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Abstract: Cushing’s disease represents 60–70% of all cases of Cushing’s syndrome, presenting with a
constellation of clinical features associated with sustained hypercortisolism. Molecular alterations
in corticotrope cells lead to the formation of ACTH-secreting adenomas, with subsequent excessive
production of endogenous glucocorticoids. In the last few years, many authors have contributed to
analyzing the etiopathogenesis and pathophysiology of corticotrope adenomas, which still need to
be fully clarified. New molecular modifications such as somatic mutations of USP8 and other genes
have been identified, and several case series and case reports have been published, highlighting new
molecular alterations that need to be explored. To investigate the current knowledge of the genetics of
ACTH-secreting adenomas, we performed a bibliographic search of the recent scientific literature to
identify all pertinent articles. This review presents the most recent updates on somatic and germline
mutations underlying Cushing’s disease. The prognostic implications of these mutations, in terms of
clinical outcomes and therapeutic scenarios, are still debated. Further research is needed to define the
clinical features associated with the different genotypes and potential pharmacological targets.

Keywords: Cushing’s disease; ACTH-secreting adenoma; genetic mutations; driver genes; USP8;
germline mutations

1. Introduction

Cushing’s syndrome (CS) is a complex clinical entity, arising from chronic exposure to
excessive levels of glucocorticoids. It can be classified in ACTH-independent CS, resulting
from adrenal disease, and ACTH-dependent CS, in the case of the overproduction of ACTH
with secondary hypercortisolism. ACTH-dependent causes can be further classified into
two groups based on the source of ACTH production: ACTH-secreting pituitary tumors
(also termed Cushing’s disease) and ectopic ACTH-production. The clinical features of this
syndrome include common physical manifestations such as hypertension, central obesity,
hyperglycemia, hyperlipidemia, urolithiasis, and fatigue as well as more specific features
that can help in the diagnostic process (i.e., bruising, hirsutism, plethora, proximal muscle
weakness, osteopenia/osteoporosis (possibly presenting with bone fractures), and wide
purple striae). Mental aspects of this syndrome include intermittent depression, insomnia,
and altered memory and concentration. In addition, in the case of Cushing’s disease, local
mass effect signs or symptoms may arise in the case of larger pituitary adenomas including
headache and visual field defects [1,2].

The diagnosis of CS requires the confirmation of hypercortisolism, which can be
conducted with three laboratory tests including urinary free cortisol (24 h urine collection),
low-dose dexamethasone suppression test (Liddle 1 or 1 mg overnight test), and late-night
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salivary cortisol to assess the absolute cortisol levels and the integrity of the circadian
rhythm of endogenous glucocorticoids [3]; if available, other tests such as midnight serum
cortisol may be used. Once CS has been diagnosed, the plasma ACTH measurement
determines whether the patient is affected by an ACTH-independent or ACTH-dependent
form. In the case of undetectable ACTH levels, adrenal disease is suspected, and abdominal
MRI/CT imaging is recommended. Conversely, with non-suppressed ACTH levels, a high
dose dexamethasone suppression test (Liddle 2 or 8 mg overnight test) is performed. An
adequate cortisol suppression after this test usually indicates pituitary disease and pituitary
MRI is indicated; an inadequate suppression usually indicates an ectopic production, and
other tests are required to define the source of ACTH excess (body CT/MRI, octreoscan,
or Gallium-68 PET/CT scan). In the case of unclear scenarios, a further test may be
indicated such as CRH stimulation test or bilateral inferior petrosal sinus sampling (BIPSS).
This diagnostic procedure needs to be carefully implemented and interpreted, especially
in pediatric patients and in patients affected by adrenal disease with the suspicion of
concomitant Cushing’s syndrome. First, in children, a different frequency of causes of CS
can be observed (i.e., ectopic ACTH excess is rare in children vs. adults, while adrenal
disease is more frequent than CD in children under the age of 7) and the acceptability and
invasiveness of diagnostic tests should be considered (e.g., favoring salivary cortisol) [1,4].
Moreover, in patients affected by adrenocortical carcinoma treated with mitotane, ACTH
secretion can be impaired [5] and total serum and urinary cortisol values can be altered,
making salivary cortisol a potentially more accurate assay [6].

Treatment of Cushing’s disease mostly relies on pituitary surgery, if possible; second,
radiotherapy and/or bilateral adrenalectomy may be needed. Pharmacologic therapies
include pituitary targeted molecules such as pasireotide or cabergoline; adrenal-directed
drugs such as ketoconazole, mitotane, osilodrostat, metyrapone, and etomidate; and gluco-
corticoid receptor antagonists such as mifepristone. New therapies are being studied, also
thanks to the recently discovered molecular alterations that determine the etiopathogenesis
and pathophysiology of this disease. This review aims to present the most recent updates
on genetic mutations underlying Cushing’s disease.

2. Results

We conducted a search on Pubmed.gov (accessed on 4 April 2022) to identify relevant
papers related to the genetic basis of Cushing’s disease. Our search included the following
keywords: Cushing’s disease, ACTH-Secreting Pituitary Adenoma, pituitary neoplasms,
genetics. We focused our search on more recent articles using filters based on publication
dates (2016–2022 and 2021–2022) to collect updated information.

2.1. Somatic Driver Mutations
2.1.1. USP8

USP8 is one of many deubiquitinase proteins of the USP family. Recent studies have
contributed to clarify the USP8 protein function and its alterations in Cushing’s disease.
The USP8 protein is constituted by several domains including the catalytic USP domain,
which has deubiquitylating activity and can be activated through cleavage. USP8 also
contains a WW-like autoinhibitory domain, which interacts with the catalytic domain,
impeding its bonding with ubiquitylated proteins, and avoids the activating cleavage of the
protein [7]. USP8 is modulated through the binding of 14-3-3 proteins with the WW-like
domain, which stabilize it in an inactive conformation [7].

In 2015, two different research groups reported the presence of various mutations in
exon 14 of the USP8 gene in the majority of the analyzed corticotrope adenomas. Ma et al.
conducted a DNA exome sequencing of 12 fresh tumor samples and the additional Sanger
sequencing of DNA samples from 108 other ACTH-secreting adenomas, finding USP8
mutations in 62.5% adenomas (75/120) [8]; Reincke et al. performed tumor DNA exome
sequencing on 10 samples and USP8-targeted sequencing on an additional seven samples,
finding an overall prevalence of 35% (6/17) [9]. These studies have notably increased our
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understanding of the molecular pathogenesis of Cushing’s disease. Many other authors
have confirmed the presence of the reported mutations since then, and other mutations
have been described in several subsequent studies [10–12]. Interestingly, USP8 has also
been studied in other tumors and been found to be upregulated in cervical squamous
cell carcinoma and lung carcinomas, representing a negative prognostic factor [13], even
though its mutations remain specific markers of corticotrope adenomas [14].

Overall, the reported prevalence of USP8 mutations is 23–62% of corticotrope adeno-
mas. It is of note that a higher prevalence of USP8 mutations has been reported in Chinese
studies [8] compared to European [9,12,15] and American studies [12,16], possibly because
of an interplay with genetic and ethnic differences [17,18].

Most of the reported mutations in ACTH-secreting adenomas alter the amino acid
sequence in the 14-3-3 binding site and disrupt the USP8 and 14-3-3 bond, thus un-inhibiting
USP8 activity because of increased cleavage of the catalytic domain [9] and/or increased
spontaneous enzymatic activity even without such cleavage [7]. Other mutations also
reduce 14-3-3 binding, not because of altered sequences in the bonding region but because
of conformational abnormalities [10].

In cultured ACTH-secreting adenoma cells, USP8 dysregulation is associated with
an increased expression of EGFR and other proteins involved in EGF signaling including
CMTM8, MAPK15, and E2F1 transcription factor, which contribute to the genesis of cor-
ticotrope adenomas and sustain ACTH and POMC secretion [15,19–21]. In vitro studies
showed increased EGFR activity with ERK1/2 activation, leading to Nur77 binding to the
Nur responsive element in the promoter of POMC and subsequently increased ACTH secre-
tion [9]. An in vivo model supports the link between EGFR upregulation and corticotrope
adenoma formation: Araki et al. developed a transgenic mouse model overexpressing
EGFR in corticotrope cells, showing the development of corticotrope adenomas and a Cush-
ing phenotype [21]. These represent actual and potential therapeutic targets: gefitinib has
shown promising cytotoxic and/or anti-secretive EGFR-inhibition-mediated effects in vitro
and in murine models [14,20,21]; Bexarotene-Lapatinib combined EGFR- and transcription
inhibition has been reported as potentially useful in vitro [22].

ACTH oversecretion in USP8-mutated adenomas may also be explained by the fact
that USP8 hyperactivation may directly cause a reduction in POMC and POMC precursors
of ubiquitin-mediated degradation; conversely, ACTH is not a target of ubiquitylation
as it is synthetized outside the endoplasmic reticulum: its increased secretion in USP8-
mutated adenomas appears then to be a consequence of increased EGF signaling and
POMC production, as shown in corticotrope adenoma primary cultures [15].

USP8-mutated corticotrope adenoma cells are more sensitive to corticotrope mod-
ulators, namely CRH and dexamethasone, in vitro, compared to USP8-wild-type (WT)
ACTH-secreting adenomas, with higher levels of CRH and glucocorticoid (NR3C1) recep-
tors [15]. Interestingly, a coexisting mutation of the RASD1 gene has been reported in a
case of USP8-mutated adenoma [23]; a murine model supports the hypothesis that RASD1
is induced by dexamethasone in corticotrope cells and likely plays a role in glucocorticoid-
mediated negative feedback functioning as an inhibitor of the CRH signaling pathway [24].
Over- or under-expression of many genes involved in EGFR recycling, cell cycle regulation
(e.g., p27 and CABLES1), POMC expression and ACTH secretion (e.g., CREB), glucocor-
ticoid receptor activity (e.g., HSP90), and more general granule sorting and exocytosis
have also been found in USP8-mutated corticotrope adenomas, primary cultures, and
in the murine corticotrope adenoma AtT-20 cell line [15,25]. An increased expression of
somatostatin receptor SSTR5 has also been reported in a transcriptome analysis via the RNA
sequencing of human ACTH-secreting adenoma cells, with potential therapeutic implica-
tions (i.e., possible different sensitivity to pasireotide) [26]. Finally, USP8 has been shown
to increase Sonic Hedgehog (SHH) signaling by promoting SMO activity [27], even if the
possible implications of this alteration have not been studied in USP8-mutated corticotrope
adenoma cells to date (Figure 1).
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mutations and potential druggable targets.

A recent study analyzed the different expression of microRNAs via RNA sequencing
and cDNA analysis in formalin-fixed tumor samples; the authors found 68 differentially
expressed microRNAs between the USP8-mutated and WT ACTH-secreting adenomas,
with 400 putative target genes for these miRNAs. Twenty-five of these genes, mainly
involved in ubiquitylation processes, were differently expressed between the two groups.
Only 12 of the 68 identified miRNAs target these genes [28]. The preliminary findings of
these studies suggest that the prominent epigenetic differences between USP8-mutated
and WT corticotrope adenomas are not caused by the alteration of miRNAs expression.

This constellation of molecular alterations associated with USP8 mutations has led
some authors to recommend categorizing of the mutational status of this gene in ACTH-
secreting pituitary adenomas [29]. This may be supported by some case series that report
relevant clinical differences in patients with USP8-mutated compared to USP8-WT ade-
nomas (e.g., higher prevalence in females, smaller size, lower rates of parasellar invasion,
better post-surgical outcomes but higher rates of recurrences) [8,9,12,30–34], although with
conflicting results [16,18,26,32–34]. In a case report, USP8 mutational status was of aid in
diagnosing Cushing’s disease in a patient with dubious immunohistochemical and bio-
chemical features, suggesting a potential diagnostic role for this molecular alteration [35].

USP8 mutations have also been described in pediatric patients with corticotrope
adenomas [32], but a recent study advocates that it may be less frequent than in adult
patients [36]. It is possible that other molecular mechanisms prevail in pediatric corticotrope
adenomas than in adults. A single case report reported a USP8 germline mutation in
a patient with a syndromic clinical presentation that included Cushing’s disease (see
below) [37].

2.1.2. Other Driver Mutations

After the identification of USP8 mutations, many research groups aimed to identify
other potential driver gene mutations that could clarify the tumorigenesis of USP8-WT
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corticotrope adenomas. Many new mutations have been identified, and to date, around
12–28% of ACTH-secreting adenomas have no known mutations [38] (Figure 2). Interest-
ingly, some of these new driver mutations that have been identified in USP8-WT tumors
are not mutually exclusive one to each other [39]. The following paragraphs focus on the
reported driver mutations and their pathophysiological consequences, ordered by preva-
lence, although the estimated prevalence may be biased by the different methods used in
molecular studies (i.e., analysis of specific target genes as opposed to tumoral DNA Next
Generation Sequencing; inclusion of USP8-WT adenomas only) [38]. In fact, a high variabil-
ity of such percentages has been observed [39]. Different genetic backgrounds of the studied
populations may also explain such heterogeneity among the studied populations [18].
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USP48 codifies for another deubiquitinase that is linked to increased POMC and
ACTH synthesis. This protein shares with USP8 and the other USP deubiquitinases a
similar catalytic domain, composed of a “finger–palm–thumb” structure [40]. Two missense
mutations of USP48 involving methionine 415 (i.e., Met415Ile, Met415Val) have been
described [41,42]. Interestingly, these mutations directly involve the catalytic domain
of the protein rather than other regulatory domains, as seen instead in USP8 mutations.
These modifications constitutively increase the deubiquitinase activity of USP48, leading to
the formation of corticotrope adenomas and ACTH hypersecretion [41]. The underlying
molecular pathogenic mechanism may lie in the activation of transcriptional factor NF-κB
and the subsequent POMC promoter activation, as seen in AtT-20 cells [43,44]. Another
described mechanism could involve the Sonic Hedgehog (SHH) pathway. CRH signal
transduction requires SHH-pathway zinc finger protein Gli1: in fact, CRH stimulus is
impaired in vitro in Gli1-silenced AtT-20 cells; USP48 has been shown to deubiquitinate
Gli1 and histone H2A, therefore dysregulating CRH signal transduction and cell growth,
possibly resulting in adenoma formation with dysregulated ACTH secretion [41].
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The prevalence of USP48 mutations greatly varies among the different studies, ranging
from 3 to 23% of the analyzed samples [10,39,42]. As for the clinical features associated
with these mutations, it has been reported in a case series that USP48-mutated corticotrope
adenomas (evaluated via exome and Sanger sequencing of fresh and/or formalin-fixed
tumor samples) showed a smaller size and higher prevalence among female patients
compared with USP8-/USP48-WT tumors [41]. In another case series, USP48 mutations
were also associated with an increased risk of cavernous sinus invasion, although in a small
sample size [39].

TP53 codifies for a protein involved in many fundamental cellular processes linked to
genome stability and proliferation. Mutations of this tumor suppressor gene have rarely
been detected in pituitary ACTH-secreting carcinomas [45] but had not been described in
corticotrope adenomas until 2009 [46]. Next Generation Sequencing has allowed researchers
to identify other loss-of-function TP53 mutations (i.e., frameshift/nonsense inactivating
mutations or missense copy number loss mutations) in approximately 12.5% of cases of
ACTH-secreting adenomas [9,38,42]. Coexisting mutations of both TP53 alleles have been
described; alternatively, a mutation of one copy of TP53 and either loss of heterozygosity
or a mutation of another gene involved in the same pathway (i.e., DAXX and ATRX) are
needed for tumorigenesis to happen [41]. In one case, a somatic mutation of PRKAR1A
was coexisting [29]. TP53 mutations are associated with a high grade of genomic instability,
they seem to occur at an early stage of tumorigenesis, and they are mutually exclusive with
USP8 mutations, thus shown to be driver mutations [29]. Tumors presenting with such
mutations have also been described to be larger and more aggressive [38].

BRAF is a well-known oncogene encoding a protein involved in the MAP-kinases
downstream pathway. Somatic BRAF V600E mutation has been reported in several tumors;
in 2018, such a mutation was detected in 16.5% of a case series of USP8-WT corticotrope
adenomas; this alteration was not mutually exclusive with USP48 mutations [42]. The
suggested mechanism triggered by BRAF V600E mutation involves constitutive activa-
tion of BRAF and the MAP-kinases pathway, thus stimulating cell proliferation and, in
corticotrope cells, ACTH synthesis and secretion. The increase in ACTH levels may be
explained by a stimulation of the ERK signaling pathways [39] and an increase in the
activity of transcriptional factors such as Nur77, c-Fos, and c-Jun, which induce POMC
transcription in corticotrope cells [42].

A following case series, however, found such a mutation in a single case out of
94 examined adenomas [41], while other authors have not found any BRAF mutations,
even with whole exome sequencing [8,9,39]. These case series also included a Chinese
population, thus making this variability unlikely due to ethnic background only. Clarifying
the real-world prevalence of the BRAF V600E mutation in corticotrope adenomas may be
of great importance given the existence of targeted drugs already used in several types of
cancer harboring the V600E mutation. In fact, Chen et al. presented preclinical evidence
of the potential usefulness of the BRAF-inhibitor vemurafenib in BRAF-mutated primary
corticotrope adenoma cells, showing a reduction in ACTH secretion with no difference
in cell death rates [42]. More studies on the prevalence of BRAF mutations in Cushing’s
disease are therefore needed to evaluate the possible use of this antisecretory effect in
patients with a high surgical risk.

NR3C1 encodes the glucocorticoid receptor (GR), composed of a DNA binding domain,
a ligand binding domain, and a transactivation domain. The GR is bound to HSP90 and
immunophilins in the cytoplasm in its inactive form; in corticotrope cells, in the presence
of glucocorticoids, the GR translocates to the nucleus and inhibits POMC expression and
subsequent ACTH secretion [47]. Many other proteins modulate GR activity: Brg1 and
HDAC2 contribute to POMC repression [48]; conversely, TR4 binds the GR and interferes
with its binding with the POMC promoter [47]. Mutations of NR3C1 have been described
in glucocorticoid resistance syndrome in association with bilateral adrenal hyperplasia [49];
Next Genome Sequencing studies have then found rare loss-of-function NR3C1 mutations
in ACTH-secreting adenomas [50]. Such mutations cause truncated or non-functioning
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variants of the GR, with a reduced affinity to glucocorticoids and/or conformational alter-
ations caused by structural instability, thus altering its responsiveness to glucocorticoids
and/or its regulatory activity [50,51]. The described mutations are characterized by differ-
ent molecular alterations in the corticotrope cells, and the reasons and consequences of this
variability are yet to be completely understood [52].

Notably, these mutations are rarely found in corticotrope adenomas, with a reported
prevalence of 6.2–6.3% of examined adenomas, whereas glucocorticoid resistance is one of
the hallmarks of Cushing’s disease, implying that GR dysfunction has a pivotal role in its
pathophysiology, regardless of NR3C1 mutational status [38]. In fact, mutations in genes
codifying for HSP90, TR4, CABLES1, and associated proteins have all been described in cor-
ticotrope adenomas and have been associated with features of glucocorticoid resistance [11],
with some of the underlying molecular mechanisms yet to be demonstrated [53].

CABLES1 codifies for a tumor suppressor often altered in many different types of
cancer [54]. CABLES1 inhibits CDK2 by connecting it to Wee1, and it stabilizes p21; these
events contribute to cell cycle arrest. Notably, CABLES1 is regulated by Akt, which is
part of the EGFR signaling pathway, linking EGF and cell cycle regulation and potentially
giving CABLES1 a pivotal role in the pathophysiology of corticotrope adenomas. In AtT-20
cells, CABLES1 levels normally increase in response to glucocorticoids, together with many
other molecular responses involving c-Myc, GADD45, and other proteins, contributing
to the glucocorticoid-mediated negative feedback mechanisms on cell proliferation [53].
Moreover, the administration of a USP8-inhibitor in AtT-20 cells led to a suppression in
proliferation and an increase in the CABLES1 levels and GADD45, possibly demonstrating
a role for CABLES1 in the suppression of pathologic proliferation [55]. In fact, CABLES1
levels have been shown to decrease in ACTH-secreting adenomas [53,55]. The role of
CABLES1, however, may be overestimated in AtT-20 cells; in fact, CABLES1-knockout mice
showed normal pituitary development up to one year, suggesting that other mechanisms
may be required for corticotrope adenoma formation [53].

Hernández-Ramírez et al. described four loss-of-function heterozygous CABLES1
mutations among 181 patients affected by Cushing’s disease [56]. Despite the low number,
given the clinical characteristics of the four described patients (i.e., age and tumor size), it
is conceivable that CABLES1 mutations may predispose pediatric patients to the formation
of corticotrope adenomas [56].

GNAS codifies for the Gsα subunit of G proteins involved in several receptor signal
transduction via the cAMP pathway. Missense mosaic mutations of the R201 codon of
this gene cause McCune–Albright syndrome (MAS). These gain-of-function modifications
cause hyperactivation of Gsα and constitutive activation of the cAMP pathway. This trans-
lates into a clinical picture of polyostotic fibrous dysplasia, café-au-lait skin lesions, and
hyperfunction of potentially all endocrine glands [57]. MAS patients can present with
somatotroph or lactotroph pituitary adenomas, and with hypercortisolism secondary to
adrenal hyperplasia or adenoma, but not ACTH-secreting adenomas [58]. To date, two so-
matic GNAS mutations affecting Q227 and R201 codons have been identified in corticotrope
adenomas via DNA exome amplification and oligonucleotide probes or sequencing, with-
out any clinical feature of MAS [59,60]. Interestingly, the same mutation described by
Riminucci et al. was found in one of the 22 patients undergoing whole-exome sequencing
by Chen et al. [42].

2.2. Evaluation of Somatic Mutations in Peculiar Settings
2.2.1. Pituitary Carcinoma

Pituitary carcinoma is a very rare disease, and its pathogenesis is yet to be under-
stood. This tumor has been reported to arise from biologically aggressive pre-existing
adenomas [61]. Mutations involving TP53 and ATRX, and potentially MSH2 (in a patient
with Lynch syndrome) have been described in this type of cancer [45,61–63]. Moreover, the
mutational status of pituitary cancer cells may be altered by chemotherapy and allow for
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new therapeutic strategies: Lin et al. reported a case of pituitary carcinoma presenting as
hypermutated after chemotherapy and responding to immunotherapy [64].

2.2.2. Nelson’s Syndrome

This syndrome is characterized by the development of a pituitary ACTH-secreting
adenoma after bilateral adrenalectomy. The analysis of these adenomas has shown alter-
ations in NR3C1 and TP53 [61,65]. Pérez-Rivas et al. also found USP8 mutations in 15 of
33 cases, with higher ACTH levels after surgery but without any other clinical differences
compared to USP8-WT tumors [66].

2.2.3. Silent Corticotrope Adenoma (SCA)

These corticotrope adenomas are associated with increased ACTH secretion but no
hypercortisolism and clinical hallmarks of Cushing’s disease are present, making them
similar to non-functioning pituitary adenomas [67]. SCAs may have a different origin and
molecular pathogenesis than other corticotrope adenomas. The absence of hypercortisolism
is not yet understood. Some authors have suggested that these tumors originate from
pars intermedia POMC-positive cells, rather than from the anterior lobe. Other authors
have reported the secretion of high-molecular-weight ACTH and alterations of prohor-
mone convertase resulting in altered POMC cleavage [61]. Mouse models of SCAs and
in vitro studies showed a reduced expression of tumor suppressor genes RB1 and KLK10,
and altered expression of other genes related to tumor progression and metastasis [68].
Moreover, transcriptome and proteome analysis comparing gene expression between SCAs
and functioning corticotrope adenomas identified alterations in endoplasmic reticulum
protein processing and in ACTH synthesis such as the overexpression of PCSK1N, an indi-
rect inhibitor of ACTH maturation [69]. These differences may explain the altered ACTH
secretion in SCAs [68–71]. Interestingly, USP8 mutations seem to be much less frequent
in SCAs, supporting the hypothesis of profound differences with Cushing’s disease ade-
nomas [29,72]. SCAs also share more similar molecular alterations with ACTH-secreting
macroadenomas than with ACTH-secreting microadenomas [73,74]. HMGA overexpression
has been described in all histotypes of pituitary adenomas, with a higher prevalence for
SCAs compared to corticotrope adenomas. HMGA dislocates HDAC2 from its binding
with pRB, causing a un-inhibition of the E2F transcription factor, and it is also associated
with an overexpression of CCN2B [13,75], possibly causing cell cycle dysregulation and
increased cell growth.

2.2.4. Crooke’s Cell Adenomas

Crooke’s hyaline change consists of an excess of cytokeratin filaments causing an
enlargement of corticotrope cells as a consequence of overexposure to exogenous or endoge-
nous glucocorticoids. Crooke’s cell adenomas are characterized by >50% of cells showing
Crooke’s change. This change usually impairs the corticotrope cell secretion of ACTH, so
that clinical features of Cushing’s disease are absent, making these cases a variant of silent
corticotrope adenomas. In some cases, however, Cushing’s disease develops in the presence
of such adenomas. The distinctive pathophysiological mechanisms of these tumors are
not yet understood, but an increased risk of invasiveness, recurrences, and transformation
to metastatic carcinoma has been described [61,76]. A mutation of SMO, which codifies
for a transmembrane GPCR involved in hedgehog signaling, has been described in one
patient. SMO is deubiquitinated by USP8 and this modification alters its target region,
possibly linking this mutation to the already described mechanisms of USP8-mutated
adenomas [29].

2.3. Germline Mutations
2.3.1. Multiple Endocrine Neoplasia (MEN) 1

MEN1 syndrome is characterized by the variable association of parathyroid hyperpla-
sia, gastroenteropancreatic NETs, and pituitary adenomas, and less frequently by tumors
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of other tissues, without a clear genotype–phenotype correlation [77]. MEN1 syndrome
is caused by germline mutations of MEN1, encoding menin, which is a tumor suppressor
gene involved in genome stability and cell cycle regulation. More than 1000 mutations
have been described. Deletion or other loss-of-function mutations of the other allele cause
a loss of heterozygosity and tumor development [78]. Corticotrope adenomas are rare in
MEN1, representing 4.4–5% of all pituitary histotypes [78–80]; when considering proband
patients presenting with a pituitary adenoma as the first sign of MEN1, this percentage
arises to 15.4% [79], highlighting that corticotrope adenomas may be the first manifestation
of this syndrome. This may be more evident among children: a retrospective analysis of
238 pediatric patients with Cushing’s disease found that six of them affected by MEN1 had
ACTH-secreting adenoma as the first sign of the syndrome, suggesting careful evaluation of
the familial history of pediatric patients presenting with Cushing’s disease, and subsequent
testing if MEN1 is suspected [81].

2.3.2. Multiple Endocrine Neoplasia (MEN) 2

MEN2A and MEN2B are caused by gain-of-function RET mutations, with a dysregu-
lation of its tyrosine-kinase activity, involving RAS and RAF and subsequent alterations
in cell survival and proliferation. These syndromes are characterized by the presence of
medullary thyroid cancer and pheochromocytomas, associated with hyperparathyroidism
in MEN2A and with ganglioneuromas and marfanoid habitus in MEN2B. Sometimes,
ectopic ACTH secretion can be found [82], but as per corticotrope pituitary adenomas, only
three cases of Cushing’s disease in patients affected by MEN2 have been reported so far,
two in MEN2A [83,84] and one in MEN2B [85]. It is unclear whether these represent rare
coincidences or germline RET mutations do have at least a permissive role in the formation
of these adenomas. Interestingly, the two MEN2A cases were initially mistaken for MEN1,
given the presence of pituitary adenoma and hyperparathyroidism, suggesting caution in
interpreting a negative MEN1 genetic testing in such a scenario [84].

2.3.3. Multiple Endocrine Neoplasia (MEN) 4

MEN4 is an extremely rare MEN1-like syndrome caused by germline mutations of
the CDKN1B gene [86], apparently associated with Cushing’s disease [87]. The transcript
of this gene, p27/Kip1, has an inhibitory effect on cell cycle progression. This syndrome
was recently defined, after a germline nonsense mutation had been described in a patient
affected by acromegaly and hyperparathyroidism, and in three out of six of her relatives
who underwent testing, in the absence of MEN1 mutations [88]. The following year, a study
found another inactivating mutation of the same gene in a patient with Cushing’s disease,
small-cell neuroendocrine cervical carcinoma, and hyperparathyroidism [89]. Other studies
have failed to find such mutations in patients with MEN1-WT MEN1-like syndrome, un-
derlining the extreme rarity of these reported mutations [90,91]. In fact, a subsequent study
searched and found CDK-inhibitors potential (but not certainly) pathogenic mutations in
seven of 196 patients affected by MEN1-like syndrome: one of them carried a CDKN1B
mutation and had no pituitary adenomas, while a patient and one of her relatives carrying
a CDKN1A/p21 mutation were affected by a prolactinoma; none of these seven patients
were affected by Cushing’s disease [92,93]. A more recent study, however, analyzed 211
mostly pediatric patients affected by Cushing’s disease via Next Generation Sequencing
and found five of them (2.6%) carrying germline CDKN1B variants, three of which were
pathogenic or likely pathogenic [94].

2.3.4. Carney Complex

Carney complex (CNC) usually presents with spotty skin pigmentation, myxomas,
endocrine tumors, and Schwannomas. Hypercortisolism can be present, generally because
of primary pigmented nodular adrenocortical disease (PPNAD), present in 2/3 of CNC
patients. Growth hormone (GH)- and, less frequently, prolactin (PRL)-secreting pituitary
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adenomas have been reported. Inactivating mutations of the tumor suppressor PRKAR1A
gene are the main cause of CNC, although other genetic alterations have been described [95].

In this setting, Cushing’s disease has been described in one adult and one pediatric
patient carrying a germline PRKAR1A mutation; loss of heterozygosity was reported as the
pathogenetic mechanism of adenoma formation [96,97].

2.3.5. 3P Association (3PA)

Germline mutations in SDHA, SDHB, SDHC, and SDHD (collectively, SDHx) are
associated with the development of PRL- and GH-secreting adenomas, pheochromocy-
tomas, and/or paragangliomas, a syndrome named 3P association. One SDHD and one
SDHB germline variant of uncertain significance were identified in five patients affected
by sporadic cases of Cushing’s disease, who did not have any history or sign of pheochro-
mocytoma or paraganglioma [98]. To date, no other reports or studies have explored the
relationship between SDHx and corticotrope adenomas.

2.3.6. USP8-Related Syndrome

The role of USP8 in corticotrope adenomas has already been discussed above. As
for germline mutations, however, in 2019, Cohen et al. [37] published a case report of a
young female patient presenting with recurrent Cushing’s disease, developmental delay,
dysmorphism, ichthyosiform hyperkeratosis, chronic lung disease, chronic kidney disease,
hyperglycemia, dilated cardiomyopathy, heart failure, and history of hyperinsulinism and
partial GH deficiency. Whole exome sequencing of DNA samples from the patient and
three first-degree relatives revealed the presence of a de novo USP8 germline mutation
affecting the 14-3-3 binding region of the protein, resulting in a gain of function alike the
mechanisms reviewed above. No other similar cases have been reported yet.

2.3.7. DICER1

DICER1 is a class III cytoplasmic endoribonuclease that cleaves double-stranded pre-
cursor RNAs into siRNAs and miRNAs that interfere with the target RNA translation.
Germline DICER1 mutations cause a defect of this physiologic gene silencing process, re-
sulting in an extremely rare pediatric tumor syndrome. A typical and severe manifestation
of this syndrome is pituitary blastoma, presenting with ACTH-dependent hypercorti-
solism [99]. In an in-depth study by de Kock et al., germline DICER1 mutations were
found in nine children affected by pituitary blastoma, with the other allele presenting
somatic non-synonymous mutations (six cases) or loss of heterozygosity (one case) in the
tumoral tissue, suggesting a potential two-hit model for the tumorigenesis of pituitary
blastomas in DICER1 syndrome [100]. Another study by Sahakitrungruang et al. identified
a somatic and a germline DICER1 mutation in the DNA of a pituitary blastoma, supporting
such a model [101]. Notably, it has recently been suggested that DICER1 variants may
be associated with an increased risk of sporadic corticotrope adenomas, regardless of
DICER1 syndrome, although no data are available to assess the pathogenic meaning of
these variants [102].

2.3.8. Lynch Syndrome

Lynch syndrome is caused by mutations affecting the mismatch repair pathway, with
a subsequent increased risk of several types of cancer. Two cases of Cushing’s disease
have been reported to date: one adenoma and one carcinoma. Interestingly, the adenoma
showed homozygous somatic MEN1 mutations, possibly as a consequence of the increased
risk of genetic alterations in the context of this syndrome [63,103].

2.3.9. Beckwith–Wiedemann Syndrome (BWS)

This syndrome is caused by imprinting alterations of the 11p15 region, containing
genes encoding for proteins involved in somatic growth and cell cycle regulation. A pheno-
type correlation with the various epigenetic alterations has been described, with a variably
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increased risk of developing embryonal and other tumors. Brioude et al. published a case
report of a USP8-mutated corticotrope adenoma arising in a patient with an incomplete
presentation of BWS, interestingly showing an association between epigenetic and genetic
alterations [104].

2.3.10. Tuberous Sclerosis Complex (TSC)

Germline mutations of TSC1/hamartin and TSC2/tuberin are responsible for TSC.
The two proteins encoded by these genes form a dimer, acting as a tumor suppressor via
the inhibition of the mTOR pathway. A dysregulation of cell growth and proliferation
causes the formation of multiple hamartomas in various organs, cognitive impairment, and
epilepsy [105]. Endocrine dysfunction can arise, and Cushing’s disease has been reported
in two patients affected by TSC [106,107]. No other associations have been reported to date.

2.3.11. Non-Syndromic Germline Mutations: Familial Isolated Pituitary Adenoma (FIPA)
and CDH23

FIPAs (familial isolated pituitary adenomas) are defined as pituitary adenomas occur-
ring in at least two members of a single family, or at an early age, in the absence of the other
syndromic features described above. Mutations in AIP gene, encoding a co-chaperone pro-
tein with multiple targets, have been associated with mostly somatotroph and lactotroph
adenomas, and screening for these mutations is recommended in this setting [87]. Rare
cases of the detection of such mutations in pediatric or young adult patients affected by
Cushing’s disease have also been reported [108,109], especially the mutation R16H, which
has an uncertain pathogenetic significance [110]. However, only 20% of patients presenting
with FIPA show AIP mutations, demonstrating the presence of other genetic alterations
yet to be discovered. A single study reported the presence of MEN1 mutation in three
patients from two families of their cohort, one of which had a corticotrope adenoma and
none of them with other features of MEN1 syndrome, suggesting a potential role of MEN1
in AIP-WT FIPAs [111]. It is of note, however, that MEN1 syndrome (described above)
is characterized by metachronous tumors, so that isolated pituitary adenomas in MEN1
germline mutation carriers may represent the first occurring neoplasia of this syndrome
and not a clinical picture of FIPA.

CDH23 encodes for a calcium dependent intercellular adhesion glycoprotein involved
in Wnt pathway regulation. Homozygous mutations of this gene have been associated
with Usher syndrome, characterized by congenital sensorineural hearing loss and later
retinitis pigmentosa. Four germline mutations in four different sporadic ACTH-secreting
adenomas, one of which is homozygous, have been reported in a single study and need
further analysis. No association between Usher syndrome and corticotrope adenomas has
been reported [87,112].

3. Conclusions

In this review, we presented the most recent somatic and germline variants underly-
ing ACTH-secreting adenomas that are involved in tumor development and progression.
Several alterations have been reported, with substantial advances in our understanding of
the molecular pathogenesis and pathophysiology of Cushing’s disease. In the future, both
basic research and clinical studies are needed to deepen our knowledge of the molecular
basis of this disease as the different described mutations may have important prognostic
implications. First, the association between these mutations and several clinical features
(such as adenoma size, levels of ACTH secretion, local invasiveness) need to be thoroughly
investigated to clarify whether the mutational status of these genes correlate with different
prognosis in terms of the response to treatment and risk of recurrences. Second, further
research is needed on the diagnostic application of the reported mutations (e.g., explor-
ing their histological usefulness). Last but not least, new applications of targeted drugs
(e.g., multi kinase inhibitors, agnostic drugs) need to be explored, and new targeted drugs
(such as USP8-inhibitors) may be studied to offer new therapeutic scenarios for patients
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(e.g., inoperable patients or patients at high risk of recurrences). Nonetheless, intriguing
murine and in vitro research has been carried out, but preclinical research is still lack-
ing and no studies on humans have been published to date, making these scenarios not
yet foreseeable.
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