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Perceived Sound Quality Dimensions
Influencing Frequency-Gain Shaping
Preferences for Hearing Aid-Amplified
Speech and Music
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Abstract

Hearing aids are typically fitted using speech-based prescriptive formulae to make speech more intelligible. Individual

preferences may vary from these prescriptions and may also vary with signal type. It is important to consider what motivates

listener preferences and how those preferences can inform hearing aid processing so that assistive listening devices can best

be tailored for hearing aid users. Therefore, this study explored preferred frequency-gain shaping relative to prescribed gain

for speech and music samples. Preferred gain was determined for 22 listeners with mild sloping to moderately severe hearing

loss relative to individually prescribed amplification while listening to samples of male speech, female speech, pop music, and

classical music across low-, mid-, and high-frequency bands. Samples were amplified using a fast-acting compression hearing

aid simulator. Preferences were determined using an adaptive paired comparison procedure. Listeners then rated speech and

music samples processed using prescribed and preferred shaping across different sound quality descriptors. On average, low-

frequency gain was significantly increased relative to the prescription for all stimuli and most substantially for pop and

classical music. High-frequency gain was decreased significantly for pop music and male speech. Gain adjustments, partic-

ularly in the mid- and high-frequency bands, varied considerably between listeners. Music preferences were driven by

changes in perceived fullness and sharpness, whereas speech preferences were driven by changes in perceived intelligibility

and loudness. The results generally support the use of prescribed amplification to optimize speech intelligibility and alter-

native amplification for music listening for most listeners.
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Professionals often fit hearing aids using standardized,
evidence-based prescriptive formulae, such as
CAMEQ2-HF (Moore et al., 2010), DSL[i/o]
(Cornelisse et al., 1995), DSL v5.0 (Scollie et al., 2005),
and NAL-NL2 (Keidser et al., 2011) to provide individ-
ualized frequency-gain characteristics with the general
goal of improving speech intelligibility. These formulae
calculate prescribed gain as a function of frequency,
level, and hearing loss for a signal with the long-term
average speech spectrum (e.g., Cox et al., 1988; Holube
et al., 2010) as the input. The use of prescriptive formu-
lae is considered important in best-practice guidelines
(American Speech-Language-Hearing Association Ad
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Hoc Committee on Hearing Aid Selection and Fitting,
1998; British Society of Hearing Aid Audiologists, 2012;
Valente et al., 2006). Some of these guidelines also
emphasize the need to provide tolerable and comfortable
amplification (American Speech-Language-Hearing
Association Ad Hoc Committee on Hearing Aid
Selection and Fitting, 1998) which is consistent with
studies of the trade-offs between intelligibility and
sound quality in hearing aid fittings (Humes, 2003;
Jenstad et al., 2007). Evaluating sound quality for hear-
ing aids fit using an intelligibility-driven prescription is
of particular importance because poor sound quality
remains a significant barrier to device adoption
(Abrams & Kihm, 2015).

Sound quality evaluations of prescriptive formulae
have appeared in the literature. Comparisons of NAL-
NL2 and CAM2 (a variation of CAMEQ2-HF) revealed
individual differences in sound quality preferences for
either formula (Johnson, 2013; Moore & SeRk, 2013,
2016) which were attributed, in part, to factors including
greater high-frequency gain in CAM2, stimulus input
level, noise type, and hearing profile. Other studies
have identified a range of fittings that deviate from pre-
scribed fittings but maintain acceptable intelligibility and
quality. Jenstad et al. (2007) measured hearing-impaired
listeners’ speech quality judgments and consonant iden-
tification scores using a range of hearing aid fittings,
including targets prescribed using the DSL[i/o] formula
(Cornelisse et al., 1995). A range of fittings varying by
up to 10 dB in low- and high-frequency bands relative to
the DSL[i/o]-prescribed fitting were associated with
near-optimal quality judgments and speech identifica-
tion scores. Polonenko et al. (2010) demonstrated that
preferred listening levels were similar to DSLv5-adult
targets, which are lower than the DSL[i/o] targets used
by Jenstad et al. (2007). More recently, Van Eeckhoutte
et al. (2020) studied whether preferred listening levels
vary with contemporary full bandwidth fittings versus
a narrowband fitting and determined few differences in
preference, while speech recognition improved signifi-
cantly in the full-band condition.

Similarly, Dirks et al. (1993) evaluated hearing-
impaired listeners’ preferred frequency-gain responses
for two- and three-channel amplification systems relative
to linear NAL targets. Listeners compared NAL-
processed discourse in noise varying in low-, mid-, and
high-frequency gain and were instructed to make overall
preference judgments based on their own internal
weighting of intelligibility and quality attributes.
Listener fittings were within 6 dB of NAL targets,
except for more relative low-frequency gain. Other stud-
ies have found similar results using other fitting formulas
(Kuk & Pape, 1992; van Buuren et al., 1995).
Together, these studies characterize the impact of pre-
scriptive formulae on the sound quality of speech.

If speech-based amplification is the foundation of
hearing aid technology, then sound quality implications
of prescribed amplification should be evaluated for
music listening, because modern hearing assistance tech-
nology is becoming more and more integrated with wire-
less streaming and other consumer audio technologies.

Hearing aid users report dissatisfaction with hearing
aid processed music (Greasley et al., 2020; Leek et al.,
2008; Looi et al., 2019; Madsen & Moore, 2014;
Vaisberg et al., 2019), and this may relate to the variable
nature of the acoustics of music.Speech is acoustically
predictable because it originates from the vocal tract and
has well-understood spectral content and levels
(Hillenbrand et al., 1995; Olsen, 1998). One study dem-
onstrated similar long-term spectra across 12 languages
(Byrne et al., 1994). Music, however, originates from a
variety of instruments differing in shape, size, and com-
position, which creates a larger, less predictable range of
spectra and level fluctuations (Chasin & Hockley, 2014).
For instance, music genres such as rock and rap tend to
exhibit smaller dynamic ranges than classical genres such
as opera and orchestra (Kirchberger & Russo, 2016),
and music tracks containing more percussion instru-
ments tend to exhibit more low- and high-frequency
energy than those without (Elowsson & Friberg, 2017).

Dissatisfaction with hearing aid processed music may
also relate to listening purpose and intelligibility. When
listening to speech, intelligibility is highly relevant. Since
music often includes lyrics, it may also be important to
optimize lyric intelligibility. However, many listeners do
not to attend to music lyrics (Condit-Schultz & Huron,
2015), and the sound quality of music is also driven by
instrumental components of song. Therefore, lack of
intelligibility in music may not affect listening experience
in ways it would for speech communication. This may
mean that sound quality, rather than intelligibility, opti-
mization may be the primary goal for hearing aid-
amplified music.

Many researchers have investigated the impact of dif-
ferent hearing aid settings for music listening.
Preferences for CAM2 over NAL-NL2 observed by
Moore and SeRk (2013, 2016) were obtained, in part,
using music stimuli. Further, Moore et al. (2016) inves-
tigated the impact of modified hearing aid fittings rela-
tive to NAL-NL2 for different acoustic scenes. In a
music scene, NAL-NL2 processing was compared with
processing with an additional average 10 dB of gain at
0.25 and 0.5 kHz. Listeners rated the quality of the test
condition as boomy relative to NAL-NL2, leading to the
recommendation for low-frequency gain modifications
for aided music listening lower than those tested.
Despite reports of boominess by Moore et al. (2016),
additional low-frequency energy is often preferred for
music (Arehart et al., 2011; Franks, 1982; Punch, 1978;
Vaisberg et al., 2020), as is extended high-frequency
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audibility, at least for listeners with flat hearing config-
urations (Moore et al., 2011; Ricketts et al., 2008).
Linear processing is also typically preferred compared
with compressive nonlinear processing (Davies-Venn
et al., 2007; Kirchberger & Russo, 2016).

While this research advances knowledge for optimiz-
ing hearing aid music listening, the research tends to be
focused on specific features, restricting music preferences
to a set of discrete experimental manipulations of a tech-

nology under question. An experimental methodology
that enables more listener personalization and user-
centric findings is more desirable compared with a meth-
odology comparing a few manipulations of one or two
parameters. Further, broadly conceived selection criteria
such as preference or overall impression, as measured by
Dirks et al. (1993), allow listeners to choose individual-
ized optima based on internal weightings of more spe-
cific objective and subjective attributes such as
intelligibility, quality, or loudness.

In summary, hearing aid prescriptions are commonly
used to provide frequency-gain shaping that supports
speech intelligibility at a reasonable listening level.
However, the suitability of prescriptive gain for non-

speech stimuli is less understood. This study sought to
identify preferred amplification settings for speech and
music with adjustment in three bands, using the DSL
v5.0-adult prescription as a reference. This study used
the modified simplex procedure (Amlani & Schafer,
2009; Kuk & Lau, 1995, 1996; Kuk & Pape, 1992,
1993; Neuman et al., 1987; Preminger et al., 2000;
Stelmachowicz et al., 1994) to determine preferred
frequency-gain shaping. The simplex procedure was

implemented using an overall preference criterion,
where listeners judged using internal weightings of intel-
ligibility and quality attributes, similar to the preference
criterion implemented by Dirks et al. (1993). Follow-up
sound quality ratings with specific sound quality descrip-
tors were also used to understand perceptual differences

between preferred and prescribed settings, and how

those perceptual differences may explain listener prefer-

ence judgments. Sound quality ratings were also gath-

ered for novel stimuli shaped using the preferred shaping

from similar-genre counterparts from the simplex proce-

dure to assess if perceptions of sound quality generalize

between similar stimuli belonging to the same genre.
The objectives of this study were therefore (a) to

quantify listener’s preferred frequency-gain shaping

compared with prescribed frequency-gain shaping for

speech and music using overall preference as a criterion,

(b) to determine whether unique preferred frequency-

gain shaping exists for speech versus music, and (c) to

determine which, if any, sound quality descriptors

explained listener preferences. This study used equip-

ment that provided frequency-gain shaping in combina-

tion with multichannel dynamic range compression so

that any interactions of these would be represented.

Further, this study used a closed coupling to the ear so

that the impact of amplification in the extended high-

and low-frequency ranges could be fully investigated.

Methods

Listeners

Twenty-two adult listeners between the ages of 51 and

81 years (mean¼ 68.3, standard deviation [SD]¼ 7.3)

participated in the study. On average, listeners had sym-

metrical mild sloping to moderate hearing loss

(Figure 1). Pure-tone thresholds were measured using

ER-3A insert earphones in a sound-attenuated booth

at octave and interoctave frequencies from .25 to

8 kHz. Eleven listeners were hearing aid users (1–

22 years of experience, mean¼ 8.9, SD¼ 6.1), and 13

listeners reported having experience playing musical

instruments (1–62 years of experience, mean¼ 9.53,

SD¼ 19.4). A hearing aid user was defined as one who

Figure 1. Mean air conduction pure-tone thresholds for listeners’ left ears (left panel) and right ears (right panel). The dark lines show
the group means.
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owned and wore a hearing aid to mitigate impacts of
hearing loss. Music experience was defined as one who
engaged in music lessons, formal performance, or casual
playing alone or with others. This study was approved
by the Western University Health Science Research
Ethics Board, and listeners were paid for their
participation.

Sample size estimation for an 8-measurement within-
subjects repeated-measures analysis of variance
(ANOVA), assuming .95 power, .05 significance, and
.7 correlation among repeated measures, determined
that 15 listeners would be sufficient. Sample size estima-
tion was conducted using G*Power Version 3.1.9.2 (Faul
et al., 2007).

Procedure

Calibration and Fitting to Initial Targets. This study used an
open source master hearing aid (openMHA; Herzke
et al., 2017) to process and amplify test materials. The
openMHA was installed on a Linux computer (Ubuntu
18.04) and connected to a low-latency Focusrite Scarlett
18i8 USB soundcard (High Wycombe, UK), which sent
the signals to two Etymotic Research 4p (ER4p, Elk
Grove Village, IL, USA) insert earphones. The ER4p
insert earphones were coupled to listeners’ ears using
an occluding foam tip. A fully occluding transducer
was desired so that low-frequency gain adjustments
could be fully explored without needing to account for
leakage from listeners’ ear canals. The openMHA was
calibrated by presenting the International Speech Test
Signal (ISTS; Holube et al., 2010) from the ER4p into
a Bruel & Kjær (B&K, Næerum, Denmark) Type 4157
occluded ear simulator mounted on a B&K Type 2250
sound level meter. The ISTS was digitally scaled to pro-
duce a long-term average of 70 dB SPL when zero gain
was applied. This scaling allowed sufficient headroom
for listeners to increase the overall level and modify
frequency-gain shaping during the experiment before
encountering digital peak-clipping or earphone distor-
tion. Daily calibration checks were performed in a hear-
ing aid analyzer (Audioscan Verifit2, Dorchester, ON,
Canada) 0.4 cc coupler.

The openMHA implemented 21-channel multiband
dynamic compression. The openMHA inputs were the
digital stimuli. Next, the openMHA applied a reference
input peak level of 125 dB SPL (0 dB full scale corre-
sponds to this SPL) to determine the simulated SPL
level of the waveform. The test materials were scaled
to 55 dB below full scale so that the openMHA would
apply level-dependent gains for a simulated average
70 dB SPL input level. Next, the waveform was proc-
essed using a fast Fourier transform filterbank, in
which the signal was processed using 21 Hann window
filters centered on 1/3rd octave bands from 0.1 to 10 kHz

with 50% overlap of adjacent filters. Frequency-gain
shaping and dynamic range compression were prescribed
for each listener and ear using DSL v5.0 gains for 55, 65,
and 75 dB SPL input levels. Gains were manually input-
ted into the openMHA software. Fast-acting compres-
sion attack (0.02 seconds) and release times (0.1 seconds)
were applied. The amplified waveform was then pro-
duced by summing the filter outputs and digital to
analog conversion. Analog outputs were sent to the
ER4p transducers.

Individual openMHA fittings were verified in the
Verifit2. First, thresholds and wideband real-ear-to-
coupler difference measurements were entered into the
Verifit2, which generated targets for a speech signal with
an overall input level of 70 dB SPL. The wideband real-
ear-to-coupler difference was measured to capture indi-
vidual ear canal resonances. Second, the openMHA
output was routed to the ER4p transducers, which cou-
pled to the Verifit2 0.4 cc couplers. The openMHA was
fine-tuned such that output SPL was within an average
3.5 dB root-mean-square of audiometric targets at
octave and interactive frequencies from 0.25 to 8 kHz
across listeners. Specifically, average systematic devia-
tions from targets at 0.5, 1, 2, and 4 kHz were –3.3,
–3.0, –1.5, and –1.6 dB, respectively, and average abso-
lute deviations were 3.4, 3.3, 2.4, and 2.4 dB,
respectively.

Modified Simplex Procedure. This study implemented the
simplex method in a three-dimensional space, permitting
listeners to adjust hearing aid amplification relative to
prescribed settings using preference-based gain adjust-
ments in three frequency bands. The initial shaping
used DSL v5.0 gains with a simulated hearing aid
input level of 70 dB SPL. This level is an average com-
fortable listening input level for aided music listening
(Croghan et al., 2016). The 21 channels were grouped
into low-frequency (0.1–0.8 kHz), mid-frequency (1–
2.5 kHz), and high-frequency (3–10 kHz) bands, in
which listeners compared between gain differences of
�6 dB in each band. This step size, previously imple-
mented in three-dimensional of the simplex procedure
(Dirks et al., 1993), is considered large enough to be
perceptible while small enough to provide sensitive pref-
erence evaluation. This step size is also similar to just
noticeable differences for frequency-gain adjustments
found in recent studies (Caswell-Midwinter &
Whitmer, 2019a, 2019b).

The simplex procedure determines preferred
frequency-gain shaping using a series of iterations and
follows a method for a two-dimensional simplex origi-
nally described by Neuman et al. (1987). For example, a
center coordinate (0,0,0) represents the prescribed initial
estimate, and each step along the x, y, and z dimensions
represents a �6 dB adjustment in either the low-, mid-,
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or high-frequency gain. Each iteration consists of three
paired comparisons. In the first iteration, the listener
chooses either the prescribed frequency-gain shape
(0,0,0) or an alternative with a þ6 dB low-frequency
(1,0,0), –6 dB mid-frequency (0,–1,0), or –6 dB high-
frequency (0,0,–1) gain adjustment. The listener can
repeat each comparison once. The winner from each of
the three comparisons determines the estimated pre-
ferred shape for the subsequent iteration. If the listener
selects the initial estimate (0,0,0), then the listener would
compare their selection (0,0,0) with even more gain in
the subsequent iteration (0,0,1). If the listener selects the
adjustment with less gain (0,0,–1), then the listener
would compare their selection (0,0,–1) with even less
gain in the subsequent iteration (0,0, –2). This procedure
gets repeated for each dimension and predicts an esti-
mated preferred shape for the subsequent iteration. For
example, if during the first iteration the listener selects
more gain at low and mid frequencies and less gain at
high frequencies, the estimated preferred shape for the
second iteration would be (1,0,–1), and this would be
compared with (2,0,–1), (1,1,–1), and (1,0,–2). If the lis-
tener selects the estimated preferred shape after all three
comparisons in the second iteration, a reversal would
have occurred, and the paired comparisons would be
reflected. Therefore, the third iteration of the aforemen-
tioned example consists of (1,0,–1), as the estimated pre-
ferred shape and gets compared with (0,0,–1), (1,–1,–1),
and (1,0,0). If the listener selects the estimated preferred
shape after all three comparisons in the third iteration,
then the listener has indicated preference for the estimat-
ed preferred shape estimate to every possible adjustment
within the simplex framework. Therefore, the run is ter-
minated, and the estimated preferred shape defined by
the center coordinate from the final iteration is taken as
the listener’s preferred frequency-gain shaping. If after
18 iterations (54 comparisons) the listener does not com-
plete two reversals, then the run is terminated, and the
final shape is taken as the listener’s preferred shape. This
stopping rule was adopted because in past three-
dimensional adaptive procedures similar to simplex, a
set of 54 paired comparisons was considered a reason-
able amount of testing to minimize fatigue and reach an
optimum (Franck et al., 2004, 2007).

Test Materials. The test materials were two sentence pairs
(Institute of Electrical and Electronics Engineers [IEEE],
1969) and two music files.The sentence pairs were chosen
to represent both genders of voice and consisted of a
male-spoken, Raise the sail and steer the ship northward.
A cone costs five cents on Mondays and a female-spoken
Would you please give us the facts? He arrived home every
other night. The music samples were chosen to represent
genres that might interact differently with signal process-
ing adjustments (Arehart et al., 2011; Davies-Venn et al.,

2007). These consisted of a 5.1-second sample from the
contemporary/pop song A Little Help from my Friends
by The Beatles and a 2.6-second sample from Mozart’s
classical string arrangement Serenade No. 6, K. 239
Serenata notturna: III. Rondo. Allegro by the Franz
Liszt Chamber Orchestra & Sandor Frigyes. The music
sample durations were long enough to include a full
musical phrase (i.e., a passage having a complete musical
sense of its own) but short enough so that minimal
fatigue occurred during a test session. Pilot testing sug-
gested that a 2-second stimulus duration was sufficient
for listeners to confidently judge stimulus preference.
The stimuli sampling rate was 44.1 kHz with 16 bits per
sample. If a stimulus was in stereo format, it was
summed to mono format so that the two openMHA
inputs received the same audio signal prior to
amplification.

Simplex Implementation. The simplex procedure was writ-
ten and administered using MATLAB (version 2017b).
The Windows computer was connected to a touch screen
monitor inside the sound booth and to the Linux MHA
via an ethernet connection. This allowed listener judg-
ments to trigger stimulus presentations.

Before experimental testing, listeners completed a
practice run using nonadaptive paired comparisons,
also programmed with MATLAB and implemented via
the openMHA. Their instructions were to listen to the
two stimuli and choose the one they preferred. Listeners
were prompted to choose the version of the stimulus that
they would prefer to listen to throughout the day. The
practice run conditions were defined using the simplex
parameters and consisted of six predefined stimulus
pairs comparing prescribed frequency-gain shaping
(0,0,0) with highly modified versions: a simulated low-
pass filter (1,–4,–4) in which the low-frequency band
gain was increased by 6 dB and the mid- and
high-frequency band gains were decreased by 24 dB; or
a simulated high-pass filter (–4,–4,1) in which the
high-frequency band gain was increased by 6 dB and
the mid- and low-frequency band gains were decreased
by 24 dB. All listeners preferred the prescribed shaping
over the filtered stimuli, as expected.

During experimental testing, each listener completed
two simplex runs for each of the four stimuli, totaling
eight simplex runs. The direction of adjustment (increas-
ing or decreasing gains) during the initial simplex itera-
tion and the ordering of parameter comparisons within
each simplex iteration were randomized. The presenta-
tion order of the stimuli was also randomized, except
that simplex runs for the same stimulus did not occur
in adjacent trials. Each listener’s preferred frequency-
gain shaping was determined by calculating the average
of the final x-, y-, and z- coordinates across the two
simplex runs for the same stimulus.

Vaisberg et al. 5



Sound Quality Ratings. Listeners rated several dimensions
of sound quality for each stimulus, using two versions of
each stimulus: one processed using their prescribed
frequency-gain shaping and one processed using their
preferred frequency-gain shaping as determined using
the modified simplex procedure. The sound quality
dimensions were adapted from Gabrielsson et al. (1988)
and Davies-Venn et al. (2007) and consisted of Overall
Impression, Loudness, Fullness, and Sharpness.Ratings of
Intelligibility were also obtained, but for speech only.
Listeners gave ratings along each dimension using a con-
tinuous horizontal scroll bar with five descriptors from
lowest to highest, which produced a number from 0
(lowest) to 10 (highest). The listeners were blind to the
numerical rating. The descriptors, adapted from
Gabrielsson et al. (1988), from lowest to highest, for
Overall Impression were Very Bad, Rather Bad,
Midway, Rather Good, and Very Good. The descriptors
for Loudness were Very Soft, Rather Soft, Midway,
Rather Loud, and Very Loud. The descriptors for
Fullness were Very Thin, Rather Thin, Midway, Rather
Full, and Very Full. The descriptors for Sharpness were
Very Gentle, Rather Gentle, Midway, Rather Shrill, and
Very Shrill. The descriptors for Intelligibility were Very
Unclear, Rather Unclear, Midway, Rather Clear, and
Very Clear.

Test Materials. The test materials for the sound quality
ratings consisted of the speech and music passages
from the simplex procedure, referred to here as experi-
mental stimuli, as well as new speech and music passages
belonging to the same categories, referred to here as gen-
eralization stimuli.

The generalization sentence pairs were the male-
spoken, The ramp led up to the wide highway. Beat the
dust from the rug onto the lawn, and female-spoken, They
could laugh, although they were sad. Farmers came in to
thresh the oat crop, IEEE sentences. The talker for each
gender differed between the experimental and generali-
zation stimuli. The generalization music passages were
downloaded from iTunes and included a 6.4-second clip
of New Orleans is Sinking by The Tragically Hip for the
pop genre and a 7.3-second clip of Beethoven’s String
Quartet No. 4 in C Minor, Op. 18: III. Menuetto:
Allegretto by the Emperor String Quartet for the classi-
cal string genre.

Music stimulus durations for the sound quality rat-
ings were approximately twice as long and all stimuli
were looped compared with stimulus durations for the
simplex procedure, which were shorter and presented
only up to two times. This was done for two reasons.
First, whereas a fixed number of sound quality ratings
were obtained from each listener during the sound qual-
ity rating procedure, the number of paired comparisons
presented to listeners during the simplex procedure was

highly variable. It was decided to reduce stimulus dura-

tion during the simplex procedure to complete experi-

mental testing within the allotted time frame. Second,

while listeners indicated preferences during the simplex

procedure using a preference criterion, listeners were

required to shift their attention to different sound qual-

ity attributes for the sound quality ratings. Therefore,

given the fixed number of stimulus presentations in the

sound quality rating task, listeners were permitted to

take as much time as needed to complete ratings.

Unlike the simplex procedure, listeners were not able

to repeat a stimulus.

Sound Quality Rating Implementation. The sound quality

rating procedure was written and administered in

MATLAB and used the same hardware setup as the

simplex procedure. Each stimulus was processed using

each listener’s prescribed and preferred shaping. This

yielded a total of 16 stimuli to be rated (4 categories� 2

experimental/generalization� 2 prescribed/preferred

shaping). A total of 4 descriptors for each music stimulus

and 5 descriptors for each speech stimulus meant that

144 ratings were completed. Speech and music stimuli

were presented in separate blocks. Within each block,

listeners rated all sound quality dimensions for a single

condition (stimulus� [prescribed or preferred]) before

conducting ratings for another condition. Block

order, condition order, and sound quality dimension

order within each condition were randomized between

listeners.

Analysis

The data were analyzed as follows. First, simplex task

performance and reliability were interpreted using

descriptive statistics and cumulative distributions to

ensure that listeners completed the simplex task correctly

and consistently. Next, the simplex results were analyzed

using (a) a series of t tests to determine if preferred

frequency-gain shaping was significantly different from

prescribed shaping within each stimulus/frequency band

combination and (b) a repeated-measures ANOVA to

determine if preferred frequency-gain shaping varied

between stimulus and frequency band factors. Finally,

sound quality results were analyzed using (a) a series of t

tests to determine if sound quality ratings for preferred

frequency-gain shapes were significantly different from

sound quality ratings for prescribed frequency-gain

shapes, (b) a linear mixed-effects model to determine

which sound quality descriptors were predictive of over-

all impression ratings, and (c) rank correlation coeffi-

cients between ratings for experimental and

generalization stimulus pairs.
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Reliability

For the simplex procedure, the number of iterations per

test–retest and per stimulus, number of complete tests

per stimulus, number of time-outs across listeners, and

reliability between test and retest were calculated.

Reliability was assessed by measuring the distance in
steps between listeners’ preferred shaping coordinates

in test and retest for the same stimulus either within

each dimension or across all dimensions, as was done

by Kuk and Pape (1992). Within each dimension, the

final coordinate from the first run was subtracted from

the final coordinate from the second run. Across all
dimensions, the three-dimensional distance was calculat-

ed between the final coordinate from the first run and

the final coordinate from the second run by measuring

the square root of the sum of squares of the differences

across all three dimensions. This observed reliability was

then compared with a simulated simplex of random pref-

erences to test whether listener responses were random
or systematic. Cumulative distribution curves were com-

puted for 1,000 pairs of randomly selected preferred

shaping coordinates as was done by Franck et al.

(2004, 2007).

Preferred Shaping

Preferred gain adjustments were measured by subtract-
ing each listener’s prescribed gain response from their

average preferred gain response for each stimulus. The

dB differences were verified by measuring the simulated

real ear output for each listener’s prescribed and pre-

ferred frequency-gain shaping from the ER4p insert ear-

phones coupled to the Verifit2 0.4 cc coupler. The
shaping for each stimulus was measured using the

ISTS; this allowed the shaping differences to be com-

pared across stimulus types.
Differences between preferred and prescribed shaping

were quantified as the difference between the preferred
and prescribed spectra at octave and interoctave fre-

quencies (0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8 kHz).

Differences were averaged within the low- (0.1–

0.8 kHz), mid- (1–2.5 kHz), and high- (3–10 kHz) fre-

quency bands. To determine if preferred shaping was

significantly different from prescribed shaping, 12 t
tests were conducted—one for each stimulus. The critical

alpha level was corrected with Bonferroni’s procedure to

.004. To determine if preferred shaping differed between

stimuli, a 4� 3 repeated-measures ANOVA was used to

test the effect of stimulus� frequency band on observed

gain differences. The differences were assessed for nor-

mality by visual inspection of histograms, and
Greenhouse–Geisser corrections to degrees of freedom

were applied to adjust for departures from sphericity.

Post hoc contrasts were performed using the Holm

correction. Statistical analyses were completed using
RStudio (Version 1.0.132; R Core Team, 2017) and the
ez package (Lawrence, 2016).

Sound Quality Ratings of Prescribed Versus
Preferred Shapes

Sound quality ratings were analyzed with three objec-
tives: (a) to determine if preferred and prescribed
shapes led to different perceived sound quality, (b) to
determine which sound quality descriptor rating differ-
ences were most predictive of Overall Impression rating
differences, and (c) to determine whether stimulus-
specific sound quality ratings generalized to other stim-
uli belonging to a similar genre for music or to the same
gender for speech.

Sound quality ratingswere analyzed using paired t tests
between stimuli shaped using preferred and prescribed
settings. t tests were computed for each sound quality
descriptor within each stimulus, which consisted of
Overall Impression, Loudness, Fullness, and Sharpness
for all stimuli and Intelligibility for speech alone (totaling
18 t tests). The alpha level was correctedwith Bonferroni’s
procedure to .0028. Analyses were not computed across
stimuli due to stimulus-specific spectral shaping.

To determine which sound quality rating scales were
most predictive of Overall Impression ratings, differences
between sound quality ratings were calculated for each
individual by subtracting the sound quality rating for the
prescribed stimuli from that for the preferred stimuli.
Multiple linear mixed models were used to test if rating
differences for each sound quality scale were predictive of
Overall Impression rating differences. One model was
used to analyze differences pooled across all speech stim-
uli (male and female, preferred and prescribed shaping)
with Fullness, Loudness, Sharpness, and Intelligibility
differences as fixed effects variables and Overall
Impression differences as the outcome variable.
Another model was used to analyze differences pooled
across all music stimuli with Fullness, Loudness, and
Sharpness as predictor variables and Overall
Impression differences as the outcome variable. Models
were fitted across pooled stimuli because they were used
to understand the relationship between sound quality
descriptors rather than the difference in ratings between
preferred and prescribed shapes. Separate models were fit
for speech and music due to the likelihood of listeners
having different listening goals for each. The assumption
of normally distributed residuals was assessed by visual
inspection of histograms (Field et al., 2012, p. 870). The
assumption of no multicollinearity was assessed by com-
puting a correlation matrix between all predictor varia-
bles and verifying that no Pearson product-moment
correlation coefficient between any two predictor varia-
bles was greater than r¼ .8. Correlation coefficients
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below 0.8 are generally permissible (Field et al., 2012, p.
276). Statistical analyses were completed using RStudio
(Version 1.0.132; R Core Team, 2017) and the lme4 pack-
age (Bates et al., 2015).

The generalizability of sound quality ratings was
inferred by measuring the Spearman rank correlation
coefficient between the sound quality ratings for the
experimental stimuli and the sound quality ratings for
the paired generalization stimuli. Separate correlation
coefficients were calculated for each sound quality
rating scale pooling all speech stimulus pairs or pooling
all music stimulus pairs. Each correlation coefficient was
measured across listeners.

Results

Simplex Task Performance and Reliability

Across stimuli, listeners completed an average of 9.4
iterations (SD¼ 1.1) per simplex run, corresponding to
an average of 29.4 stimulus pairs, requiring an average
of 4 minutes and 22 seconds (SD¼ 30 seconds) per sim-
plex run. The minimum number of iterations per simplex
run was 2 (6 stimulus pairs), and the maximum number
of iterations was 18 (54 stimulus pairs). A run with two
iterations implied that the listener’s preferred shaping
was no different from their prescribed shaping, and
one with 18 iterations implied that the run timed out
and the final shaping was considered their preferred
shaping. All listeners finished a simplex run before a
time-out at least once per stimulus.1 On average, 1.05
time-outs (SD¼ 1.13) occurred per listener. It was
noted that 40.9% of listeners did not time-out, 27.3%
of listeners timed out once, 22.7% of listeners timed out
twice, 1 listener (4.5%) timed out three times, and 1 lis-
tener (4.5%) timed out four times. The minimum
amount of time spent was 34 seconds and the maximum
amount of time spent was 14minutes per simplex run.
Note that differences in time spent per simplex run may
result from differences between stimulus durations and/
or number of stimulus pair repetitions. The number of
iterations and percentage of time-outs for each stimulus/
test–retest combination are listed in Table 1.

Figure 2 shows cumulative distribution curves from
the simplex procedure. The figure illustrates how many
gain-adjustment steps listeners deviated by between the
two simplex runs for a single stimulus along low-, mid-,
and high-frequency gain dimensions (top left, top right,
and bottom left panels, respectively), as well as the three-
dimensional root-mean-square gain-adjustment steps
(bottom right panel). The figure also illustrates what
percentage of individuals deviated by a given number
or fewer step sizes. The cumulative distribution curves
of listeners’ test–retest differences, within and across
dimensions, fell above and to the left of the random

distribution curves. This suggests that listeners indicated

preferences more reliably and consistently than random-

ly selecting a winner for each paired comparison. Seven

percent of listeners selected the same preferred shaping

coordinates across all stimuli and all dimensions

(bottom right). Between test and retest, 36% of listeners

selected the same low-frequency adjustment (top left),

41% of listeners selected the same mid-frequency adjust-

ment (top right), and 27% of listeners selected the same

high-frequency adjustment (bottom left). For the low-

frequency dimension, 93% of listeners were within two

step sizes between simplex runs. For the mid-frequency

dimension, 83% of listeners were within two step sizes.

For the high-frequency dimension, 71% of listeners were

within two step sizes. Across all dimensions, 33% of

listeners were within two three-dimensional step sizes,

and 91% of listeners were within seven step sizes.

Preferred Versus Prescribed Shaping

The average differences from prescribed shaping are

illustrated using box-and-whisker plots in Figure 3.

The gain for the low-frequency band was increased sig-

nificantly from prescribed to preferred shaping for all

four stimuli; pop music, t(43)¼ 8.0, p < .0001, classical

music, t(43)¼ 5.3, p < .0001, female speech, t(43)¼ 4.0,

p¼ .0002, and male speech, t(43)¼ 3.7, p¼ .0007, and

gain for the high-frequency band was decreased signifi-

cantly from prescribed to preferred shaping for pop

music, t(43)¼�3.1, p¼ 0.003, and male speech, t

(43)¼�3.2, p¼ .003.
A repeated-measures ANOVA on preferred versus

prescribed gain differences revealed significant main

effects of stimulus, F(2.18, 45.87) ¼5.57, p<.01,

g2¼0.03, and frequency band, F(1.42, 29.83)¼27.94,

p<.0001, g2¼0.21. There was also a significant interac-

tion of stimulus and frequency band, F(3.65, 76.64)¼

Table 1. Average Number of Iterations (SD¼ Standard
Deviation) Required to Complete a Simplex Run.

Stimulus Test/retest

No. of

iterations (SD)

Time-outs

(%)

Male speech Test 9.3 (1.2) 11.4%

Male speech Retest 9.6 (1.1) 9.1%

Female speech Test 10.5 (1.1) 9.1%

Female speech Retest 8.1 (0.9) 2.3%

Pop music Test 9.4 (1.0) 4.5%

Pop music Retest 8.2 (1.1) 2.3%

Classical music Test 8.8 (0.9) 2.3%

Classical music Retest 11.0 (1.2) 11.4%

Note. Time-outs refer to the percentage of simplex time-outs for each

stimulus� time/retest. A time-out was an instance where the simplex

procedure stopped due to listeners not selecting a preferred setting after

18 iterations.
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Figure 2. Cumulative distributions showing the percentage of listeners who deviated up to a given number of steps between test–retest
preferred gain for each stimulus for the low-frequency dimension (top left panel), mid-frequency dimension (top right panel), high-
frequency dimension (bottom left panel), and root-mean-square distance across all three dimensions (bottom right panel). The dotted
curves show the cumulative distributions for randomly selected simplex paired comparisons preferred shaping coordinates over 1000
test–retest simulations.

Figure 3. Box-and-whisker plots of differences from prescribed gains in the low- (0.1–0.8 kHz), mid- (1–2.5 kHz) and high- (3–10 kHz)
frequency bands for a 70-dB SPL input level. The boxes represent the interquartile ranges of differences, with the lines through the boxes
representing the median differences. The lines outside the boxes represent the 91st (top) and 9th (bottom) percentiles of differences, with
the dots representing outlier differences. The dashed line represents no difference.
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4.32, p<.01, g2¼0.03. With the exception of frequency
band, the effect sizes were small. The main effect of stim-
ulus was driven by pop music and male speech. Across
listeners and frequency bands, the gain for pop music
was adjusted to be on average 4.5 dB higher than for
the male speech stimulus. The remaining differences
were all 2.7 dB or less and did not reach statistical sig-
nificance. The main effect of frequency band was driven
by differences between the low-frequency band and the
other bands. The low-frequency gain was adjusted to be
8.3 dB higher than mid-frequency gain and 11.6 dB
higher than high-frequency gain. Post hoc comparisons
within each frequency band revealed that gains for pop
music were adjusted to be higher than for other stimuli.
The low-frequency gain for pop music was increased by
5.3 dB more than for classical music, 6.4 dB more than
for female speech, and 8.5 dB more than for male speech.
The mid-frequency gain for pop music was increased by
6.2 dB more than for male speech. The remaining con-
trasts were nonsignificant.

Sound Quality Ratings

Figure 4 shows box-and-whisker plots of the difference
in sound quality ratings between prescribed and pre-
ferred shaping. Ratings of Overall Impression, t(84)¼

�3.4, p<.001, Loudness, t(80)¼�5.6, p<.0001, and

Fullness, t(72)¼�5.9, p<.0001, were significantly

higher for the preferred settings than for prescribed set-

tings only for pop music.
The speech sound quality model (Table 2) revealed

that changes in Loudness and Intelligibility ratings

were significantly predictive of changes in Overall

Impression ratings. Based on the magnitudes of the

model coefficients, changes in Loudness ratings were

most strongly predictive (b¼�0.52, p<.0001) and

were negatively associated with changes in Overall

Impression ratings. Changes in Intelligibility ratings

were second-most strongly predictive (b¼ 0.23, p<05)

and positively associated with changes in speech

Overall Impression ratings. The music sound quality

model (Table 3) revealed that changes in Fullness and

Sharpness ratings were significantly predictive of

changes in Overall Impression ratings. Based on the

magnitudes of the model coefficients, changes in

Sharpness ratings were most strongly predictive

(b¼�0.49, p<.0001) and negatively associated with

change in music Overall Impression ratings. Changes

in Fullness ratings were second-most strongly predictive

(b¼ 0.16, p<.05) and positively associated with changes

in music Overall Impression ratings.

Figure 4. Sound quality differences between ratings for stimuli processed using preferred shaping and prescribed shaping. Intelligibility
ratings for classical and pop music were not gathered. The boxes represent the interquartile ranges of differences, with the lines through
the boxes representing the median differences. The lines outside the boxes represent the 91st (top) and 9th (bottom) percentiles of
differences, with the dots representing outlier differences. The dashed line represents no difference.
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Sound quality ratings were moderately correlated

across listeners between experimental and generalization

stimuli. All correlations were statistically significant

(p<.0001). For speech stimuli, the correlation coeffi-

cients were qspearman¼ 0.48 for Overall Impression,

qspearman¼ 0.62 for Loudness, qspearman¼ 0.56 for

Fullness, qspearman¼ 0.49 for Sharpness, and

qspearman¼ 0.61 for Intelligibility. For music stimuli, the

correlation coefficients were qspearman¼ 0.49 for Overall

Impression, qspearman¼ 0.61 for Loudness, qspearman¼.62

for Fullness, and qspearman¼.64 for Sharpness.

Discussion

This study investigated whether listener preferences dif-

fered from prescribed amplification for music and speech

stimuli, the impact of preferred settings on sound qual-

ity, and which sound quality descriptors drove listener

preferences. On average, listeners increased low-

frequency gain by about 10 and 5 dB for music and

speech, respectively, and decreased high-frequency gain

by about 4 dB regardless of stimulus type, relative to the

DSLv5-adult prescription. Mid-frequency gain adjust-

ments were minimal. Only the preferred settings for

pop music produced significantly greater overall impres-

sion, loudness and fullness ratings than the prescribed

settings. However, across music stimuli, increases in full-

ness ratings and decreases in sharpness ratings were sig-

nificantly associated with increases in overall impression

ratings. For speech stimuli, decreases in loudness ratings

and increases in intelligibility ratings were significantly

associated with increases in overall impression ratings.

Observed Differences From Prescribed Shaping

On average, listeners preferred increased low-frequency

gain and decreased high-frequency gain for music and,

to a lesser extent, for speech relative to prescribed ampli-

fication. These findings support those of Madsen and

Moore (2014), in which hearing aid users reported a

lack of bass or a shrill/harsh sound quality. The current

findings are also consistent with past evaluations of lis-

tener frequency-gain preferences. Listeners have pre-

ferred amplified music with more low-frequency energy

than music with less low-frequency energy (Franks,

1982; Punch, 1978; Vaisberg et al., 2020), and this com-
plements recommendations for an extended low-

frequency responses for hearing aid music programs

(Moore, 2016). Speech-based studies have also found

that listeners prefer more low-frequency gain and less

high-frequency gain relative to prescribed NAL-based

fittings (Caswell-Midwinter & Whitmer, 2020; Kuk &

Pape, 1992, 1993; Nelson et al., 2018; Preminger et al.,

2000).

Drivers of Preference Judgments

The observed differences from prescribed shaping may

have been unique for each stimulus. This may be due to
the differences in the stimuli themselves and/or to the

different roles of listening criteria such as quality or

intelligibility for speech and music. This interpretation

is supported by the results of the sound quality rating

procedure.
For music, increases in Overall Impression ratings

between prescribed and preferred stimuli were associated

with increases of Fullness ratings and decreases of

Sharpness ratings. Increased ratings of Fullness corre-

spond to more energy in the low-frequency region

(Gabrielsson & Sj€ogren, 1979), and Fullness ratings
have been most strongly associated with ratings of

Overall Impression in previous hearing aid music inves-

tigations (Davies-Venn et al., 2007; Gabrielsson et al.,

1988), corroborating this study’s findings. Similarly,

decreased ratings of Sharpness correspond to less

energy in the high-frequency region. This may explain

why sharpness rating differences predicted preferences

for decreased high-frequency gain.
For speech stimuli, changes in Overall Impression

ratings between prescribed and preferred stimuli were
most strongly associated with increases of Intelligibility

ratings and decreases of Loudness ratings. Intelligibility

ratings have previously been shown to be significantly

associated with Overall Impression ratings for speech

(Davies-Venn et al., 2007). The relationship between

Intelligibility and Overall Impression ratings supports

the interpretation that speech understanding is a primary

objective of amplification when speech is present. It may

Table 2. Linear Mixed Model Results for Speech Sound Quality
Ratings.

Fixed effects

variable b estimate SE t value df p value

Intercept 3.28 2.2 1.5 27.7 .15

Loudness –0.52 0.12 –4.3 79.0 <.0001

Fullness 0.20 0.10 1.9 84.4 .07

Sharpness –0.016 0.12 –0.133 83.1 .89

Intelligibility 0.23 0.12 2.0 87.6 <.05

Table 3. Linear Mixed Model Results for Music Sound Quality
Ratings.

Fixed effects

variable b estimate SE t value df p value

Intercept 3.29 2.7 1.2 35.9 .22

Loudness 0.09 0.09 1.0 87.8 .37

Fullness 0.16 0.08 2.2 83.2 <.05

Sharpness –0.49 0.09 –5.8 65.3 <.0001
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also explain why descriptors such as Fullness and
Sharpness were less predictive for speech. Preminger
and Van Tasell (1995) studied the quality-intelligibility
relationship and found that listeners would attend to
sound quality attributes so long as intelligibility was
optimal. However, if intelligibility declined, then sound
quality ratings would be predicted by intelligibility rat-
ings and would decline in a similar way. In the current
study, stimulus pairs during the first simplex iteration
consisted of samples processed using prescribed amplifi-
cation. Therefore, speech intelligibility would have been
close to optimal, and listeners likely would have judged
stimulus pairs by attending to other sound quality
descriptors. However, if after several iterations the pre-
ferred shaping departed from the prescribed shaping in a
way that made speech less intelligible, then listeners may
have adjusted their internal criterion and attended to
intelligibility more heavily. The fact that some listeners
rated Overall Impression and Intelligibility for female
speech higher for prescribed shaping than for preferred
shaping supports the interpretation that listeners may
have shifted their internal preference criterion once intel-
ligibility was no longer ideal. However, while
Intelligibility ratings were predictive of Overall
Impression ratings, absolute Intelligibility ratings were
comparable between prescribed and prescribed gain.
Future research is needed with stimuli in which intelligi-
bility is systematically adjusted between conditions.

The finding that Loudness ratings were negatively
associated with Overall Impression ratings contrasts
with previous research. Loudness ratings have historical-
ly been among the sound quality descriptors least and
nonsignificantly associated with ratings of overall
impression (Davies-Venn et al., 2007; Gabrielsson
et al., 1988). In the current study, speech and music
were presented at the same level prior to amplification.
However, in the study by Davies-Venn et al. (2007),
sound quality ratings were gathered for a variety of
experimental parameters, one of which was the level of
speech. They found that intelligibility ratings were more
strongly associated with overall impression ratings for
soft speech than for loud speech. In the current study,
increases in low-frequency gain may have inadvertently
led to the speech stimuli being louder than preferred,
which may have led to poorer Overall Impression ratings
for the preferred condition than for the prescribed
condition.

Stimulus Dependencies

Differences in acoustic content between stimuli may
have partially driven stimulus-specific gain adjustments.
A given parameter adjustment may have had different
perceptual effects across stimuli due to differences in
acoustic content. The Beatles pop sample in this study

included drums, whereas the classical sample did not,
therefore containing more high-frequency content than
the classical sample (Elowsson & Friberg, 2017). Good
sound quality depends on an appropriate balance
between high- and low-frequency energy (Moore &
Tan, 2003), so it is possible that listeners increased the
low-frequency gain partly because the Beatles stimulus
contained more high-frequency energy. The classical
sample contained less low-frequency energy than the
pop sample and so a low-frequency gain increase of sim-
ilar magnitude to that for the pop sample would have
been less noticeable. Similarly, Davies-Venn et al. (2007)
found that listeners rated popular music as sharper than
classical music because the popular music contained
more high-frequency energy. Arehart et al. (2011)
found that acoustic characteristics from different music
genres can affect how the genres will interact with hear-
ing aid processing features. For example, they reported
that a large compression ratio, which did not impair
sound quality for a continuous vocal signal, did impair
sound quality for a jazz stimulus with greater high fre-
quency content, faster rhythm, and wider dynamic
range. Together, this evidence suggests that acoustic dif-
ferences between stimuli can lead to different perceptual
consequences for the same parameter adjustments.
Further research should investigate whether specific
stimulus characteristics can predict the degree to which
specific gains will be adjusted.

While the current study evaluated preferred gain set-
tings for speech and music, it did not evaluate preferred
gain settings for speech in noise. It is possible that pre-
ferred gain settings from this study do not generalize to
speech in noise. For instance, the DSL v5.0 method rec-
ommends different frequency-gain settings for quiet
speech than for noisy speech (Scollie et al., 2005).
Similarly, many hearing aid manufacturers apply differ-
ent gain settings for speech-in-noise programs than
speech-in-quiet programs. The low-frequency gain that
was preferred for music in this study would likely be
inappropriate for speech in noise. Noise typically con-
tains significant low-frequency components, and more
low-frequency gain may increase upward spread of
masking which would impair speech intelligibility.
Future research should explore listener preferences for
speech in noise using the simplex procedure.

Generalizability of Preferred Shaping

The findings from the simplex procedure suggest that
listener satisfaction may be augmented if listener-
specific, stimulus-dependent frequency-gain shaping is
applied. However, in practice, it would be cumbersome
to determine a unique set of parameters for every new
stimulus. We assessed the sound quality of novel stimuli
belonging to the same genre as the experimental stimuli
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to determine if preferred shaping determined using
experimental stimuli would generalize to other similar
stimuli. The findings revealed moderate correlations
between ratings of experimental and novel stimuli
across sound quality descriptors for speech and music,
suggesting that preference-based frequency-gain shaping
generalizes to novel stimuli; listeners may prefer speech
and music shaped using frequency-gain characteristics
determined using similar stimuli, relative to prescribed
frequency-gain shaping. This is consistent with test–
retest sound quality correlations for aided speech and
music in the literature. D’Onofrio et al. (2019) found
that hearing-impaired listeners rated the sound quality
of aided speech and music with moderate reliability
between test–retest conditions. Narendran and Humes
(2003) also investigated the test–retest reliability of differ-
ent sound quality ratings for aided speech and music with
hearing-impaired listeners and found that correlations for
descriptors most similar to those used in this study (clar-
ity, fullness, loudness, and total impression for aided
speech and music) were moderate. These findings suggest
that listeners experience similar sound quality when lis-
tening to novel stimuli using genre-specific frequency-
gain shaping to that for listening to identical stimuli for
a second time. However, it should be recognized that we
explored generalizability between groups of two short
stimuli. Further research should investigate generalizabil-
ity for more realistic listening situations, such as contin-
uous discourse and/or entire musical passages.

Individual Variability

The frequency-gain shaping data presented here reflect
preference-driven gain adjustments averaged across indi-
viduals. Despite the finding that across stimuli listeners
preferred a low-frequency gain increase relative to pre-
scribed frequency-gain shaping, 12% of listeners pre-
ferred a decrease in low-frequency gain, while 40%
and 32% of listeners preferred mid- and high-
frequency gain increases, respectively, despite mean
group-level decreases in preferred gain relative to pre-
scribed gain. Further, the magnitude of adjustment
varied between listeners. Across stimuli, the 25th and
75th percentiles for low-frequency gain adjustments
were 1 dB and 13 dB, respectively. The 25th and 75th
percentiles were –6 dB and 4 dB for mid-frequency
adjustments and –11 dB and 2 dB for high-frequency
adjustments. These findings are consistent with that of
Caswell-Midwinter and Whitmer (2020), in which listen-
ers reliably increased the low-frequency gain, whereas
other gain adjustments were less consistent in direction
and magnitude. This variability may be attributed to
individual factors, such as nature of hearing loss, hearing
aid experience, age, and cognition. For example, the
impact of hearing aid processing on speech intelligibility

is associated with age, working memory, and degree of
hearing loss (Arehart et al., 2013, 2015; Souza et al.,
2015, 2019). For classical music, listeners with greater
degrees of hearing loss prefer linear amplification over
wide-dynamic range compression (Croghan et al., 2014).
While some research has shown that factors such as age,
gender, hearing loss, and hearing aid experience do not
explain individual variability in self-adjusted gain set-
tings (Perry et al., 2019), further research is needed to
explain why this may be the case, as well as to evaluate
how other individual factors could affect preferred
frequency-gain shaping.

Acoustic Considerations

This study made use of a fully occluding transducer that
completely sealed listeners’ ear canals. However, occlud-
ing hearing aid fittings can be problematic in practice
due to the trapping of low-frequency energy in the ear
canal. This leads to subjective reports of the occlusion
effect in which one’s own voice sounds boomy (Kuk
et al., 2005) and is a common complaint among hearing
aid (Ricketts et al., 2019). Therefore, many hearing aids
are coupled to the ear using an open fitting, in which the
ear canal is . . . open for directly receiving ambient sounds
(Winkler et al., 2016, p. 4). Open-fit hearing aids are
typically prescribed for hearing aid users with milder
losses and near-normal thresholds at low frequencies.
Relative to closed fits, open fits are usually preferred
for speech quality and own-voice perception (Winkler
et al., 2016).

This study’s findings likely do not generalize to open-
fit hearing aids. D’Onofrio et al. (2019) evaluated wheth-
er hearing-impaired listeners preferred self-adjusted gain
compared with prescribed gain for speech and music.
Listeners wore open-fit receiver-in-the-canal hearing
aids. Low-frequency gain adjustments were all less
than 2 dB from prescribed settings, significantly con-
trasting with the low-frequency adjustments observed
in the current study. Future research should consider
whether the sound quality benefits of using an increased
bass response in an occluded fit outweigh potential
own-voice discomfort from the occlusion effect and
whether enough low-frequency amplification can be
achieved in a vented fitting using traditional acoustic
hearing aids. It should be noted that low-frequency
amplification (down to 125Hz) can be achieved using
an open-fitting, wideband direct drive hearing aid
(Arbogast et al., 2019) and that listeners prefer stimuli
containing more low-frequency energy than stimuli with
less low-frequency energy while wearing the direct drive
hearing aid (Vaisberg et al., 2020).

Finally, this study used studio-compressed music
recordings at a fixed level of 70 dB SPL. Previous studies
have found that higher input levels can affect the impact
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of hearing aid compression on music sound quality
(Davies-Venn et al., 2007; Moore et al., 2011). Higher
input levels may also influence preferred gain adjust-
ments. For example, a given low-frequency boost at a
high input level may lead to increased upward spread of
masking, which could negatively affect sound quality,
thus leading listeners to prefer less low-frequency gain
at higher input levels. In addition, highly compressed
studio music results in smaller crest factors which ena-
bles listeners to listen at higher overall levels (Croghan
et al., 2016). In contrast, live music has much larger crest
factors (Chasin & Hockley, 2014), which produces music
peaks that may cause hearing aid output limiting or
peak-clipping, both of which can be detrimental to
music listening (Davies-Venn et al., 2007). Therefore,
further research should seek to understand the relation-
ship between listening levels, crest factors, and hearing
aid circuity and how that relationship interacts with lis-
tener gain preferences.

Summary and Conclusions

This study evaluated the degree to which hearing-
impaired listeners made preference-based adjustments
to hearing aid amplification relative to prescribed set-
tings, whether amplification adjustments were stimulus
dependent, and whether any sound quality descriptors
explained listener preferences. Using a three-dimensional
simplex procedure, listeners selected preferred
frequency-gain shaping parameters via preference judg-
ments between stimulus pairs varying in gain that devi-
ated from prescribed amplification in low-, mid-, and
high-frequency bands. Listeners increased the low-
frequency gain and decreased the high-frequency gain
by a smaller magnitude. Mid-frequency gain adjust-
ments were not significantly different than prescribed
gain. Low-frequency gain was increased by the greatest
magnitude for pop music, followed by classical music,
and female and male speech. High-frequency gain was
decreased by a similar magnitude for pop music and
male speech. The gain adjustments were largest for
music, and preferences for music were mainly driven
by changes in Fullness and Sharpness. Gain adjustments
were smaller for speech, and preferences were mainly
driven by changes in Intelligibility and Loudness.
Perceived intelligibility was an important driver of
frequency-gain preferences for speech, for which the
gain adjustments relative to prescribed settings were
smaller for speech versus music. Therefore, prescribed
amplification for mild to moderate hearing loss would
generally be appropriate for speech intelligibility.
However, it should not be treated as suitable for other
types of stimuli. Alternative frequency-gain settings
should be considered to improve listener satisfaction
for amplified music.

Acknowledgments

The authors thank Unitron Hearing for providing infrastruc-

ture support for the study; Leonard Cornelisse and Dr. Don

Hayes of Unitron for support for experimental implementa-

tion; Nancy Bunston, Tina Howard, Carolina Rubiano, and

Jesse Sinclair of Unitron for recruitment assistance; Dr. Vijay

Parsa for open source master hearing aid implementation sup-

port; Robin O’Hagan, Hasan Saleh, and Dr. Maaike Van

Eeckhoutte of the National Centre for Audiology for piloting

and experimental development; Jonathan Pietrobon of

Audioscan, a Division of Etymonic Design Incorporated, for

Verifit2 technical support; and Tobias Herzke and Dr. Hendrik

Kayser of University of Oldenburg and HoerTech for open

source master hearing aid technical support. The authors also

thank Dr. Brian Moore and two anonymous reviewers for

comments on an earlier version of this article.

Author Note

All research activities were conducted during author J. M. V.’s

previous affiliation at the National Centre for Audiology,

Western University, London, Ontario, Canada. Bose

Corporation was not involved in this research.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The authors disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This study was funded by the Ontario Research Fund (RE08-

72). This study was presented, in part, as a podium talk at the

2018 International Hearing Aid Research Conference, Tahoe

City, California, USA, August 15–19, 2018, for which the first

author received a student scholarship.

ORCID iD

Jonathan M. Vaisberg https://orcid.org/0000-0001-9500-

1097

Note

1. Data were initially gathered from 26 listeners. However, 4 of

the 26 listeners timed out twice for the same stimulus for at

least one of the four stimuli. For these listeners, it was not

clear if they had understood the task, as two time-outs per

stimulus may have implied guessing. Therefore, their data

were excluded from the analysis.
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