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ABSTRACT

Motivation: In the analysis of homologous sequences, computation
of multiple sequence alignments (MSAs) has become a bottleneck.
This is especially troublesome for marker genes like the ribosomal
RNA (rRNA) where already millions of sequences are publicly
available and individual studies can easily produce hundreds of
thousands of new sequences. Methods have been developed to
cope with such numbers, but further improvements are needed to
meet accuracy requirements.
Results: In this study, we present the SILVA Incremental Aligner
(SINA) used to align the rRNA gene databases provided by the
SILVA ribosomal RNA project. SINA uses a combination of k-mer
searching and partial order alignment (POA) to maintain very high
alignment accuracy while satisfying high throughput performance
demands.

SINA was evaluated in comparison with the commonly used high
throughput MSA programs PyNAST and mothur. The three BRAliBase
III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1%
accuracy. A larger benchmark MSA comprising 38 772 sequences
could be reproduced with 98.9 and 99.3% accuracy using reference
MSAs comprising 1000 and 5000 sequences. SINA was able to
achieve higher accuracy than PyNAST and mothur in all performed
benchmarks.
Availability: Alignment of up to 500 sequences using the latest
SILVA SSU/LSU Ref datasets as reference MSA is offered at
http://www.arb-silva.de/aligner. This page also links to Linux binaries,
user manual and tutorial. SINA is made available under a personal
use license.
Contact: epruesse@mpi-bremen.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Multiple sequence alignment (MSA) is a core building block
in the analysis of biological sequence data. Phylogenetic tree
reconstruction, structure prediction or hidden Markov modeling
require MSA to infer residue-level homology or structural or
functional identity. The ubiquitous need for MSA computation has
made this field an active research topic with over 100 methods
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published in the past 30 years and numerous review papers
discussing their relative merits and deficiencies (Kemena and
Notredame, 2009; Notredame, 2007; Pei, 2008).

The dependency of the subsequent analysis methods on the
results of the MSA stage and the drastic effect differing MSAs can
cause (Löytynoja and Goldman, 2008; Morrison and Ellis, 1997)
make alignment accuracy the primary benchmark for novel and
improved methods. The task of computing the optimal alignment
[as determined by the Sum-of Pairs (SP) score] was shown to
be non-deterministic polynomial (NP)-complete (Wang and Jiang,
1994), and is therefore only feasible for very few sequences. For
sets of sequences, comprising several thousand or more sequences,
heuristic algorithms are used. The most prevalent algorithms are
based on the progressive alignment (Feng and Doolittle, 1987)
technique, which builds the MSA via a series of pairwise alignments
of sequences and partial alignments along the branches of a guide
tree.

Sequence data volumes are growing exponentially. This was
already observed almost 20 years ago (Rice et al., 1993), and
the effect has not diminished since (Leinonen et al., 2010).
MSA has long been largely unaffected, because the numbers in
which homologous gene sequences were available remained low.
For many genes, however, this situation is changing. Especially
frequently sequenced marker genes, such as the ribosomal RNA,
are rapidly becoming available in volumes exceeding the scalability
of traditional alignment techniques. In 2007, the first release of
the SILVA SSU database contained over 353 366 small subunit
rRNA (SSU) gene sequences (Pruesse et al., 2007). Until September
2011, that database grew more than sevenfold to contain 2 494 582
sequences. The two other large rRNA databases, greengenes
(DeSantis et al., 2006a) and RDP (Cole et al., 2009), are of similar
size (Amaral-Zettler et al., 2008). The large subunit rRNA (LSU),
provided only by SILVA, grew only slightly slower. In 2007, the
database contained 46 979 sequences. Currently, it contains almost
six times as many sequences (269 498).

Although each of these databases uses a different tool to
compute their alignments, the used methods share one important
characteristic: rather than computing an alignment de novo, the
alignment of each individual sequence is derived from a static
reference MSA. The reference MSA implicitly defines a fixed set
of alignment columns into which the bases comprising the query
sequence are placed. By avoiding mutual comparisons between the
sequences considered for inclusion in the final MSA (candidate
sequences), the alignment process becomes inherently scalable.
Furthermore, the MSA offered by the database provider can be
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easily extended by database users in the same manner in which
the MSA was originally constructed. This, in turn, allows using
established alignment-based methods to analyze even large-volume
next generation sequencing (NGS) datasets.

The MSA provided by RDP II is computed using Infernal,
which implements a model-based approach using a special form of
stochastic context-free grammar (SCFG) termed covariance models
(CM). These are similar to Hidden Markov Models (HMM) but
are able to capture the co-variations caused by the highly conserved
secondary structure of rRNAs (Nawrocki and Eddy, 2008; Nawrocki
et al., 2009). The Infernal model used by RDP II is computed from
a set of several hundred carefully chosen sequences, which were
manually aligned to match the well-known secondary structure of
the 16S rRNA. The nearest alignment space termination (NAST)
method DeSantis et al. (2006b) used by greengenes uses BLAST
(Altschul et al., 1990) to obtain a pairwise alignment between
the candidate sequence and the best match in the reference MSA.
The alignment is then used to map the candidate sequence into
the reference MSA via a series of gap character reintroduction
and removal operations. Improved implementations of the same
principle have been published as PyNAST (Caporaso et al., 2010)
and as part of mothur (Schloss et al., 2009). PyNAST uses UCLUST
(Edgar, 2010) instead of BLAST, whereas mothur relies on its own
implementations of a k-mer search to select the reference sequence
and a Needleman–Wunsch type alignment algorithm to perform the
pairwise alignment.

In this study, we describe the SILVA Incremental Aligner (SINA)
which is part of the rRNA gene processing pipeline of the SILVA
ribosomal databases project.

2 ALGORITHM
Our algorithm is based on the assumption that the the sequences contained
in the reference MSA are more likely to have a sibling relationship with
the candidate sequence than to be direct ancestors or descendants. Because
each sibling will have diverged differently from the common ancestor, some
parts of the candidate sequence may be resembled most closely by one of
the siblings while other parts are more similar to different siblings. Instead
of seeking the optimal alignment with a single, best reference sequence (as
is done by NAST) or optimizing the SP score between the candidate and all
of its siblings, we attempt to align each part of the candidate with the most
similar counterpart found in any sibling. To prevent arbitrary alignment in
hypervariable regions, we further demand that consecutive “parts” must be
joined by at least one mutually aligned, identical base.

The optimal sequence of parts and the optimal alignment of the candidate
with these parts can be found at the same time using dynamic programming.
The algorithm used by SINA for this purpose is essentially equivalent to
partial order alignment (POA) as described in Lee et al. (2002). The reference
MSA is reduced to a directed acyclic graph (DAG) as shown in Figure 1.
Each node of the graph represents an evolutionarily unique base. That is, all
identical bases sharing a column in the reference MSA are coalesced into
one node. Gaps and the order of bases are represented by the graph topology:
two nodes are connected exactly if there is a sequence in which the two bases
they represent occur consecutively. Thus, there is exactly one path through
the graph for each combination of “parts” as defined above. By applying a
Needleman–Wunsch (Needleman and Wunsch, 1970) modified to allow a
DAG along one axis we obtain the least costly alignment of the candidate
and the corresponding path.

The time and space complexity of the alignment stage is decoupled from
the size of the entire reference MSA by prefixing a sequence selection stage.
This stage chooses a small set of sequences from the results of a heuristic

Fig. 1. The alignment of the selected reference sequences is converted from
RC-MSA representation (top) to PO-MSA representation (bottom)

similarity search. The DAG used as alignment template is constructed from
these sequences only.

The fixed-column constraint necessary to allow concatenation of the
individually aligned sequences into a joint MSA is maintained during DP
alignment using a further modification of the Needleman–Wunsch algorithm.

2.1 Reference sequence selection
The sequences to be used in building the alignment template are assembled
from the result of a k-mer sequence search on the reference MSA. SINA
does not implement this search itself but uses a component from the ARB
software package called the PT server (Ludwig et al., 2004). The PT server
offers several parameters to configure the k-mer search, all of which are
exposed by the SINA command line interface. These parameters are: (i)
the value of k. (ii) a number of allowable mismatches at arbitrary positions
within each k-mer. (iii) a range of alignment columns to which the search for
shared k-mers is restricted. (iv) a fast mode which searches only for k-mers
beginning with ‘A’. (v) a ‘non-relative’ mode which computes the fractional
k-mer count by dividing the number of shared k-mers by the query length
rather than by the minimum of the lengths of query and matched sequence.

On basis of the findings in Edgar (2004a), we apply a logarithmic
transformation to obtain a measure in approximately linear relationship with
fractional identity. Here, F is the fractional k-mer count, Lq is the length of
the query sequence and Y is the obtained measure.

Y =1−
log F+1

Lq

log 1
Lq

(1)

After executing the search, SINA iterates through the matches in order
of descending identity and decides according to the following rules and
parameters which sequences are to be kept and passed into the alignment
template construction stage. (i) The first fs-min sequences are always kept.
(ii) Up to fs-max sequences are kept if their similarity to the candidate is at
least fs-msc. (iii) Further sequences of at least fs-full-len bases length are kept
independent of their match score until the set of selected sequences contains
at least fs-req-full such sequences. (iv) Further sequences are kept if they
cover the start and end of the gene as determined by the alignment positions
gene-start and gene-end until at least fs-cover-gene such sequences have
been found. The latter two rules are designed to ensure that the outer edges
of the alignment are covered even if the reference alignment contains partial
sequences.

As a performance optimization, the candidate sequence is compared to all
sequences in the reference set. If it is found to be contained in one of them,
the candidate sequence is aligned by simply copying the matching part of
the alignment of the reference sequence. An explaining remark is made in
the log and the remaining alignment stages are skipped.

2.2 Construction of alignment template
We use a DAG to represent the selected set of aligned reference sequences.
The nodes of this graph correspond to unique base-column combinations in
the reference sequences. The nodes are linked by edges if the corresponding
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bases occur consecutively in any of the reference sequences (Fig. 1). Consider
the aligned reference sequences as lists of base-column pairs. Then, for each
such sequence, there is a path in the graph comprising an equivalent list of
nodes. This type of graph is described as ‘partial order MSA’ (PO-MSA) by
Lee et al. (2002). The term expresses that the structure itself only imposes a
partial order on the bases comprising the alignment, whereas the traditional
‘row-column MSA’ (RC-MSA) representation imposes a total order. When
storing a list of sequence identifiers with each edge, exact conversion between
the two representations is possible.

Our method of constructing a PO-MSA from a RC-MSA and the data
stored within the nodes differs slightly from the method described in Lee
et al. (2002). We preserve the frequency of the represented base in its column
to be used as a weight during the alignment process. Also, we do not construct
the PO-MSA by iteratively adding sequences and merging those nodes that
represent homologous bases. Instead, we use a scan-line algorithm passing
horizontally through the input RC-MSA: For each sequence Si in the RC-
MSA the last created node Ni is remembered. We then pass through all
alignment columns j. In each column, one node is created for each non-gap
character encountered. For each sequence Sk in which the character was
encountered, an edge from the last remembered node Nk is created to the
new node and the new node is remembered as Nk . After all columns have
been processed, duplicate edges are removed.

2.3 Dynamic programming alignment
To align a candidate sequence with an alignment template in PO-MSA
format, we extend the dynamic programming recursion from the Needleman–
Wunsch algorithm. Our extension is similar to that used by POA. In
Needleman–Wunsch and its derivative algorithms, two sequences A and B
are aligned by computing a matrix H such that the value of Hi,j is the optimal
score for the alignment of the prefixes A1 ...Ai and B1 ...Bj of lengths i and j
of the sequences A and B. The value of each cell Hi,j is defined as a function
of the scores of the three prefix pairs where either one or both of the prefixes
is one item shorter. Given a function S(i,j) defining the matching score for
Ai and Bj and using g as the score for a gap, we have:

Hi,j =max

⎧⎪⎨
⎪⎩

Hi−1,j−1 +S(i,j)

Hi,j−1 +g

Hi−1,j +g

(2)

This recursion is generalized to allow using a PO-MSA instead of one of
the sequences by replacing the notion of ‘prefix of length i’with ‘path leading
up to node Ai’. Leaving B as a sequence, Hi,j then becomes the optimal score
of the alignment of the prefix of B of length j with any path in A leading to
Ai . Using Ap →Ai to denote that an edge from Ap to Ai exists, we arrive at:

Hi,j = max
p:Ap→Ai

⎧⎪⎨
⎪⎩

Hp,j−1 +S(i,j)

Hi,j−1 +g

Hp,j +g

(3)

2.3.1 Affine gap penalties To support affine gap penalties of the form
gk =gopen +(k −1)gextend, SINA uses a further extension of this induction,
modified in the same way as was shown by Gotoh for the original induction
(Gotoh, 1982):

Pi,j = max
p:Ap→Ai

{
Hp,j +gopen

Pp,j +gextend
(4)

Qi,j =max

{
Hi,j−1 +gopen

Qi,j−1 +gextend
(5)

Hi,j = max
p:Ap→Ai

⎧⎪⎨
⎪⎩

Hp,j−1 +S(i,j)

Pi,j

Qi,j

(6)

2.4 Scoring
Although SINA supports the use of arbitrary substitution matrices to define
S(i,j), the default is to use 2 as the score for matching bases and -1 for
mismatching bases. IUPAC encoded ambiguities are treated as a match if a
match is conceivable (i.e., ‘N’ matches anything).

SINA also implements two methods for weighting S(i,j) according to the
variability in the reference MSA: (i) the score is multiplied with the frequency
with which the base Ai occurs among the selected reference sequences in
column i according to a configurable scaling factor. (ii) the score is multiplied
with a per-column conservation indicator derived from a conservation profile
computed within ARB (‘positional variability by parsimony (PVP)’, see
Supplementary Materials). After POA sequence alignment, the total score
is normalized via division by the sum of the weighted rewards for a match
in each template column contributing to the alignment.

2.5 Treatment of sequence ends
SINA uses what is sometimes referred to as ‘overlap’ alignment. Although
global alignment allows no unaligned sequence tails and local alignment
allows both sequences to have unaligned tails, overlap alignment allows only
one unaligned tail at either end. At both ends, either the candidate sequence
or the template is aligned until its last base. The cost-free terminal gap is
achieved by initializing H0,j and Hi,0 with 0 and choosing the best scoring
cell Hi,j where at least Ai or Bj has no successor to start the backtracking
through the alignment matrix.

Three policies are provided for dealing with the unaligned sequence
tails: (i) The unaligned bases may be omitted from the final alignment. (ii)
The unaligned bases may be placed consecutively following the outermost
aligned base. (iii) The unaligned bases may be placed at the out-most columns
of the MSA.

2.6 Treatment of insertions
The alignment of the candidate with the PO-MSA yields column positions
only for substitution events (matches and mismatches). Although deletions
in the candidate with respect to the reference sequences pose no problem,
appropriate column positions must be determined for inserted bases. If the
number of alignment positions between the two bases enclosing an insertion,
that is the size of the gap in the reference alignment, is larger than the
insertion, the insertion is placed right-bound in this gap. SINA offers three
choices for dealing with insertions that cannot be accommodated by the
reference MSA: (i) The insertion may be shortened as required by erasing
bases. (ii) The bases surrounding the insertion may be shifted outwards. (iii)
A modified DP algorithm may be used that disallows insertions not mappable
to the reference MSA.

Our base shifting algorithm is a greedy search for free alignment positions
to the left and right of the insertion which we believe to be equivalent to
NAST. If the gap closest to the insertion is of insufficient size, the bases
between this gap and the original insertion are included in the insertion and
the process repeated until the insertion can be placed.

As an alternative option, we further extended the DP alignment to observe
constrained alignment space by only considering gap open and gap extension
events that can be accommodated by the reference MSA. For a node Ai in
the template DAG, the amount of free columns fi to the right of it is defined
as the difference between its alignment position and the lowest alignment
position of its immediate successor nodes minus one. Ignoring gap extension,
the induction defining H becomes:

Hi,j = max
p:Ap→Ai

⎧⎪⎨
⎪⎩

Hp,j−1 +S(i,j)

Hi,j−1 +g if fi >0

Hp,j +g

(7)

Note that this is equivalent to using a cost function for gaps which assigns
an infinite penalty for inserting a gap into the reference alignment. However,
the Gotoh optimization for DP alignment with affine gap penalties requires
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the cost for extending gaps to be monotonically decreasing (Gotoh, 1982).
Nonetheless, we have implemented an analogous extension, aware that the
induction we use constitutes a loss of optimality where alignment space is
insufficient. Fi,j is set to fi when Qi,j is based on a gap open event and set
to Fi,j−1 −1 if Qi,j is based on a gap extension.

Qi,j =max

{
Hi,j−1 +gopen if fi >0

Qi,j−1 +gextend if Fi,j >0
(8)

Hi,j = max
p:Ap→Ai

⎧⎪⎨
⎪⎩

Hp,j−1 +S(i,j)

Pi,j

Qi,j if fi >0

(9)

3 IMPLEMENTATION
SINA has been implemented in C++ making heavy use of generic
programming techniques. External components used include several BOOST
libraries, the ARB database library and the ARB PT server. ARB and FASTA
formats are supported for sequence input and output. Per sequence meta data
can be exported via ARB database fields, FASTA headers, FASTA comments
or a separate file in comma-separated value (CSV) format. The reference
MSA must be in ARB format. Conversion of reference alignments from
FASTA to ARB format is possible with SINA

3.1 Reverse complement detection
If instructed, SINA will execute the k-mer search multiple times using the
reversed and/or complemented candidate sequence. If an orientation different
to the original yields a better best scoring match, the candidate is transformed
accordingly.

3.2 Sequence search and classification
We also implemented a simple search and classify stage. The search uses
the alignment (as computed by SINA or by an external tool) to quickly
determine fractional identities. Both an exhaustive search and a quick
search considering only the best matches from a k-mer search can be
performed.

Also, a least common ancestor (LCA) classification can be performed if
the searched database contains taxonomy data in materialized path format.
LCA classification can be relaxed to allow a percentage of outliers.

3.3 Visualization of alignment differences
Manual inspection of the alignment differences (resulting, for example,
from different tools, changed parameters or modifications to the reference
MSA) is supported via a differencing function. This function prints a
coloured RC-MSA representation of the sections of the alignment in
which the reference alignment and the alignment to be inspected differ.
Columns containing only gap characters are removed from this view. The
reference sequences used to construct the PO-MSA template are listed
together with the new and the original alignment. If the SINA alignment
stage was bypassed, the SINA search stage can be used to select suitable
sequences for display in combination with the two different alignments
of the candidate. Rows are consolidated such that only unique alignments
remain.

3.4 Parameter tuning
The default parameter settings in SINA were tuned for the alignment of
SSU rRNA gene sequences. To simplify determining correct parameters for
other genes, SINA offers automated evaluation of alignment accuracy using
a leave-query-out approach. In this mode, each sequence in the reference
alignment is newly aligned (excluding the sequence itself from the set of
selected reference sequences), the result compared to the original alignment

and the average scores reported. Alignment parameters such as match and
mismatch scores, gap penalties or k-mer length can then be adjusted to
maximize this score.

To simulate more difficult alignment cases where the candidate sequence
is distant to the closest match in the reference MSA, reference sequence
selection may be constrained using a maximum identity parameter.
The identity of each sequence considered during reference sequence
selection with the candidate sequence is computed using their original
alignments. Sequences with an identity higher than the configured
threshold are discarded and not included in computing the alignment
template .

4 EVALUATION OF SINA
MSA computation methods are generally validated by quantifying their
ability to accurately reproduce benchmark MSAs known to be of high
quality. The degree to which a tool was able to reproduce the benchmark
MSA is measured by determining the fraction of exactly reproduced
alignment columns [CS score (Thompson et al., 2011)] and the fraction of
correctly aligned residue pairs [Q score (Edgar, 2004b), also called SP-score
(Thompson et al., 1999)]. This measure was used in the evaluation of SINA.
However, we expect significantly higher scores than commonly achieved by
de novo methods (see Discussion).

For evaluation, we used the three MSAs provided with BRaliBase
III (5S rRNA, tRNA and U5) and the manually aligned subsets of
the MSAs provided by SILVA (SSU and LSU). The SILVA alignments
where chosen because they are the largest manually created alignments
available to us. The BRaliBase alignments were chosen to complement
the SILVA alignments with test data from a source not affiliated in any
way with the authors of this article. The SSU and LSU test data were
generated by excluding all sequences in the SILVA databases that were
themselves aligned by SINA, leaving only manually aligned sequences
from the SILVA seed. This test data are equal to the published subsets
of the SILVA seed alignments. The SILVA seed alignments are based on
alignments published by the ARB project in 2004. During construction
and maintenance of the SILVA seed, sequences were removed if they
could not be aligned unambiguously and new sequences added to enhance
phylogenetic coverage. All sequences in the seed (and therefore in the test
data) were aligned manually by rRNA alignment experts. The alignment
itself is guided strongly by the secondary and tertiary structure of the
respective rRNA. The SSU and LSU test data are made available at
ftp.arb-silva.de/SINA/test_data/.

We compared SINA with the NAST implementations by mothur and
PyNAST. The align.seqs command from mothur (version 1.19.1) was
used with default parameters. PyNAST (version 1.1, UCLUST version
v1.2.exportedq, cogent version 1.5.0) was used with identity threshold below
which it refuses alignment lowered to 0.0001. Minimal reference sequence
length was set to 50 for SINA and PyNAST. SINA (version 1.2.8) was
also configured with appropriate values for full-length sizes (5S rRNA: 120,
tRNA: 80, U5: 80, SSU: 1400, LSU: 2900). The k-mer size used by SINA
was lowered to eight for the tRNA and U5.

Three different benchmarks were performed, one using the four smaller
MSAs and two using the large SSU MSA. The three benchmarks differ in
the way the benchmark MSA is split into the set of sequences to be used as a
reference MSA and the set to be used for measuring the alignment accuracy.
Because all three tools expect sizable reference MSAs, the benchmark
based on the four smaller MSAs follows a ‘leave-query-out’ scheme: every
sequence in the benchmark MSA is aligned using all other sequences as
reference MSA (benchmark 1). The SSU MSA is large enough to create
reference MSAs of different size by randomly sampling sequences. Sampling
was repeated 100 times, once using 1000 sequences and once using 5000
sequence. Candidate sequence sets of equal size were sampled from the
remaining sequences.
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Table 1. Results from leave-query-out benchmarks

5S rRNA tRNA U5 SILVA LSU
Dataset 597 1113 232 1588
sequences (%) (%) (%) (%)

PyNAST 98.6 96.4 94.0 98.9
mothur 97.5 92.1 93.3 98.9
SINA 99.3 97.6 96.1 99.2

The reported percentages are the average Q scores. Only sequences aligned by all three
tools where considered.

Table 2. Results using test data sampled from the SILVA SSU dataset

All SSU samples <80 % Identity

Reference size 1000 5000 1000 5000
sequences 100 000 500 000 5443 8811
mean identity (%) 92.34 95.24 75.71 75.9

(PyNAST1) (%) 96.7 97.6 90 89
(0.20) (0.08) (1.7) (1.5)

mothur (%) 96.6 97.8 88 88
(0.23) (0.07) (2.0) (1.3)

SINA (%) 98.9 99.3 94 93
(0.12) (0.03) (1.2) (1.1)

The average Q scores shown were obtained by randomly sampling sequences from the
SILVA SSU-based test data to create 100 reference MSAs and benchmark sets. This
was repeated once with a reference MSA size of 1000 and once with a size of 5000.
The SD between Q score averages from each of the 100 reference MSAs is shown
in parentheses. The two columns on the right show the results when considering only
difficult cases where the candidate sequences have <80% identity with all sequences
in the respective reference MSA.
a PyNAST failed to align 0.5% of the sequences.

The typical identity between each candidate and its best matching
reference sequence remains very high, even when sampling a reference MSA
of only 1000 sequences. To obtain more difficult test cases having lower
rates of identity, we constrained the reference sequence selection algorithm
to exclude sequences above a cut-off value (see section parameter tuning).
Using 21 cut-off values between 50 and 100% at 2.5% intervals (100% being
equivalent to leave-query-out benchmarking), we examined the accuracy in
relation to the identity of the candidate with the reference. This benchmark
was repeated for numerous sets of parameter settings and also used for
parameter optimization (benchmark 2).

Lastly, we repeated benchmark 2 with an alternative alignment template
implementation relying on column profiles rather than a PO-MSA for
comparison. All other settings including the selection of reference sequences
remained identical to the original benchmark 2.

5 RESULTS
Table 5 shows that SINA performed better than both mothur and
PyNAST for all MSAs used in the leave-query-out benchmarks.
Friedman rank tests using the results for each sequence as blocks
showed significant P-values (2∗10−5) for all pairs of tools in each
data-set except PyNAST vs mothur in the U5 dataset (0.55).

Table 5 shows the results for the benchmarks using candidate
sequences and reference MSAs sampled from the SSU dataset. We
show the average Q scores from all successfully aligned sequences,
although this slightly inflates the scores for PyNAST which failed
to align all candidate sequences. Lowering the identity threshold
below which alignment is refused by PyNAST to 0.0001 reduced

Fig. 2. SINA alignment accuracy decreases almost linearly with the shared
fractional identity of candidate and reference when using one reference
sequence (red line). Using larger numbers of reference sequences markedly
increases accuracy

the number of failed alignments. However, of the 100 000 sequences
aligned using 1 k reference MSAs, PyNAST still failed to align
547. Of the 500 000 sequences aligned using 5 k reference MSAs
PyNAST failed to align 2750 sequences. The average Q scores
achieved by mothur for the sequences refused by PyNAST were
91.36 and 94.8%, respectively. The average Q scores achieved by
SINA for these sequences were 97.45 and 98.46%.

In addition to the average Q scores, we show the SD between
averages computed for each of the 100 samples. The variance
between tests is much lower than the differences between tools,
indicating that the reported Q score averages are sufficiently robust
for comparing the tools. Pearson rank tests using the per sample
averages as blocks showed P-values below 2×10−5 for all pairs
of tools except PyNAST versus mothur in the 1 k reference MSA
benchmarks.

The second benchmark showed marked differences in alignment
accuracy for varying reference sequence set sizes. The average Q
scores rises over all identity thresholds with each increase in the
number of reference sequences used. Above 40 sequences, the effect
tapers off (Fig. 2, Supplementary Fig. S1). The same can be observed
for the average fraction of bases that were part of an insertion with
respect to the template PO-MSA (Fig. S2). Configuring SINA to
use a column profile as alignment template yielded lower accuracy
(Fig. 3). Especially, when candidate and reference sequences share
a lower fractional identity, alignment accuracy drops significantly.
Increasing the reference set size beyond five had a detrimental effect.

At a reference set size of 40 sequences, and match/mismatch
scores of 2 and −1 (Fig. S3), a gap open penalty of 5 and a gap
extension penalty of 2 was found to perform best (Fig. S4). Enforcing
the inclusion of at least one sequence of at least 1400 bases in the
reference set improved results at identity thresholds lower than 0.9
visibly (Fig. S5). Using the modified DP, algorithm to maintain fixed
columns gave a slight improvement over using base shifting (Fig.
S6). Varying the k-mer size had little impact, values between 8 and
10 were found to produce best results (Fig. S7). Using only k-mers
beginning with ‘A’ resulted in a slight accuracy degradation (Fig.
S8). Among the three methods for weighting match/mismatch scores
per column using the base frequency in the reference set performed
best by far, improving Q scores by almost 0.5% points (Fig. S9).
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Fig. 3. An alternative implementation which used simple column-profiles
built from the selected reference sequences showed overall lower accuracy.
Increasing the number of reference sequences quickly led to a degradation
in accuracy

We did not benchmark speed and memory requirements
specifically as these depend heavily on sequence length, reference
MSA size and parameter settings. In the tests using reference MSAs
sampled from the SSU dataset, we observed mothur to align roughly
20 sequences per second per core and SINA to align roughly 2
sequences per second per core. PyNAST was as fast as mothur
in the benchmark using a reduced width alignment and matched
SINA when using the full 51 000 column MSA. Tests were executed
on a non-dedicated heterogeneous cluster comprising current 2, 4
and 8-way servers equipped with Intel and AMD quad core CPUs.

6 DISCUSSION
We reported the average Q scores because they are commonly used
as accuracy indicator for sequence alignment. However, the values
are not directly comparable to results obtained for de novo methods
as these lack the benefit of a guiding reference alignment. Given
a consistent reference alignment, selecting a reference sequence
closely resembling the candidate sequence and transferring the
alignment positions of the shared segments suffices to perfectly
align those shared segments. The identity between the candidate
sequences and the available reference sequences should therefore
be considered as a baseline when interpreting the results. This also
affects the precision with which accuracy can be measured. As can
be seen in Table 5, the variance among sampled test cases was
extremely low. When considering only those sequences that had an
identity with the reference sequences of <80%, variance increased
by an order of magnitude. We therefore believe that assessing
alignment accuracy to a precision of 0.1% is permissible for the
benchmarks we performed.

In interpreting the results, it may also be more informative to
consider error rates, rather than the fraction of correctly aligned
bases. For example, PyNAST achieves 98.55% accuracy (Q) on the
BRAliBase 5S rRNA dataset, whereas SINA achieves 99.23%. This
amounts to error rates of 1.45 and 0.77%, thus SINA placed only half
as many bases in the wrong columns. Because sequence alignment
is only one of many sources for error in sequence alignment, the
permissible margin of error depends on many factors. We can,
however, determine an upper bound at which it is more sensible to

forgo extension of the reference MSA and instead use a homology
search to map candidate sequences to results based solely on the
reference MSA. In this case, the error would be equivalent to the
distance between candidate and best matching reference because
both error and distance are measured as a fraction of differing
base positions. The average distance may therefore be used as a
point of reference for the permissible error. Methods expecting a
MSA as input do not commonly incorporate measures to deal with
errors in the MSA. They will also make mutual comparisons between
the aligned candidate sequences. Demanding that the error be at
least an order of magnitude lower than the distance therefore seems
prudent.

According to the SSU benchmark, the distance between
candidates and references averages to 7.66% using 1000 reference
sequences and 4.76% using 5000 reference sequences. The same
benchmark shows error rates for the NAST-based methods of
above 3.37 and 2.19%. In absolute numbers, this means that when
using a 5k reference MSA, the candidates and their best matching
reference sequences where on average distinguished by 71 positions
(according to the original alignment). Thirty-two positions where
misaligned by NAST. SINA fares much better. At 0.74% error rate
( or 11 misaligned positions), its error was only a third of that
produced by PyNAST and mothur. Although the aforementioned
order of magnitude difference between error and distance would
demand at most seven misaligned positions, we may have reached
the resolution of the benchmark.

When manually inspecting the positions comprising the error, we
found that most cases were related to extensions of homo-polymers,
conflicts between primary and secondary structure alignment or
inconsistencies in the reference MSA. From the SILVA, rRNA gene
datasets and the online SINA alignment service, both of which
having been available for several years now, we were able to gather
user feedback on these shortcomings. In general, users stated that
the changes they made in manually refining the SINA alignment
were related to the secondary structure. However, we were unable
to collect sufficient problematic sequences in which secondary
structure awareness would clearly improve alignment accuracy to
build a dataset for benchmarking. We therefore concur with the
observation made by Kemena (Kemena and Notredame, 2009) that
much larger, high quality benchmark MSAs are needed, especially
for improving and evaluating the accuracy of high throughput MSA
methods. Although the dataset extracted from the SILVA SSU Ref
database used in the evaluation of SINAis of high quality, it is merely
a subset of the SILVA SSU seed. As such, it lacks a representative
distribution of distances between sequences and would require
further refinement and extension to become a good benchmark.
Furthermore, a benchmark MSA explicitly constructed to comprise
fewer columns than a correct alignment demands would be required
to test the performance of alternative methods for constraining the
number of columns. Because we expect that many other genes
besides the RNAs will soon become available in numbers surpassing
what can be feasibly aligned using de novo techniques, we also
see a need for advanced interactive tools to support building and
curating large MSAs to be used as benchmark or reference MSAs.
Once benchmarks of sufficient resolution at high alignment accuracy
levels become available, it may be interesting to investigate whether
improving the POA based stage in SINA with methods used by de
novo MSA tools such as Infernal, MUSCLE or MaFFT can further
enhance alignment accuracy.
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7 CONCLUSION
We have shown that combining a k-mer distance search with POA
incremental MSA to integrate candidate sequences into an existing
MSA yields highly accurate results. Using multiple reference
sequences as a basis for the alignment of the candidate sequences
significantly improves alignment quality. Dynamically selecting a
low, fixed number of sequences from which the alignment template
is constructed rather than basing the alignment on a global template
built from all reference sequences allows the use of very large
reference MSAs, lowering the number of bases remaining unaligned
because they do not occur in the reference MSA. Furthermore,
suboptimal alignment behaviour for groups of novel candidate
sequences can be easily corrected by manually optimizing the
alignment of one of these sequences and adding it to the reference
MSA.

With SINA, we provide a versatile and flexible tool for accurate
high-throughput MSA that has proven its reliability and robustness
over several years of testing in the context of the SILVA project.
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