administration in the treatment of GI dis-
orders: infectious and acute diarrhea, ulcerative and necrotizing colitis, and irritable bowel
syndrome, among other GI disorders [169]. The beneficial effects of probiotics on inflam-
matory response and general health have implications along the gut–brain axis and have
shown potential in the treatment of multiple sclerosis, as well as reported improvements in
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depression, generalized anxiety, and stress [170–172]. Administration of Lactobacillus spp.
improves intestinal epithelial integrity and renal function in murine lupus models [173].
Probiotic treatment induced shifts toward Th2 type response, along with increases in anti-
inflammatory cytokines (IL-4 and IL-10) and decreases in pro-inflammatory mediators,
like IFN-y, TNF-α, and IL-17 [174,175]. In a study by Lavasani et al., a novel probiotic
mixture shows significant therapeutic potential in ameliorating experimental autoimmune
encephalomyelitis (EAE), primarily through the induction of IL-10-producing regulatory T
cells, which underscores the immunomodulatory effects of probiotics in autoimmune disor-
ders [175]. The VSL#3 strain probiotic, the only probiotic currently classified as a medical
food, has demonstrated the capability to increase butyrate production and GLP-1 secretion,
thereby protecting against diet-induced obesity and insulin hypersensitivity [79,176].

Given the broad scope of benefits associated with cultivating the microbiome with
probiotics, antibiotics have understandably been studied for their detrimental effects on
microbiome composition and function. Antibiotic suppression of the gut microbiome has
been implicated with wiping out circadian transcription patterns, as well as conferring
risk for IBD, celiac disease (CeD), and bacterial pneumonia, among others [16,177,178].
A significant concern with the use of antibiotics is the emergence of antibiotic-resistance
genes (ARG). Antibiotic treatment increases the number of antibiotic resistance genes
detected in the lower GI tract. The effects of probiotic administration are dependent on
receptivity to colonization. In colonization-resistant individuals, probiotic follow-up to an
antibiotic course expands the quantity and distribution of ARG expression [179]. Following
antibiotic-induced disruption, probiotic administration was shown to be detrimental to
the reconstitution of a homeostatic microbiome. Introduced into a dysbiotic environment
following antibiotic treatment, common probiotic strains such as Lactobacillus can become
dominant and secrete factors inhibiting a return to balanced microbiome composition [180].
Conversely, another notable consequence of antibiotic treatment is the increased availability
of host-derived free sialic acid in the gut, which is the nutrient source of opportunistic
pathogens like Salmonella typhimurium and Clostridium difficile, enhancing their abundance
in the gut and potentially leading to infections [181].

3.7. Dietary Cycle and Circadian Rhythms

In mammals, the suprachiasmatic nucleus (SCN) is responsible for coordinating cir-
cadian rhythm throughout the body [182]. Intrinsically photosensitive retinal ganglion
cells carry light stimulus information from the environment to the retinohypothalamic
tract, which carries an action potential down to the SCN. The SCN then synapses with
the paraventricular nucleus, which is responsible for the synchronization of peripheral
systems, and eventually, the pineal gland, which then releases melatonin into the blood-
stream [182]. At a cellular level, rhythmicity is facilitated by families of genes that encode
activation factors (CLOCK, BMAL1) or repression factors (PER1, PER2, CRY2), which form
an autoregulatory feedback loop and drive diurnal transcription patterns [183,184]. The
activation and regulation of these transcription factors is dependent on tissue type and
organ system. While stimulatory input from the light/dark cycle is a primary driver of cir-
cadian rhythmicity due to its direct integration with the SCN, facilitation of this rhythmicity
throughout peripheral tissues is a balance of environmental and internal stimuli [185]. For
example, peripheral clock mechanisms are highly sensitive to temperature fluctuations
as an entraining factor, physical activity is a driver of circadian genes in skeletal muscle,
and various modes of hormone signaling have been shown to facilitate rhythmicity in the
cardiovascular, gastrointestinal, and hepatic organ systems [186–190]. Each organ is subject
to this balancing between SCN and environmental inputs, with tissues such as the liver,
kidneys, and GI tract exhibiting susceptibility to modulation by the latter [191].
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The peripheral clocks of the GI, liver, and kidneys have demonstrated significant en-
trainment by temporal feeding patterns and alterations to the gut microbiome. Mice devoid
of functional cellular clock machinery genes showed little to no oscillation in bacterial
abundance and adherence to intestinal mucosa. Diurnal fluctuations of Bacteroidetes and
Firmicutes abundance are erased in clock-gene deficient mice, but imposing a restricted
light-phase-only feeding pattern was sufficient to retrain the rhythmicity of microbiota
abundance [192]. Similarly, imposing a dark phase-only feeding pattern on wild-type mice
inverted the localization patterns of the microbiome, implying a pivotal role for dietary
patterns in driving the abundance and biogeographical localization of microbiota [16].

Patterns of rhythmic localization of bacterial metabolites not only influence but ac-
tively drive gene expression in both the large intestine and the liver. Mice treated with
broad-spectrum antibiotics lost oscillations in transcription levels of genes involved in
nucleotide metabolism and cell cycle compared to their control group counterparts. The
impact of the microbiome on transcriptional regulation was determined to be dependent on
adherence to the mucosal membrane, not simply presence in the region, further cementing
the importance of biogeographical localization patterns [16]. The microbial metabolome
influences rhythmic host physiology beyond the intestine by driving systemic oscillations
at metabolite levels and shaping transcriptional rhythms in the liver by polyamine signal-
ing [16]. Gut microbiome-mediated oscillations in hepatic transcription have potentially
significant implications in the diurnal rhythmicity drug metabolism [193,194]. Studies
have demonstrated that central-clock deficient and germ-free strains, as well as groups
administered antibiotic treatments, did not exhibit fluctuations in hepatotoxicity markers
following drug administration [16].

Diet and microbiome-mediated circadian rhythmicity have a bidirectional relationship
that interacts with many variables, not just feeding schedules. Studies have shown that
jetlag induces a dysbiotic state characterized by increased glucose intolerance and induced
obesity in a manner that is transferable by fecal microbiota transplantation (FMT) [195].
Similarly, inducing obesity via a Western-style diet disrupted the normal diurnal fluc-
tuations in whole-body metabolism, along with altered expression of core clock genes
in the hippocampus [196]. On the other hand, microbiome-mediated mechanisms, such
as butyrate production, maintain rhythmicity through upregulation of clock genes and
improve quality of sleep in ulcerative colitis (UC) patients [82]. In our recent study in Dahl
salt-sensitive (S) rats, we demonstrated that diurnal shifts in gut microbial composition,
i.e., the ratio of Firmicutes/Bacteroidetes abundance (F/B), are closely associated with
the development of salt-sensitive hypertension and kidney injury [197]. Thus, the inter-
play between diet, gut microbiome, and rhythmicity allows for diversity and resilient gut
microbiome to provide a measure of protection from circadian disruption and associated
consequences [198,199].

4. Diet–Microbiota Interactions in Disease Pathogenesis
4.1. Cardiovascular Diseases

Gut dysbiosis, or the imbalance of the composition and function of the gut microbiota,
has become increasingly recognized as a major contributor to the pathogenesis of many
key manifestations of cardiovascular disease (CVD), including hypertension, atheroscle-
rosis, and heart failure [200]. This occurs through the induction of chronic, low-grade
inflammation due to a compromised intestinal barrier, creating a “leaky gut” effect that
allows the systemic entry of pro-inflammatory molecules like lipopolysaccharide (LPS) and
other harmful microbial products [201]. In time, the inflammatory effects of these products
contribute significantly to both vascular disease and cardiac failure and thus are of great
interest in understanding these morbidities in connection to gut health [202–204].
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Furthermore, gut dysbiosis promotes the generation of specific co-metabolites such as
trimethylamine-N-oxide (TMAO), which also contributes to this low-grade inflammatory
effect via several mechanisms and is intricately tied to the gut microbial composition [201].
TMAO is generated by the process of oxidation of trimethylamine (TMA) by the hepatic
flavin monooxygenases (FMO1 and FMO3) via bacterial degradation of dietary carnitine,
choline, and lecithin found primarily in meat and eggs, establishing a specific link be-
tween diet and CVD. Serum levels of TMAO have been correlated with greater risk of
atherosclerosis and coronary artery disease and may serve as a useful biomarker for assess-
ing the overall risk of adverse cardiovascular events [205]. Previous mouse studies have
shown that a choline-rich diet with an intact gut microbiome leads to increased TMAO and
atherosclerotic plaques, while mice with a compromised microbiome did not show these
effects under similar conditions [206] (Figure 1). While elevated TMAO levels have been
associated with gut dysbiosis and cardiometabolic disorders, the direction and mechanism
of this relationship remain debated. Landfald et al. (2017) suggest that TMAO may not
directly alter microbiota composition but could indirectly promote dysbiosis by supporting
the growth of TMA-producing microbial populations under certain conditions [207].

Short-chain fatty acids (SCFAs) such as propionate and butyrate are well-studied
for their protective anti-inflammatory effects on the cardiovascular system [208]. SCFAs
are formed via anaerobic fermentation and, therefore, promoted by diets rich in fiber,
a component often lacking in Western diets [200]. SCFAs exert their protective effects
via numerous mechanisms, such as butyrate’s inhibitory effect on histone deacetylases
(HDACs), which curtails the production of pro-inflammatory cytokines [208] (Figure 1).
Conversely, dysbiosis alters the bile acid profile in the GI tract, which can disrupt signaling
via the farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) and
ultimately impair lipid metabolism, another important factor in CVD pathogenesis [200].
The complex interplay of various key molecules and the disharmony of gut microbes
belies the complexity of this relationship between the gut and heart. Understanding these
connections may provide new avenues for the development of novel therapeutics targeting
highly relevant conditions such as hypertension and atherosclerosis.

The specific dietary underpinnings of gut dysbiosis as it relates to CVD are not yet
fully understood [209]. However, its intimate link with diet has long been known, as seen
with the extensively studied Mediterranean diet and its many remarkable preventative
benefits [209]. Microbial communities are continually shaped by dietary inputs, and
identifying the most important factors shows promise in providing many new answers to
our health. Limited studies have already shown that a highly targeted diet can not only halt
but even reverse atherosclerosis under the right conditions [210]. Cardiovascular disease
remains the single leading cause of death and disability in the United States, and a better
understanding of how gut health directly affects cardiovascular function may provide new
paradigms for combating CVD [206,209].

4.2. Obesity

Obesity is a disease of global incidence and diverse etiology, but several commonalities
emerge upon consideration of the gut microbiome. In attempts to characterize the gut
microbiome of obese individuals, a large body of literature highlights compositional metrics,
such as the ratio between Firmicutes and Bacteroidetes phyla abundance. Obesity strongly
correlates with increases in F/B ratio and Proteobacteria abundance, alongside notable
reductions in Akkermansia muciniphila and Faecalibacterium prausnitzii abundance [211–213].
This compositional identity is directly shaped by consumption patterns, with Firmicutes
demonstrating a competitive advantage in high-energy-density diets [56]. For instance,
high-energy-density diets, such as those rich in ultra-processed foods, induce changes in the
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gut microbiome composition associated with increased leptin levels and the development
of leptin resistance. Impaired leptin signaling can inhibit feelings of fullness, thereby
promoting overconsumption and increasing obesity risk [132]. The microbiome of obese
individuals is further distinguished by several functional differences. At a fundamental
level, greater energy harvest predisposes individuals to obesity and metabolic disorders,
whether driven by high-calorie diets or enhanced efficiency in extracting energy from food.
The gut microbiome contributes to obesity through a positive feedback loop involving
the latter mechanism, as the compositional changes following induced obesity result in
a greater capacity to harvest energy from the diet [214]. This efficiency advantage in
gleaning energy from the diet is transferable through the maternal transfer of microbiota
and FMT, solidifying the microbial mediation of this effect and underlining the importance
of addressing obesity within the context of the gut microbiome [215,216].

Microbial metabolites show a high degree of involvement in the mechanisms of
obesity. For example, rats maintained on a high-fat diet (HFD) exhibit chronic upregulation
of microbial acetate production, which activates the parasympathetic nervous system
and increases ghrelin and glucose-stimulated insulin secretion [217]. These secretions
induce elevated hunger and promote energy storage as fat, as well as playing into a
positive feedback loop that sustains higher consumption levels. Chronic activation of this
mechanism promotes obesity, hyperlipidemia, fatty liver disease, and insulin resistance.
Indeed, acetate production is upregulated following the consumption of calorically dense
food, suggesting an evolutionary mechanism where acetate production induces elevated
hunger response and energy storage to capitalize on a high-density food source [217].

Despite the role of acetate in promoting hyperphagia and hyperlipidemia, SCFAs
have generally demonstrated beneficial metabolic effects. Colonic SCFA infusion increases
fasting fat oxidation, resting energy expenditure, and plasma peptide YY (PYY) while
decreasing fasting free glycerol concentrations [217]. Butyrate has been shown to exert
protective effects against insulin resistance and obesity by promoting fatty acid oxidation
and enhancing adaptive thermogenesis. Morphologically, these effects are marked by
an upregulation of mitochondrial function and biogenesis in skeletal muscle and brown
fat. Mechanistically, butyrate’s HDAC inhibitory activity is thought to facilitate increases
in PGC1-α and peroxisome proliferator-activated receptor (PPAR)-δ, which promotes
fatty acid oxidation in skeletal muscle [218]. Dietary SCFAs similarly stimulate oxidative
metabolism by downregulating PPAR-γ expression, activating mitochondrial uncoupling
proteins, and increasing the AMP-ATP ratio. At a systemic level, SCFA supplementa-
tion facilitated reductions in body weight and hepatic steatosis while improving insulin
sensitivity, all in a PPAR-γ dependent manner [219].

Other dietary interventions have shown potential to combat obesity through the mod-
ulation of gut microbiota. Across various microbiome-targeted obesity treatment strategies,
dietary fiber intake appears to be an effective adjunct therapy. Dietary supplementation
with low-fermentable fiber enhanced the ability of FMT to improve insulin sensitivity
in patients with concomitant obesity and metabolic disorders [21]. High fermentable
fiber supplementation notably decreased levels of pro-inflammatory bacterial metabolites
such as TMAO and indoxyl sulfate (IxS) [220,221]. Diets high in resistant carbohydrates
prompted a significant reduction in body weight and BMI in both diet-induced and genetic
obesity [67,221]. High-protein calorie restriction diets can improve obesity by inducing
energetic conditions that pressure the gut microbiome into compositional shifts and in-
crease diversity [61]. It is reported that the introduction of CLA into the patient diet has
been associated with reductions in F/B ratio and visceral fat mass and increases in SCFA
concentrations and the abundance of Bacteroidetes genera involved with downregulation of
lipid metabolism and hepatic steatosis [222]. Tea-derived polyphenols similarly correlated
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with increases in SCFA-producing species, accompanied by compositional shifts marked by
a significant reduction in F/B ratio and upregulated expression of genes related to carbon
metabolism [108].

Certain bacterial strains have been isolated and studied for mechanisms that confer
protective effects against obesity. In murine models of obesity, HFD promotes NF-kB acti-
vation and suppresses AMP-activated protein kinase (AMPK) and SIRT1 expression [223].
NF-kB facilitates increased inflammatory activation, and AMPK and SIRT1 are essential in
facilitating energy homeostasis and fat oxidation. Lactobacillus sakei administration has been
shown to counteract the effects of HFD by helping to normalize NF-kB, AMPK, and SIRT1
expression [223]. Similarly, Bifidobacterium adolescentis, Lactobacillus mucosae, and Weissella
cibaria have been shown to induce the expression of IL-10, a potent anti-inflammatory
cytokine. Oral gavage of these species abrogated HFD-induced obesity, colitis, and hepatic
steatosis in mice [224]. In addition to diet-induced obesity causing upregulating metabolic
dysregulation and systemic inflammation, core clock genes in the hippocampus were
disrupted after high-sugar, high-fat feeding [196]. This further emphasizes the diffuse
influence of the gut microbiome on obesity through central mechanisms of behavioral and
neural control.

4.3. Type 1 Diabetes

Type 1 diabetes (T1D), a multifactorial disease marked by the presence of islet auto-
antibodies, is significantly influenced by disruptions within the intestinal microbial com-
munity and its subsequent impact on host immunity. “Leaky gut” can provoke excessive
inflammatory responses and the over-activation of T-cells, which may then migrate to
the pancreatic lymph nodes, contributing to the autoimmune assault that characterizes
T1D [225,226]. Landmark initiatives such as The Environmental Determinants of Dia-
betes in the Young (TEDDY) study have been instrumental in characterizing the early
gut microbiome. Findings from TEDDY and other metagenomic studies indicate that the
microbiomes of healthy individuals often possess a greater abundance of genes related to
fermentation and the biosynthesis of short-chain fatty acids (SCFAs) [227]. Conversely, a
reduction in SCFA-producing bacteria, particularly those yielding butyrate, has been linked
to T1D [228]. SCFAs, especially butyrate, are thought to confer protective effects against
early-onset T1D. One proposed mechanism for this protection involves the maintenance
of epithelial barrier function [229]. Butyrate administration, for instance, has been shown
to improve insulin resistance and fortify the intestinal barrier by promoting the secretion
of glucagon-like peptide-1 (GLP-1). GLP-1, in turn, enhances the production of colonic
mucin and tight junction proteins, thereby strengthening gut integrity [230]. Intake levels
of total dietary fiber, fermentable fiber, and available carbohydrates have demonstrated
a positive correlation with fecal SCFA concentrations in T1D patients. This highlights a
modifiable avenue through which beneficial microbial shifts and metabolite production
can be encouraged [231].

Therapeutic strategies aimed at modulating the gut microbiota are areas of active
investigation, though they also underscore the complexities involved. A recent randomized
controlled trial exploring fecal microbiota transplantation (FMT) yielded intriguing results:
autologous FMT (using the patient’s own stool) was found to be more effective in preserving
insulin production than FMT from healthy donors. This unexpected outcome reveals
significant gaps in our current understanding of the intricate mechanisms connecting the
gut microbiota to T1D pathogenesis and host compatibility in microbial therapies [232].
In contrast, probiotic supplementation is emerging as a potentially more straightforward
adjuvant therapy. Building on the knowledge of specific probiotic strains linked to host
immune regulation, a randomized, double-blind, placebo-controlled trial demonstrated
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that probiotic supplementation alongside standard insulin therapy in T1D patients led to
reductions in hemoglobin A1c (HbA1c) levels and more stable glycemic control compared
to insulin therapy alone. These findings suggest that probiotics could offer a valuable
advancement in the standard of care for T1D by favorably modulating the gut-immune
dialogue [233].

4.4. Type 2 Diabetes

The gut microbiome plays a critical role in the pathophysiology of type 2 diabetes
(T2D). Consistent gut alterations are observed in individuals with T2D, including a marked
reduction in butyrate-producing bacteria and an increase in opportunistic pathogens [234].
Diabetic patients also show decreased levels of Firmicutes and Clostridia, while ratios
such as F/B and Bacteroides/Prevotella to C. coccoides/E. rectale increases proportionally
with plasma glucose levels [235,236]. Such microbial shifts are associated with systemic
metabolic disruption, inflammation, and impaired glycemic control.

Microbial metabolites such as SCFAs play an important role in modulating host glucose
metabolism. Higher circulating levels of SCFAs have been associated with increased
insulin sensitivity and elevated fasting GLP-1 levels [237]. Genetic data suggest that
enhanced endogenous production of butyrate and acetate is beneficial for cellular insulin
response, and dysregulation of propionate production or absorption increases the risk
of developing T2D [238]. Not all butyrate-producing species are uniformly beneficial,
however, and some have been correlated with dysglycemia, suggesting a need for more
nuanced characterization [239].

Diet modulates microbiota composition in clinically meaningful ways. Preservative
agents found in ultra-processed foods have been found to induce glucose intolerance
by dysregulating microbial amino acid synthesis, contributing to reductions in GLP-1
release [134]. On the other hand, high-fiber, polyphenol-rich diets increase microbial
α-diversity and favor the proliferation of beneficial taxa such as the SCFA-producing Fae-
calibacterium prausnitzii and Akkermansia muciniphila [240,241]. Prebiotic fiber interventions
have been shown to reduce HbA1c levels and diabetes-related distress, with these benefits
linked to an increased abundance of SCFA-producing gut microbes [242–244]. Dietary
interventions with high amylose starch content have also been shown to increase SCFA pro-
duction, improve glycemic outcomes, and promote butyrate-producing species [245,246].
The use of probiotic supplementation to modify the gut microbiome has shown promise
in improving glycemic control. In a six-week trial, probiotic administration corresponded
with reduced fructosamine and HbA1c levels in diabetic patients [159]. Meta-analyses of
probiotic studies have consistently shown reductions in fasting blood glucose, although
effects on HbA1c are less consistent due to variations in patient populations and study
designs [247–252].

Microbial dysbiosis has also been implicated in T2D-related peripheral complications.
Patients with diabetic retinopathy exhibit unique microbial signatures marked by a loss of
SCFA-producing and anti-inflammatory species [253]. This pattern suggests that a disease-
altered microbiome profile contributes to such complications via a loss of anti-inflammatory
signaling as opposed to an increase in pro-inflammatory signaling. Reintroducing bene-
ficial taxa via FMT has demonstrated improvements in insulin resistance and peripheral
symptoms (e.g., distal polyneuropathy) through mechanisms that promote butyrate pro-
duction and dampen the production of inflammatory cytokines [254–256]. Pharmacological
treatments further complicate the interaction between microbiome and host metabolism.
Metformin, a common T2D medication, has been shown to reduce microbial diversity while
enhancing bile acid metabolism and FXR signaling, which may contribute to its therapeutic
effects [257–259]. However, it remains unclear whether these microbiome changes are
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driven by the drug or by improved metabolic status [260]. Acarbose, an α-glucosidase
inhibitor, similarly affects microbiome composition, increasing SCFA production in a diet-
dependent manner [246].

The integrity of the gut barrier is frequently compromised in T2D and is further
weakened by low dietary fiber intake. In fiber-deficient states, microbes resort to degrading
the gut’s mucosal barrier by consuming host-derived mucus proteins, leading to increased
intestinal permeability [261,262]. SCFAs can counteract this effect by stimulating MUC2
production in goblet cells, thereby enhancing mucosal protection [263]. The influence
of the microbiome on host metabolism extends beyond SCFA production. Emerging
evidence suggests that gut-derived serotonin plays an important role in glucose regulation,
with inhibition of peripheral serotonin synthesis, either through genetic manipulation or
antibiotic treatment, which results in improved glucose clearance and enhanced insulin
sensitivity [264,265]. These findings highlight the shared pathway linking microbial activity,
serotonin metabolism, and glycemic control. Lifestyle interventions, such as exercise, also
influence the gut microbial composition, which may exert T2D outcomes. For example,
moderate-intensity continuous exercise has been shown to increase the abundance of
butyrate-producing species more effectively than high-intensity interval training [266]. In
addition, supplementation with Akkermansia muciniphila has been associated with improved
insulin sensitivity and reductions in liver inflammation and dysfunction [267], underscoring
the potential for non-pharmacologic, microbiome-targeted therapies in comprehensive
T2D management. Diets high in saturated fatty acids, such as palmitate, demonstrate
an ability to impair pancreatic β cell function via TLR4/MyD88 pathway activation and
monocyte recruitment [268]. The subsequent recruitment of M1-type proinflammatory
monocytes/macrophages thereby contributes to inflammation, insulin resistance, and
ultimately β-cell dysfunction [268]. These results highlight the importance of dietary lipids
in modulating components of the immune system, which play a key role in the pathogenesis
of T2D.

4.5. Respiratory Disease

The gut microbiome plays a critical regulatory role in shaping immune responses to res-
piratory infections, and gut dysbiosis leads to worsened disease outcomes. In murine mod-
els, depletion of the gut microbiome prior to Streptococcus pneumoniae infection heightened
inflammation, organ damage, and mortality, largely due to altered alveolar macrophage
activity and reduced immune function [269]. This defective pulmonary immune response
is associated with IL-10 upregulation, observed in germ-free mice following respiratory
infection [269,270]. It has also been demonstrated that this loss of immune function can be
rescued via TLR agonists, anti-IL-10 antibodies, or conventionalization of the gut micro-
biome, further supporting this proposed mechanism [270]. Antibiotic-induced dysbiosis
also disrupts the production of APRIL, a TLR-dependent factor essential for IgA class-
switching, leading to IgA deficiency and increased vulnerability to pathogens such as
Pseudomonas aeruginosa [30,178].

Much as gut dysbiosis negatively impacts respiratory tract infections, such infections
can conversely lead to potentially harmful alterations in the gut microbiome. Mycobac-
terium tuberculosis (MTB) infection has also been shown to significantly affect microbiome
composition in both the gut and lungs. Studies indicate that tuberculosis (TB) patients often
exhibit reduced microbial diversity and disrupted microbiota during active disease and
throughout the course of treatment [271,272]. These alterations may impact disease progres-
sion, immune regulation, and even treatment outcomes. Emerging evidence suggests that
MTB infection can lead to gut microbiome shifts through mechanisms involving systemic
immune signaling and inflammatory responses [271]. Co-infection with Helicobacter species,
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for example, has been associated with altered susceptibility to MTB infection, while oral
anaerobes that translocate into the lung may produce metabolites that impair pulmonary
immunity and predict disease progression [272].

Moreover, prior TB treatment is believed to deplete T-cell epitopes on commensal non-
tuberculous Mycobacteria, increasing susceptibility to reinfection [271]. Prolonged antibiotic
therapy, an essential component of TB treatment, has also been shown to exert lasting
effects on both the gut and lung microbiota, influencing immune recovery, microbiome
resilience, and possibly relapse risk [271,272]. Incorporating TB into the broader framework
of respiratory microbiome dynamics underscores the importance of a holistic understanding
of microbial contributions to pulmonary health and disease, especially within high-burden
regions [272].

COVID-19 patients with high fecal viral loads show enhanced nucleotide and amino
acid metabolism, while those with low viral deposition display increased SCFA-producing
bacteria [273,274]. These shifts are partly driven by IFN-1 signaling, which disrupts anti-
inflammatory pathways in the gut [275]. Respiratory viruses like COVID-19 and influenza
also often cause gastrointestinal symptoms as a consequence of lung-derived immune
signaling. Specifically, CD4+ cells migrate to the gut via CCL25/CCR9 and secrete IFN-γ,
driving Th17 lineage polarization and contributing to tissue dysfunction [276]. Many such
mechanisms connecting gut health to the pulmonary system have similarly been elucidated.

Respiratory infections also elevate IL-22 secretion, upregulating RegIIIγ (antibacterial
lectin) and altering the microbiota composition [277]. Moreover, gut microbiota influences
IL-22 levels through the production of aryl hydrocarbon receptor (AhR) ligands derived
from dietary tryptophan [278,279]. Tryptophan deprivation has been shown to increase
TReg populations and potentially improve immune functioning, though its therapeutic
potential in chronic infection remains unclear [280]. In addition, high-fiber diets can confer
early resistance to respiratory viruses through SCFA-mediated GPR41/GPR43 activation
and induction of IFN-1-regulated gene expression in lung stromal cells, highlighting a diet–
microbiome–immune axis connection to respiratory health [281,282]. Activation of GPR41
also upregulates the release of Ly6c−-patrolling monocytes from the bone marrow. These
monocytes exert anti-inflammatory effects and oversee tissue repair in severe influenza
infection [283]. The influence of dietary metabolites on interferon signaling and monocyte
recruitment highlights a microbiome–immune axis crucial for respiratory health.

In the context of chronic obstructive pulmonary disease (COPD), the gut microbiome
may play as both a contributor and a potential therapeutic target. COPD is associated
with gut dysbiosis, characterized by Prevotella dominance and significantly reduced SCFA
levels [284]. FMT from healthy donors has been shown to improve markers of COPD-
associated inflammation, alveolar destruction, and lung function. In contrast, FMT from
COPD patients or mice exposed to high levels of cigarette smoke-induced lung inflam-
mation in recipient mice [284,285]. Dietary interventions and resistant starch diets alle-
viate airway inflammation and alveolar destruction caused by cigarette smoke exposure
by enhancing microbial SCFA production [285]. Similarly, dietary inulin supplementa-
tion in human COPD patients correlated with improved COPD Assessment Test scores,
accompanied by gut microbiome compositional shifts favoring increased Bacteroidetes
abundance [285]. Notably, acute COPD exacerbations were associated with decreased
relative abundances of Firmicutes and Actinobacteria, along with increased Bacteroidetes
abundance [286]. Active chronic smokers exhibit distinct gut microbiome profiles, marked
by increased Bacteroidetes and decreased Firmicutes and Proteobacteria abundance [287].
Correlational studies between specific taxa and reduced lung function suggest Streptococcus
or Lachnospiracae may serve as potential biomarkers of COPD [288].
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4.6. Chronic Kidney Disease

The primary mechanism through which the gut microbiome interacts with kidney
pathogenesis is through the production of protein-bound uremic toxins. Compounds such
as indoxyl sulfate (IxS) and p-cresol sulfate (pCS) are produced via the metabolism of tryp-
tophan and aromatic amino acids by gut microbes. Furthermore, in healthy individuals,
uremic toxins are effectively cleared by proximal tubule organic anion transporters; how-
ever, as renal function declines, these toxins accumulate and contribute to the progression
of chronic kidney disease (CKD) [289,290].

Impaired kidney function and subsequent retention of waste products prompt an
upregulation in the proteolytic bacteria responsible for the production of uremic toxins [291].
IxS and pCS contribute to the progression of chronic kidney disease (CKD) by inducing
NADPH-mediated production of reactive oxygen species (ROS), inhibiting antioxidative
and superoxide scavenging functions in renal tissues [292–294]. The oxidative stress
induced by IxS and pCS has a secondary effect of promoting robust activation of the renin-
angiotensin-aldosterone system (RAAS). In addition to inducing damage by increasing
glomerular hydrostatic pressure, RAAS signaling promotes fibrosis via upregulation of
TGF-β/Smad pathway proteins, fibronectin, and α-smooth muscle cell expression [295].

Given the integral role that the gut microbiome plays in the production of uremic
toxins, modulation of GM composition and function have therapeutic potential in the
treatment of CKD. Dietary fiber supplementation has shown a robust ability to facilitate
reductions in plasma uremic toxin levels [296–298]. There are multiple proposed mecha-
nisms by which dietary fiber could mediate this effect. Dietary fiber has a well-established
role in supporting the function of butyrate-producing bacteria. Therefore, increasing fiber
consumption promotes intestinal epithelial integrity and inhibits leakage of uremic toxins.
In longitudinal studies, patients who went on to develop CKD demonstrated a lower rela-
tive abundance of butyrate-producing microbes [299]. Alternatively, the abundance of fiber
decreases microbe reliance on protein metabolism and reduces the production of uremic
toxin precursor molecules [300]. This hypothesis has been supported in cross-sectional
patient trials, with higher dietary fiber and plant-based diets corresponding to lower levels
of IxS and pCS, respectively [301]. Conversely, patients on high-protein diets demonstrate
higher plasma IxS levels [302,303].

Shaping gut microbiota composition and function through oral supplementation, such
as probiotics and prebiotics, has shown variable results. A clinical study by Borges et al.
showed that probiotic administration had no significant effect on gut microbiota composi-
tion or inflammatory markers and even facilitated increased uremic toxin levels in CKD
patients undergoing dialysis treatment [304]. Conversely, oral FMT supplementation from
healthy individuals stabilized renal function parameters and slowed disease progression
regardless of clinical stage by reducing serum creatinine and uremic toxin levels [305].
Furthermore, individuals with diabetes and hypertension are at high risk for develop-
ing CKD, but treatment with oral FMT has been associated with a significantly reduced
rate of CKD progression [305], highlighting the therapeutic potential of gut microbiota in
high-risk populations.

4.7. Chronic Liver Disease

Emerging evidence underscores the influential role of the gut microbiome in pathogen-
esis and potential treatment of chronic liver diseases, including MAFLD. In a four-month
placebo-controlled study, a resistant starch (RS) diet significantly reduced intrahepatic
triglyceride content and liver injury markers in MAFLD patients, alongside reductions
in liver injury markers [67]. Metagenomic analysis revealed a strong positive correlation
between the abundance of Bacteroides stercoris and levels of both intrahepatic triglycerides
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and plasma markers of liver injury, suggesting a mechanistic link. This association was
further validated through FMT, where the transfer of microbiota from RS-treated donors
significantly reduced hepatic steatosis, ALT and AST levels, hepatic triglycerides, and the
expression of hepatic genes involved in inflammation and immune cell recruitment [67].
The pathogenic role of B. stercoris in MAFLD has been further confirmed by oral adminis-
tration studies, where the strain nearly doubled intrahepatic triglyceride levels.

Conversely, depletion of beneficial taxa such as Ruminococcus, Coprococcus, Akkermansia
muciniphila, and Faecalibacterium prausnitzii was consistently associated with MAFLD in
biopsy-confirmed adults [18], although taxonomic findings across studies remain mixed.
For instance, some studies associated Ruminococcus with cirrhosis and Bacteroides with
increasing MAFLD severity [306], while others failed to confirm consistent taxonomic
correlations. A cross-sectional Taiwanese study reported a reduced F/B ratio in MAFLD
along with decreased Clostridia and Ruminococcaceae, contrasting European findings such
as those by Boursier et al. [306,307]. Diverse microbiome datasets from both Chinese and
European cohorts consistently reported elevated B. stercoris levels in MAFLD patients
compared to controls, reinforcing its potential role as a microbial contributor to disease
progression [308,309].

Alterations in the gut microbiota composition play a direct role in the pathogenesis
of liver diseases, including alcohol-associated liver disease (ALD), metabolic dysfunction-
associated steatohepatitis (MASH), and hepatic encephalopathy. Candida albicans, which are
found in higher abundance in the gut of ALD patients, produce the endotoxin candidalysin,
which directly damages hepatocytes and exacerbates alcohol-associated liver injury and
steatosis [310]. Disulfiram, a drug used in the clinical treatment of chronic alcoholism,
suppresses Clostridium abundance, functionally inhibiting secondary bile acid biosynthesis
and mitigating liver inflammation and fibrosis in MASH models [311].

Similarly, the gut-targeted antibiotic Rifaximin-α has been shown to prevent hep-
atic encephalopathy by reducing gut-derived endotoxemia, preserving mucosal and in-
testinal epithelial integrity, and suppressing systemic inflammation [312]. Patients with
MAFLD/MASH exhibit a decreased F/B ratio [313], along with a dysbiotic shift marked
by increased abundances of Proteobacteria, Enterobacteriaceae, and Escherichia spp.—taxa
associated with pro-inflammatory responses. At the same time, beneficial microbes such as
Faecalibacterium prausnitzii and Akkermansia muciniphila were significantly depleted, further
supporting the role of gut microbiota in the pathogenesis of liver diseases.

4.8. Hepatocellular Carcinoma

The gut–liver axis is linked via the hepatic portal venous system, exposing the liver to
microbial products, including pathogens and metabolites, which in turn have been impli-
cated in the pathogenesis of hepatocellular carcinoma (HCC), the most common primary
liver cancer. Microbial metabolites, sensed by liver-resident immune cells, can trigger
chronic inflammation and modulate cellular pathways, thereby contributing significantly
to tumor development and progression [314]. A primary driver for HCC development
is underlying chronic liver disease, with metabolic dysfunction-associated fatty liver dis-
ease (MAFLD), and particularly its progressive form, metabolic dysfunction-associated
steatohepatitis (MASH), being increasingly recognized etiologies [315,316]. As detailed
earlier in this review, gut dysbiosis is a pivotal contributor to MAFLD/MASH pathogenesis.
This altered microbial state fosters a pro-carcinogenic liver environment. For instance,
compositional differences in the gut microbiota are observed between HCC patients and
healthy individuals; notably, an increased abundance of species like Escherichia coli has been
reported in HCC patients [314]. Such dysbiosis, potentially leading to excessive microbial
growth or an increase in pathobionts, is thought to promote liver cancer by exacerbating



Biomedicines 2025, 13, 1357 23 of 51

intestinal barrier dysfunction, increasing the translocation of pro-inflammatory microbial
components like LPS, and altering local immune surveillance [317].

Dietary factors play a crucial role in shaping this interaction. A study investigating
the impact of high dietary cholesterol, for example, demonstrated its capacity to induce
HCC development and gut dysbiosis in mice, which exhibited a distinct gut microbiota
profile [318], highlighting the influence of diet on HCC risk. Therapeutic modulation of gut
microbiota is, therefore, an area of active investigation. Encouragingly, multi-strain probi-
otic supplementation in patients with MAFLD-HCC has demonstrated efficacy in mitigating
the inflammatory response, evidenced by decreased TNF-α and IL-6 levels [319]. Such
findings support the potential of targeted microbial interventions, with ongoing research
exploring next-generation probiotics and engineered consortia for more precise effects.

Among the key microbial metabolites influencing HCC are bile acids. These endoge-
nous signaling molecules are critical for maintaining liver and intestinal homeostasis, but
disruptions in their complex metabolism and signaling are strongly linked to HCC devel-
opment [320]. For example, deoxycholate (DCA), a major secondary bile acid produced
by gut bacteria, can, when in excess, promote oncogenic processes by activating NF-κB, a
key factor in apoptosis resistance, and inducing reactive oxygen species (ROS) that cause
cellular damage [321]. Our previous work further underscored this by demonstrating
that silent cholemia (elevated serum bile acids due to portosystemic shunting without
overt clinical symptoms) may predispose individuals to liver injury and HCC, particularly
when combined with a fermentable fiber-enriched diet like inulin [322]. These findings
emphasize that both the quantity and composition of bile acids, influenced by diet and
microbiota, are critical. With certain profiles being pro-tumorigenic while others might
be protective, the dual role of bile acids makes their metabolism a key focus for novel
therapeutic strategies [323]. Consequently, targeted dietary modifications and therapeutic
interventions aimed at normalizing bile acid profiles and signaling pathways represent
promising avenues for mitigating liver damage and preventing HCC progression.

4.9. Inflammatory Bowel Diseases

Inflammatory bowel diseases (IBD) are characterized by chronic inflammation of GI
tissue, and most cases can be classified under ulcerative colitis (UC) or Crohn’s Disease (CD),
depending on presentation and localization. The onset of IBD involves a host of factors,
including genetic predispositions, environmental triggers, systemic health conditions, and
gut microbiome activity. Breakdown of immune barrier function is a requisite first step in
the onset of IBD, which is characterized by loss of Paneth and goblet cells and increased
permeability of intestinal epithelial cells (IECs). Limited production of antimicrobial
peptides and mucus secretions leaves IECs vulnerable to direct interaction with microbes.
Compromised IECs lead to the recruitment of innate immune cells, primarily neutrophils
and macrophages. While the immune response is largely similar, CD and UC differ in
their activation of adaptive immunity, which is predominantly driven by Th1 and Th-17
responses in CD and characterized by Th2-like responses in UC [324].

Dysregulation of diet and microbiota are significant risk factors for the development of
IBD. Elevated UPF consumption levels demonstrate robust associations with the risk of IBD
development, with higher risk linked to specific subgroups, including sugar-sweetened
beverages, salty snacks, refined sweetened foods, and processed meat products [136].
Additionally, patients reporting both HFD and antibiotic treatment were found to be at the
highest risk of developing pre-IBD. HFD and antibiotic treatment work synergistically to
contribute to dysbiosis by impairing mitochondrial bioenergetics and inducing Paneth and
goblet cell dysfunction [177,325]. Reproducing this state of dysbiosis in the gut microbiome
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of offspring or via FMT results in significant worsening of colitis in mouse models [326].
Significant dysbiosis is both an indicator and a potential treatment route for IBD.

Functional dysbiosis in IBD patients is marked by a higher ratio of facultative to obli-
gate anaerobes, depleted SCFA-producing species, higher E. coli and Ruminococcus levels,
and lower Faecalibacterium and Roseburia species abundance [327]. Significant dysbiosis
is an indicator of advanced IBD progression. Pediatric patients with acute severe colitis
(ASC) demonstrate gut microbiomes with greater than 33% of total bacterial abundance
attributable to a single species [328]. On the other hand, individual species have been high-
lighted in the literature for their robust protective activity against IBD. For example, UC
patients with a lower abundance of Faecalibacterium prausnitzii were at significantly higher
risk of relapse [329]. Isolation and characterization of F. prausnitzii supernatant components
allowed investigators to directly attribute its anti-inflammatory and anti-colitic effects to
butyrate production. Butyrate inhibits HDAC-1 and HDAC-3, blocking IL-6/STAT3/IL-17
signaling, ultimately promoting T-reg cells as opposed to Th-17 response [44,90,330]. The
ability of butyrate to exert anti-inflammatory effects by inhibiting TLR-2 signal cascade
and IL-12 and TNF-α production is impaired in IBD patients [331]. Lactic acid bacteria
strains have also been shown to play a role in IBD amelioration. Bifidobacterium adolescentis,
Lactobacillus mucosae, Lactobacillus sakei, and Weissella cibaria promote IL-10 expression, and
oral gavage of these species significantly reduced experimentally induced colitis in mouse
models [223,224]. Emerging evidence suggests that a reduced F/B ratio is associated with
greater severity of IBD [332]. Notably, Faecalibacterium prausnitzii, is often depleted in
IBD patients. Given these associations, the F/B ratio may serve as a useful biomarker for
predicting disease progression and severity in IBD.

Comparative diet studies provide evidence that restricted carbohydrate, whole food,
Mediterranean, and low-fat, high-fiber diets facilitate remission in IBD patients. Inflam-
matory markers often show significant improvement from baseline levels in dietary inter-
ventions, but the differences between specific diets are generally not substantial enough to
identify a single gold standard [333,334]. A common constraint in IBD dietary studies is
that simply adopting a more reliable and nutritious diet, regardless of its specific composi-
tion, tends to improve outcomes compared to typical baseline eating habits. Considering
other metrics, the low-fat, high-fiber diet had positive effects on microbiome composition,
increasing the abundance of established beneficial microbes such as F. prausnitzii [335].
Dietary restriction of fermentable oligosaccharides, disaccharides, monosaccharides, and
polyols (FODMAPs) promotes normalization of microbiota composition and alleviates
symptoms of GI discomfort in patients with quiescent IBD but falls short of improving IBD
severity scores [336–339]. FODMAPs contribute to gastrointestinal symptoms by increasing
osmotic potential and microbial fermentation activity in the gut. These results lead to
greater water- and gas-induced distension and abdominal pain [340].

Dietary supplementation rather than restriction also has potential therapeutic benefits.
Fructan supplementation in UC patients resulted in reduced inflammatory markers and
increased butyrate production [70]. Oral butyrate supplementation has demonstrated
upregulation of SCFA-producing bacterial species, as well as negative association with
calprotectin levels, which act as a marker of neutrophil activity and IBD [82,341]. Honey-
derived polyphenols downregulate the expression of genes facilitating IL-1b, IL-6, TNF-α,
and IFN-γ inflammatory responses [106]. Polyphenol treatment significantly improved
resistance to oxidative stress, an effect which was attributed to compositional rather than
functional microbiome changes, with significant decreases in Bacteroides, Corynebacterium,
and Proteus genera. The ketone body β-hydroxybutyrate (BHB) also exhibits an inverse
relationship with IBD severity and alleviates experimentally induced IBD through activa-
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tion of M2 macrophage-associated genes, but dietary modulation to promote BHB levels
requires further study [342].

In addition to dietary factors, there are several gut microbiome-focused treatment
strategies emerging for IBD. A small number of trials have investigated the ability of
FMT to promote remission of UC. Study participants receiving FMT were more likely to
achieve remission than control group participants, but further study is required to define
the risk of adverse events [343]. In cases of C. difficile infection (CDI) secondary to IBD,
FMT was effective in both eliminating CDI and clinical remission of IBD [344]. Finally,
antibiotic cocktails have been proposed as a replacement or adjunct therapy alongside the
current first-line treatment of intravenous corticosteroids [328,345,346]. While antibiotic-
induced dysbiosis is a risk factor for IBD development, patients with severely imbalanced
microbiomes, as seen in ASC, can benefit from broad-spectrum antibiotic suppression of
bacterial load.

4.10. Colorectal Carcinoma

The gut microbiome is increasingly recognized as a critical player in colorectal carci-
noma (CRC), influencing its development, progression, and even response to therapy. This
complex community of microorganisms and their metabolites can contribute to carcino-
genesis through mechanisms like inducing chronic inflammation and immune dysregu-
lation [347]. Several microbial factors are implicated in CRC. Notably, pathogens such as
Helicobacter pylori and hepatitis B virus have been associated with CRC development [348].
More broadly, an imbalance in the gut microbiota, or dysbiosis, can fuel chronic inflamma-
tion, a key driver of cancer. This occurs via multiple pathways, including the activation
of NF-κB, Wnt signaling, and MAPK pathways, alongside the inhibition of apoptosis and
increased oxidative stress [349]. Epigenetic alterations, like DNA methylation induced by
microbial activities, can also perpetuate this pro-inflammatory state [350]. Furthermore,
dysregulated immune responses, influenced by the microbiota, can contribute to tumor
formation [351]. Microbial metabolites are also deeply involved, capable of promoting
inflammation, aberrant cell proliferation, and DNA damage [352,353]. The composition of
the gut microbiome in CRC patients often shows distinct alterations. There is typically a
depletion of beneficial bacteria like Clostridium butyricum and Streptococcus thermophilus,
which produce anti-carcinogenic substances such as butyrate [354]. Conversely, an increase
in bacteria like Fusobacterium nucleatum, known for its role in other pathologies, is frequently
observed [355]. For instance, lipopolysaccharide (LPS) receptor subunits on colonocytes
can inhibit cell death and activate immune responses, leading to pro-inflammatory cytokine
signaling that promotes tumorigenesis [356].

Diet significantly shapes the gut microbiome and, consequently, CRC risk. High-fat
diets, for example, are linked to an increased production of tumorigenic secondary bile
acids [357]. In contrast, plant-based diets can foster a microbiome profile that reduces
inflammatory responses [23], while Western diets tend to promote pro-inflammatory mi-
crobial communities, elevating CRC risk [358]. Butyrate, a short-chain fatty acid produced
from the fermentation of dietary fibers by microbes like Faecalibacterium prausnitzii, demon-
strates anti-tumorigenic properties. It contributes to healthy energy balance, regulates
colonic epithelial cell proliferation [359], and can inhibit histone deacetylase 3 (HDAC3),
promoting the degradation of the proto-oncogene c-Myc [330].

Emerging research also highlights the potential for modulating the gut microbiome
in CRC management. Postoperative probiotic administration in CRC patients undergoing
chemotherapy has been shown to decrease gastrointestinal complications, particularly
diarrhea. This intervention was associated with a shift in gut microbial composition,
characterized by decreased Firmicutes and increased Bacteroidetes, Proteobacteria, and
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Verrucomicrobia [360]. Additionally, studies exploring the link between vitamin D levels
and CRC risk have revealed that vitamin D supplementation can alter the gut microbiota,
with outcomes potentially differing by sex. For instance, supplemented women were
more likely to harbor Fusobacterium nucleatum, which is associated with shorter remission
periods [361].

4.11. Celiac Disease

Celiac disease (CeD) is an autoimmune disease triggered when gluten absorbed in
small intestinal tissues is bound by antigen-presenting cells, activating an inflammatory re-
sponse and damaging the intestinal epithelium. The onset of CeD is known to be dependent
on the possession of HLA-II DQ2 or DQ8 alleles and gluten peptide exposure, but other
factors determining etiology remain under investigation [362]. Recent studies underscore
the critical role of the gut microbiome in gluten metabolism and celiac disease pathogenesis.
Several cultivable gut microbes, including certain Lactobacillus and Clostridium species, can
metabolize gluten peptides, potentially reducing their immunogenicity and mitigating
immune activation. However, not all microbial activity is protective. Some bacterial strains
such as Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Clostridium perfrin-
gens, and C. sordellii may produce metabolites or enzymatic products that increase peptide
immunogenicity or exacerbate intestinal inflammation. The presence of these non-beneficial
bacteria may contribute to increased intestinal permeability, heightened immune responses,
and more severe disease phenotypes. These findings emphasize the dualistic nature of
microbiome–gluten interactions and the potential for targeted microbiome modulation in
managing celiac disease [363].

Given its facilitation of nutrient processing and immune modulation, the gut mi-
crobiome has become a high-profile target for CeD treatment. Interestingly, a growing
body of retroactive association studies shows a significant correlation between early expo-
sure to systemic antibiotics and the risk of CeD [364,365]. Several hypotheses have been
proposed to explain this association, including antibiotic-induced dysbiosis, inadequate
microbial colonization, and disruption of mucosal barrier integrity [365]. Identifying con-
sistent characteristics across CeD patient microbiomes may be useful in understanding
microbe involvement in disease onset and altered gut function. Characterization studies
have highlighted a reduced F/B ratio, as well as lower abundances of Actinobacteria
and Euryarchaeota in CeD patients compared to healthy individuals [366]. In a longi-
tudinal study following children with high genetic risk of CeD, however, there were no
microbial signatures that accurately predicted which children would go on to develop the
disease [367]. A higher relative abundance of Bifidobacterium has been suggested to have a
causative relationship with the development of CeD, but underpinning mechanisms are
still unknown [368].

Despite its associations with increased risk, probiotic formulations of Bifidobacterium
species have demonstrated potential therapeutic benefits in the treatment of CeD patients.
Supplementation of CeD patient diets with Bifidobacterium breve probiotics reinstated a
normal F/B and led to relative increases in Actinobacteria abundance [366]. Daily adminis-
tration of Bifidobacterium breve to children living with CeD and on a gluten-free diet yielded
significant decreases in the levels of pro-inflammatory TNF-α over a three-month random-
ized controlled trial (RCT). The observed reduction in TNF-α levels was reversed for three
months following the cessation of probiotic administration [369,370]. Verrucomicrobia
and Parcubacteria abundance may play a role in this inflammatory modulation, as abun-
dance in these phyla demonstrated a strong correlation with TNF-α levels in children with
CeD [370]. Bifidobacterium longum probiotics have demonstrated mechanisms alleviating
gluten-induced autoimmune response, potentially through serine protease inhibition, as
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marked by lower fecal sIgA content levels [371,372]. Meta-analysis of RCTs investigating
probiotic treatment efficacy over placebo in cases of CeD paints a complicated picture. Evi-
dence of symptomatic improvement remains inconclusive, but probiotics demonstrate the
ability to increase potentially therapeutic Bifidobacterium and Lactobacillus species, leaving
the door open to their role in helping normalize dysbiotic microbiomes [373,374].

The primary treatment of CeD is lifetime adherence to a strict gluten-free diet (GFD).
A gluten-free diet significantly reduces macrophage counts, promotes epithelial integrity,
and improves subjective wellbeing but does not facilitate significant improvement in
small bowel water content or whole gut transit time after a year [375,376]. Additionally,
GFD is associated with sharp reductions in Bifidobacterium species and loss of starch and
arabinoxylan degrading enzyme activity [376]. Further dietary modifications to GFD
have the potential to potentially improve symptom severity and prevent dysbiosis. CeD
patients adopting a low-FODMAP diet, on top of gluten restriction, showed statistically
significant improvements in pain, bloating, diarrhea, and satiety within 4 weeks [377].
Recent investigations of commensal Lactobacillus species have outlined mechanisms for
degrading and decreasing the immunogenicity of gluten molecules, reducing residual
gluten levels in healthy volunteers [378,379]. Probiotic formulations taking advantage
of these mechanisms demonstrate therapeutic potential in reducing the consequences of
gluten cross-contamination for CeD patients. While the role of gut microbiota in CeD
etiology remains to be accurately defined, modulating gut microbiota activity through diet
and supplementation has the potential to improve the efficacy of CeD treatment.

4.12. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease predominantly targeting
the joints, with microbial infections increasingly recognized as potential triggers [380].
Emerging evidence strongly implicates the composition and function of the gut microbiota
and its dysbiosis in the complex immune dysregulation characteristic of RA, although the
precise etiological and pathogenetic pathways continue to be actively investigated [381].
Several mechanisms have been proposed to explain how the gut microbiota may contribute
to RA pathogenesis. These include the production of pro-inflammatory metabolites by cer-
tain gut bacteria, the impairment of the intestinal mucosal barrier, and molecular mimicry,
where microbial antigens resemble host autoantigens, potentially initiating or perpetuating
an autoimmune response [380]. Patients with RA often exhibit an imbalance in cytokine
profiles, with an upregulation of pro-inflammatory cytokines and a downregulation of
anti-inflammatory ones, a milieu potentially influenced by microbial factors [382]. Compro-
mised intestinal mucosal permeability can lead to the translocation of microbial products
and even whole bacteria into circulation. This breach is thought to facilitate the migration
of autoreactive immune cells from the gut to the joints, thereby contributing to synovial
inflammation [383].

While the exact nature of microbial variance in RA patients remains a subject of on-
going research and debate [384–386], specific microbial signatures have been associated
with the disease. Notably, increased relative abundances of species like Prevotella copri and
certain Lactobacillus strains, alongside decreased levels of Bacteroidetes, Bifidobacteria, and
Eubacterium rectale, have been reported, particularly in the early stages of RA [387]. More re-
cent research comparing RA patients undergoing sustained drug treatment with untreated
patients and healthy controls has highlighted differences in microbial metabolic pathways.
For instance, pathways such as vitamin K2 biosynthesis were found to be more abundant
in bacteria enriched in untreated RA patients, suggesting functional consequences of the
observed dysbiosis [388]. Given that RA is characterized by heightened inflammation and
oxidative stress, interventions targeting gut microbiota have become an area of significant
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interest. RA patients receiving probiotics have demonstrated improvements in their ox-
idative/nitrosative stress profiles and reductions in inflammatory biomarkers compared
to those receiving a placebo. These findings suggest that modulating gut microbiome
diversity through probiotics can foster a beneficial immune response and decrease systemic
inflammation in RA [384].

Dietary modulation also presents a compelling therapeutic strategy. Investigations into
various dietary patterns have found that the Mediterranean diet, rich in anti-inflammatory
components, may offer greater efficacy in ameliorating the perception of pain in RA patients
compared to other approaches like general plant-based diets [389–391]. While larger,
blinded patient cohorts are necessary to solidify the connection between specific diets,
gut microbiota changes, and RA-associated pain relief, this growing body of research
underscores the significant potential of dietary recommendations to improve the quality of
life for individuals living with RA.

4.13. Neurological Disorders

The role of the gut–microbiome–brain axis is emerging as an important consideration
in the pathogenesis and treatment of several neurological conditions. The bidirectional
nature of gut–brain interaction has been emphasized in recent studies outlining spinal cord
injury-induced gut microbe dysbiosis. Spinal cord injury was found to interrupt signaling
from the brain to sympathetic preganglionic neurons, resulting in a loss of coordinated
control over GI tissues, with subsequent disruptions of motility, mucous secretion, ep-
ithelial barrier permeability, and immune surveillance [392]. The resulting compositional
changes and immune activation resulted in delayed recovery from neurological and loco-
motor impairment [393]. Mice were administered LAB probiotics following spinal cord
injury; however, they demonstrated improved locomotor recovery time. Communica-
tion along the gut–brain axis is mediated by a complex network of microbiota-mediated
metabolite and cytokine interactions with implications for the etiology and progression of
neurological diseases.

Gut microbe secretion of SCFAs has been demonstrated to play a key role in the modu-
lation of neuroinflammatory processes. Another notable biological compound prominently
active in neurological disorders is tryptophan, whose metabolites are linked to the secretion
and regulation of serotonin and melatonin, which are closely linked to several neurological
disorders [394]. Key markers associated with gut dysbiosis for many neurological disor-
ders have been identified in a systematic review, noting consistently increased circulating
levels of tight-junction protein zonulin, the endotoxin LPS and gut-related systematic
inflammatory markers [395].

Major depressive disorder (MDD) has similarly been linked to gut microbiota dysbiosis.
The gut microbiome of MDD patients is characterized by an increased abundance of
Enterococcus. The immune systems of individuals with MDD show a distinct profile
with increased pro-inflammatory and decreased anti-inflammatory immune cell subsets,
highlighting the immune system’s involvement in the disorder [396]. The crosslink between
the gut, the disease, and the immune system points to possible advancement in a more
comprehensive understanding of the disease. There is now research being conducted to
investigate the possible adjunct therapy use of probiotics to treat or prevent MDD. Research
correlated high levels of Bifidobacterium with stress-resistant traits in mice and has seen
positive results of the supplementation of the bacteria, having a possible preventative nature
and resilience to stress. Administering Lactobacillus or Bifidobacterium spp. has been shown
to lower cortisol levels in acute or chronic stress in mice [397]. Further implicating the brain–
gut axis in MDD, a recent study explored the anti-depressant effects of ginsenoside Rh4 and
its mechanisms of action, showing alongside its effectiveness in treating depression-like
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behavior in a mouse model, it has concurrently shown to inhibit hippocampal neuronal
apoptosis and synaptic structural damage from proinflammatory cytokines alongside
increasing the SCFA content [398]. Although there are numerous studies linking alleviated
symptoms of MDD to the Mediterranean diet, the exact mechanism that shows causality is
still in question and potential for further research [399–401].

Social anxiety disorder (SAD) is a debilitating psychiatric disorder associated with
intense fear or anxiety in social situations. Fecal microbiota transplantation (FMT) from mice
with a model of SAD to healthy control mice induced behaviors resembling heightened
social fear, suggesting a causal role for the gut microbiota in SAD-like behavior [402].
This link opens opportunities to look for possible therapeutics to alleviate the heightened
fear symptoms of SAD. A recent randomized controlled trial investigating the effects of
Lactobacillus plantarum JYLP-326 on test anxious college students resulted in alleviation of
anxiety, depression, and insomnia after taking this probiotic and further highlighting the
connection between gut microbiota and mental health [403].

Recent clinical studies have demonstrated that FMT may offer therapeutic benefits for
children with autism spectrum disorder (ASD). Multiple trials have reported improvements
in gastrointestinal symptoms as well as reductions in core behavioral symptoms of ASD
following FMT treatment, suggesting a direct role of the gut microbiome in modulating
neurological function and symptom severity over time [404,405]. These findings support
the hypothesis of a gut–brain axis involvement in ASD pathogenesis and highlight the
potential of microbiome-targeted therapies, such as FMT, as promising interventions for
ameliorating disease symptoms.

Alzheimer’s disease (AD), a neurodegenerative condition characterized by the buildup
of extracellular amyloid plaques and sustained neuroinflammation, has a growing body
of evidence underscoring the critical involvement of the gut–microbiota–brain axis and
immune system alterations in AD pathogenesis. Dietary patterns high in ultra-processed
foods (UPFs) show detrimental associations; for instance, over 10 years, a 10% increase
in UPF consumption was associated with an increased risk of dementia and AD, while
replacing 10% of dietary UPFs with minimally processed foods lowered dementia risk
by nearly 20% [406]. Changes in the gut microbial composition are observed in AD.
Notably, AD correlates with significantly reduced short-chain fatty acids. The strongest
known genetic risk factor for late-onset AD, the Apolipoprotein E4 allele, also appears
to intersect with the gut microbiome. Research indicates that the genotype is associated
with distinct gut microbiome profiles compared to non-carriers. These alleles-linked
alterations in microbial composition may foster a pro-inflammatory gut environment,
further contributing to the systemic inflammation and immune dysregulation implicated
in AD. This emerging understanding suggests that the detrimental effects of the allele
may not be solely confined to its roles in central nervous system metabolism and lipid
transport but may also be mediated through its influence on the gut microbiota. Such
findings are pivotal, opening new avenues for developing therapeutic strategies that
specifically target the gut microbiome to potentially mitigate AD risk or slow its progression,
particularly in genetically susceptible individuals [407]. New and unique therapeutic
approaches targeting the microbiota–gut–brain axis are emerging, reflecting this paradigm
shift. For instance, interventions such as acupuncture have garnered attention for their
potential neuroprotective effects. Studies have reported that acupuncture treatment can
improve cognitive function and favorable modulations in brain activity in AD models
and patients. Crucially, these benefits have been linked to concurrent positive changes
in the composition and functional capacity of the gut microbiota. These observations
further solidify the hypothesis that the microbiota–gut–brain axis plays a role in AD
pathophysiology and highlight its potential as a viable target for innovative treatment
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strategies aimed at restoring microbial symbiosis and dampening detrimental immune
responses [408].

Metagenomic investigation of Parkinson’s disease (PD) patients revealed a unique gut
microbiota profile, leading investigators to successfully supplement changes in the gut to
alleviate PD symptoms [409]. The relationship between the altered gut and the pathogenesis
of PD may be linked to the decreased levels of anti-inflammatory SCFAs and subsequent
upregulation of inflammatory response. FMT as a treatment for PD has so far shown limited
clinically meaningful improvements [410]. However, these findings emphasize the need
for further investigation into the specific mechanisms underlying the gut–microbiota–brain
axis in PD. One common non-motor symptom in PD impairing the quality of life of the
patient is constipation. In hopes of improving constipation symptoms in PD patients, a
recent study supplemented patients with probiotics and has seen this treatment effectively
improve the symptoms and positively affect the gut microbiota [411]. A healthy and
balanced diet plays a critical role in shaping microbial diversity in the gut, which leads to
higher production of SCFA and other beneficial biological compounds that positively affect
the brain processes [412]. Although the understanding of the gut–microbiota–brain axis is
still in its early stages, the foundational research linking neurological diseases to gut health
underscores the intricate interconnectedness of bodily functions and provides a promising
starting point for future discoveries.

5. Conclusions
The impact of diet on the gut microbiota–immune axis underscores the importance of

research on its therapeutic potential in many diseases. Interventional diets have consistently
been shown to reduce inflammation, protect the gut barrier, and aid immune regulation.
The Mediterranean diet, increased fiber and polyphenols, balancing diversity, and limiting
high fat and sugar have all demonstrated positive modulating effects on the microbiome.
Microbial metabolites, e.g., SCFA, secondary bile acids, and TMAO, alongside microbial
structural components, e.g., LPS, are critical in the crosstalk between the gut and systemic
processes, serving as key players in disease etiology and pathogenesis (Figure 1).

Alterations in microbial diversity and function are consistently linked to a wide
spectrum of diseases, including cardiometabolic disorders (e.g., cardiovascular disease,
obesity, type-2 diabetes), autoimmune conditions (e.g., type-1 diabetes, rheumatoid arthritis,
celiac disease), respiratory disease, chronic kidney and liver disease, inflammatory bowel
disease, and neurological disorders (e.g., Alzheimer’s, Parkinson’s disease, depressive
disorders). The specific mechanisms implicating gut dysbiosis in these various diseases are
multifaceted and intertwined, often involving chronic low-grade inflammation, impaired
metabolic function, gut barrier dysfunction, and immune dysregulation. Furthermore,
the extension of the microbiome’s influence in regulating host circadian rhythms adds an
additional layer of complexity in affecting the systemic processes and diseases.

FMT has emerged as an important therapeutic approach for addressing gut dysbiosis.
By restoring a healthy and diverse microbial community, FMT can influence immune
regulation, helping to modulate inflammatory responses and improve disease outcomes.
In various disease pathogenesis, including IBD, metabolic disorders, and even neurological
conditions, FMT has shown promise in reshaping the microbiome and reducing inflamma-
tion. Moreover, the functional capacity of the gut microbiome to metabolize a wide range of
therapeutic drugs is increasingly recognized as a key factor influencing clinical outcomes.
Notably, Zimmermann et al. (2019) demonstrated that specific gut bacterial genes could sig-
nificantly alter drug metabolism, underscoring the need to consider microbial composition
and function in personalized medicine [413].
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While the loss of beneficial microbes is often associated with disease states, their
absence may not universally contribute to pathogenesis. In some conditions, host ge-
netics or environmental exposures may dominate disease etiology. For example, certain
acute infections or monogenic disorders may proceed independently of microbial contribu-
tions [414]. Moreover, microbial resilience or functional redundancy within the microbiome
may compensate for the loss of specific beneficial strains. These exceptions highlight the
importance of contextualizing microbiome-disease associations within a broader host and
environmental frameworks [415,416].

Despite significant advances, challenges remain, as the high inter-individual variability
in microbiome composition and differential response to interventions highlight the need
for personalized approaches. A more complete and nuanced understanding of the complex
molecular mechanisms underlying host–microbe interactions in different disease contexts
is crucial for developing targeted and effective therapies. Future research should focus
on identifying reliable biomarkers of dysbiosis, elucidating causal relationships between
specific microbial taxa or functions and disease progression, and conducting clinical trials
to validate the efficacy and safety of microbiome-modulating strategies. Incorporating
diet to cultivate a health-promoting gut microbiome and a balanced immune system is
a crucial component of the push for a more complete understanding of this dynamic
network, holding immense promise for revolutionizing the prevention and management of
various diseases.
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AD Alzheimer’s disease
ALT Alanine aminotransferase
AMPs Antimicrobial proteins
ANGPTL4 Angiopoietin-like protein 4
APC Antigen-presenting cell
ARG Antibiotic resistance genes
ASD Autism spectrum disorder
AST Aspartate aminotransferase
ASC Acute severe colitis
BCFAs Branched-chain fatty acids
BHB Beta (β) hydroxybutyrate
CD Crohn’s Disease
CKD Chronic kidney disease
CLA Conjugated linoleic acid
CVD Cardiovascular disease
DCA Deoxycholic acid
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DCs Dendritic cells
D-PLA D-phenyllactic acid
FMT Fecal microbiota transplantation
FMT Fecal microbiota transplantation
GALT Gut-associated lymphoid tissues
GF Germ-free
GFD Gluten free diet
GI Gastrointestinal tract
GLP-1 Glucagon-like peptide-1
GPCRs G-protein-coupled receptors
HCA3 Hydroxycarboxylic acid
HDAC Histone deacetylase
HDACs Histone deacetylases
HFD High-fat diet
IBD Inflammatory bowel diseases
IECs Intestinal epithelial cells
ILCs Innate lymphoid cells
ILFs Isolated lymphoid follicles
LAB Lactic acid bacteria
LP Lamina propria
LPS Lipopolysaccharide
MACs Microbiota accessible carbohydrates
MAMPs Microbe-associated molecular patterns
MDD Major depressive disorder
Mφ Macrophages
MTB Mycobacterium tuberculosis
NADPH Nicotinamide-adenine dinucleotide phosphate
MAFLD Metabolic dysfunction-associated fatty liver disease
MASH Metabolic dysfunction-associated steatohepatitis
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
NK Natural killer
PD Parkinson’s disease
PPs Peyer’s patches
PRRs Pattern-recognition receptors
PYY Plasma peptide YY
RAAS Renin–angiotensin–aldosterone system
ROS Reactive oxygen species
SAD Social anxiety disorder
SCFAs Short-chain fatty acids
SCN Suprachiasmatic nucleus
TB Tuberculosis
TCR T cell receptor
TLR Toll-like receptor
TMA Trimethylamine
TMAO Trimethylamine-N-oxide
UC Ulcerative colitis
UPF Ultra-processed food
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