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Simple Summary: The PTEN phosphatase is a ubiquitously expressed tumor suppressor, which
inhibits the PI3K/AKT pathway in the cell. The PI3K/AKT pathway is considered to be one of
the main signaling pathways that drives the proliferation of cancer cells. Furthermore, the same
pathway controls the epithelial–mesenchymal transition (EMT). EMT is an evolutionarily conserved
developmental program, which, upon aberrant reactivation, is also involved in the formation of
cancer metastases. Importantly, metastasis is the leading cause of cancer-associated deaths. In
this review, we discuss the literature data that highlight the role of PTEN in EMT. Based on this
knowledge, we speculate about new possible strategies for cancer treatment.

Abstract: Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is one of the critical
tumor suppressor genes and the main negative regulator of the PI3K pathway. PTEN is frequently
found to be inactivated, either partially or fully, in various malignancies. The PI3K/AKT pathway is
considered to be one of the main signaling cues that drives the proliferation of cells. Perhaps it is
not surprising, then, that this pathway is hyperactivated in highly proliferative tumors. Importantly,
the PI3K/AKT pathway also coordinates the epithelial–mesenchymal transition (EMT), which is
pivotal for the initiation of metastases and hence is regarded as an attractive target for the treatment
of metastatic cancer. It was shown that PTEN suppresses EMT, although the exact mechanism of this
effect is still not fully understood. This review is an attempt to systematize the published information
on the role of PTEN in the development of malignant tumors, with a main focus on the regulation of
the PI3K/AKT pathway in EMT.

Keywords: association of PTEN expression and EMT; molecular crosstalk between EMT-controlling
transcription factors and PTEN; signaling networks of PTEN and EMT; regulation of miRNAs;
lncRNAs and PTEN

1. Introduction

Metastasis is a biological event during which the cellular activities of migration,
survival and proliferation are tightly coordinated to ensure that cancer cells leaving the
primary tumor location are able to set up a new colony in another metastatic niche. The
epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their
apicobasal polarity and intercellular contacts, transforming into mesenchymal cells, and
thus acquiring the ability to migrate and invade. The EMT program is instrumental to
such biological processes as embryonic development and metastasis [1]. The main events
associated with EMT are the downregulation of E-cadherin and zona occludens 1 (ZO-1)
as epithelial markers, and the induction of mesenchymal markers such as vimentin, N/P-
cadherins, and β-catenin. These are achieved by a fine-tuned network of transcription
factors and signaling pathways [1,2]. The core set of EMT master regulators includes
zinc-finger E-box-binding homeobox 1 (ZEB1) and ZEB2, Snail (SNAI1), Slug (SNAI2), and
Twist-related protein 1 (TWIST1) [3].

Upon the loss of E-cadherin, epithelial cells in the primary carcinoma lose their
cell–cell adhesion properties and focal adhesion contacts with the extra cellular matrix
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(ECM), resulting in loss of epithelial polarity. However, it should be noted that the majority
of cancer cells from the primary tumor acquire an intermediate state of EMT or pseudo-
EMT that is characterized by both epithelial and mesenchymal phenotypes [4]. Due to the
intrinsic heterogeneity of tumors, only several individual cells or groups of cells are able to
detach from the primary tumor and intravasate into the bloodstream to subsequently form
metastases. Tumor cells extravasate from blood vessels near specific metastatic niches and
undergo the reverse process, called mesenchymal–epithelial transition (MET). This is an
important step for the colonization of new tumor niches and, ultimately, for the formation
of metastasis, since MET causes cells to proliferate. It is important to mention that EMT in
cancer cells is not only reversible but can be stopped at any stage [5].

Recent studies have shown that EMT also plays an important role in the acquisition of
drug resistance by cancer cells [6,7] as well as resistance to radiotherapy [8,9]. EMT-induced
drug resistance is mediated by attenuating the proliferation rate, upregulating drug efflux,
blocking the apoptotic mechanisms of cancer cells, and by increasing evasion from immune
surveillance [10–12].

Furthermore, activation of the EMT program may also trigger the generation of cancer
stem cells (CSCs), which are suggested to be another mechanism of drug resistance. CSCs,
also known as tumor-initiating cells (TICs), comprise a class of pseudo-multipotent cells that
are able to transdifferentiate into different subtypes within a tumor-initiating tissue [13,14].

PTEN is the main negative regulator of the PI3K/AKT pathway, and hence is con-
sidered to be one of the major tumor suppressors. Thus, it is not surprising that the loss
of its expression or functions is observed in different cancers [15]. The PI3K/AKT sig-
naling pathway plays an important role in carcinogenesis by orchestrating a number of
cellular processes including proliferation, differentiation, metabolism, and migration. The
PI3K/AKT pathway is intimately intertwined with EMT at multiple levels.

A large number of studies have shown that PTEN negatively affects EMT. However,
the exact role of PTEN in metastasis remains unclear. In this review we discuss the role of
PTEN in metastasis, including crosstalk between the signaling networks of PTEN and EMT,
which ultimately affects the gene expression programs of cellular plasticity and metastasis.

2. PI3K Pathway and PTEN
2.1. The PI3K Pathway

PI3K pathway signaling is activated by cell surface located growth factor receptors
(RTKs), G protein-coupled receptors (GPCRs), cytokine receptors, and integrins [16]. RTKs
are a family of high-affinity cell surface receptors that sense growth factors, hormones, cy-
tokines, and other signaling molecules, and convert these signals into the phosphorylation
cascade inside the cell. Over 58 gene encoding RTKs have been identified in the human
genome [17].

The key element of the PI3K/AKT signaling pathway, PI3K, is a member of the
family of enzymes that phosphorylate phosphatidylinositol at the 3′-position of the inositol
ring [18]. The PI3K family members can be divided into three classes depending on their
structural organization and substrate specificity. The most important role in the formation
of cancerous tumors is type I PI3K. They are represented by heterodimers consisting of the
catalytic subunit p110 (p110α, p110β, p110γ, and p110δ) and one of the regulatory subunit
p85α, p85β, p55α, p55γ, p50α, p101, and p87 [19]. Typically, the catalytic subunit (p110)
binds to the regulatory subunit to stabilize the PI3K heterodimer, and thus inhibits PI3K
activation. The p85 regulatory subunit of PI3K contains SH2-domains (Src homology-2)
that mediate binding to adaptor proteins or tyrosine receptors to facilitate localization and
activation of PI3K at the membrane [20]. There is less information about PI3K types II and
III; however, it is known that PI3K II consists only of catalytic subunits PI3KC2α, PI3KC2β,
or PI3KC2γ, in contrast to class III, which exists in a heterodimeric form and consists of the
catalytic subunit Vps34 and the regulatory protein p150 [21].

Activation of type I PI3K occurs through distinct cellular responses downstream of
various receptors, including receptor tyrosine kinases (RTKs), cytokine receptors, B-cell



Cancers 2022, 14, 3786 3 of 22

antigen receptors, some integrins, and a subset of G protein-coupled receptors. Activation of
the receptors upon binding the ligand leads to the autophosphorylation of tyrosine residues
within the RTK, and PI3K is then recruited to the membrane by direct binding to consensus
phosphotyrosine residues located in the C-terminus of the receptor via one of the two SH2-
domains in the PI3K regulatory subunit. This leads to the activation of the catalytic PI3K
subunit, resulting in the formation of a secondary messenger phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) from the phosphatidylinositol (4,5)-bisphosphate (PIP2) substrate.
PIP3 then recruits signaling proteins to the inner membrane that contain pleckstrin domains
(PH), including 3′-phosphoinositide-dependent kinase 1 (PDK1) and protein kinase B
(AKT). PH-domains are the conserved domains found in hundreds of mammalian proteins
involved in intracellular signaling and are responsible for recruiting proteins to lipid
membranes [22].

The most important mediator of the PI3K pathway is protein kinase AKT [23]. There
are three isoforms of AKT: AKT1, AKT2, and AKT3 [24–26]. These isoforms have a common
conserved domain structure, consisting of the N-terminal domain (pleckstrin homology;
PH-domain), the kinase domain, and the C-terminal regulatory domain containing a
hydrophobic motif [26]. It was shown that AKT1 is expressed ubiquitously, while AKT2 is
expressed in insulin-sensitive tissues, and AKT3 is expressed in the brain and testes [27].
PIP3 can bind the PH-domain of AKT and induce the translocation of AKT to membranes,
where AKT is phosphorylated at two sites: Thr308 and Ser473, which, in turn, leads to
the activation of the enzyme [28–30]. PDK1 is responsible for the phosphorylation of
Thr308 [31], and the phosphorylation of Ser473, which can be carried out by integrin-linked
kinase (ILK) or the mTORC2 protein complex, PKCε [32–34]. According to Ebner et al. [35],
active AKT is predominantly associated with cellular membranes and is critically dependent
on the engagement with PIP3. Accordingly, the transforming mutation D323A, which
uncouples kinase activation from PIP3 binding, leads to the accumulation of hyperactive
phosphorylated AKT in the cytosol [35].

The activation and stabilization of AKT is regulated by phosphorylation not only at
the two major sites (Thr308 and Ser473) but also at many additional sites. It was shown
that AKT1 has 31 potential phosphorylation sites, while AKT2 possesses 22, and AKT3
has 18 phosphorylation sites [36]. For example, AKT can be phosphorylated by CK2 at
Ser129, which augments its catalytic activity [37]. Liu et al. [38] found that phosphorylation
at S477/T479 was essential for AKT activation.

The activated form of AKT promotes cell survival by suppressing the expression of
genes responsible for cell death, or by activating the expression of genes that contribute
to survival [39,40]. Thus, AKT has been shown to inhibit the activity of the following:
Foxo family members FKHR (FoxO1), FHHRL1 (FoxO3), and AFX (FoxO4); Bad, which
is a pro-apoptotic member of the Bcl-2 protein family; kinase ASK1, which activates JNK
and p38 MAP kinases; and procaspase-9 which plays an important role in the signaling
pathway of apoptosis.

The Forkhead (FoxO) family of transcription factors includes FKHR/FoxO1, FoxO2,
FKHRL1/FoxO3, and AFX/FoxO4 [41]. Forkhead proteins are important downstream
targets for AKT, and their phosphorylation by AKT can regulate cell survival by changing
the expression of their target genes [42]. In addition, these transcription factors can inhibit
cell proliferation by suppressing cyclin D, and can induce apoptosis by transactivating the
Fas ligand [43,44].

PI3K/AKT/mTOR/p70S6K is one of the main signaling pathways that regulate au-
tophagy under stress conditions, for example, during fasting, oxidative stress, or infec-
tion [45]. It has been shown that GSK3β is responsible for the induction of apoptosis upon
inhibition of AKT. Suppression of GSK3β also decreases the level of basal apoptosis and
induces proliferation [46].

The protein kinase mTOR (also called the mammalian target of rapamycin) is an
evolutionarily conserved protein from yeast to humans. The mTOR activity is finely
controlled both positively and negatively by upstream regulators. Positive regulators of
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mTOR signaling include growth factors and their receptors, such as insulin-like growth
factor-1 (IGF-1) and its cognate receptor IFGR-1, members of the human epidermal growth
factor receptor (HER) family and their associated ligands, as well as vascular endothelial
growth factor receptors (VEGFR) and their ligands that signal mTOR via PI3K/AKT [47].
mTOR exists in the cell as a subunit of the intracellular multimolecular signaling complexes
TORC1 and TORC2 [48]. The mTORC1 complex consists of mTOR, Raptor, mLST8, and
PRAS40. Importantly, it was found to be sensitive to rapamycin. This discovery allowed to
develop the first generation of mTOR inhibitors. The mTORC2 complex consists of mTOR,
Rictor, Sin1, and mLST8. It is less sensitive to rapamycin, and its role in normal cell function
and tumorigenesis is not fully understood [49]. It is important to underline that mTORC2
activates AKT, thereby promoting cell proliferation and survival. The canonical mTOR
activation pathway depends on PI3K/AKT signaling, but alternative non-AKT-dependent
activation pathways are also known, such as the Ras/MEK/ERK pathway [50] (Figure 1).
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Figure 1. Schematic of the canonical PI3K/AKT signaling pathway. Light blue arrows denote the
activating signal transduction events between the members of a particular pathway (shown as circles
of different color). Red crossbars denote the inhibitory events. Upon activation of RTK (receptor
tyrosine kinase), PI3K (phosphatidylinositol 3-kinase) phosphorylates and produces PIP3 (phos-
phatidylinositol (3,4,5)) from PIP2 (phosphatidylinositol (4,5) bisphosphate). PTEN (phosphatase)
promotes the reverse reaction thus negatively regulates the pathway. PIP3 facilitates the phospho-
rylation of AKT (protein kinase B). Activating AKT phosphorylates different target proteins and
mediates multiple cellular events and processes such as cell cycle, metabolism, survival, apoptosis,
etc. Schematic representation of an alternative non-AKT-dependent activation pathway via the
Ras/MAPK signaling. Upon exposure of cancer cells to extracellular signals sensed by RTKs, the
signal is transferred via the Grb2/SOS protein complex to specific receptor(s) rat sarcoma virus (Ras),
which binds GTP and recruits a protein kinase, rapidly accelerated fibrosarcoma (Raf). The latter
relays the signal to another kinase, mitogen-activated protein kinase kinase (MEK), followed by the
transfer to yet another kinase, extracellular signal-regulated kinase (ERK). ERK mediates a variety of
cellular events via phosphorylation of a number of transcription factors (cell cycle, survival, apoptosis,
etc.). AKT phosphorylates TSC2, which forms a functional complex with TSC1. Phosphorylation
of TSC2 impairs the ability of the TSC1-TSC2 complex to act as a GAP toward the small GTPase
Rheb. Rheb-GTP potently activates mTORC1. Phosphorylation of PRAS40 by Akt and by mTORC1
itself results in dissociation of PRAS40 from mTORC1 and may relieve an inhibitory constraint on
mTORC1 activity. Only the key upstream phosphorylation events are shown.

2.2. PTEN

Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is a tumor
suppressor that exhibits phosphatase activity preferentially against members of the PI3K
oncogenic pathway. Thus, PTEN is considered to be a major negative regulator of the
PI3K/AKT pathway. Oppositely, PTEN inactivation augments the activity of the PI3K/AKT
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pathway, resulting in the better survival, proliferation, differentiation, and migration of
cancer cells.

Under normal conditions, only a small fraction of PTEN molecules bind to the plasma
membrane and the rest mainly localize in the cytoplasm. To perform its membrane-
bound functions, PTEN first needs to be activated through post-translational modifications
and then recruited to the plasma membrane. PTEN acts as a lipid phosphatase that
removes the phosphate group from the second messenger PIP3 (phosphatidylinositol
(3,4,5)-trisphosphate) to generate PIP2 (phosphatidylinositol (4,5)-bisphosphate), thereby
controlling cellular proliferation, survival, growth, and migration [51]. Notably, PTEN
acts not only through the lipid but also via its protein phosphatase activity. PTEN is
considered to be a dual protein and lipid phosphatase. Furthermore, PTEN can operate
non-enzymatically [52].

The regulation of PTEN expression occurs at multiple levels, including epigenetic
silencing, transcriptional repression, post-transcriptional regulation by miRNAs, and dis-
ruption of competitive endogenous RNA (ceRNA) networks. In addition, PTEN-interacting
proteins also affect the activity and functions of PTEN [53,54].

Not surprisingly, PTEN itself, or its functions, are frequently lost either partially
or fully in different types of cancer [55]. PTEN inactivation can occur through various
genetic alterations such as epigenetic mechanisms (promoter hypermethylation), large
chromosomal deletions, or point mutations [56].

PTEN activity can also be regulated by various signaling cues. For example, the
sphingosine 1-phosphate2 receptor (S1P2R), which belongs to the S1PR family of G protein-
coupled receptors (GPCR), has been shown to activate PTENs by coupling them to the
Rho-dependent activation. As a result, the PI-3 kinase pathway is inhibited and cell
migration is attenuated [57].

Lima-Fernandes et al. [58] used an elegant in cellulo approach to monitor the confor-
mational state of PTEN in response to various extracellular signals. By employing the in-
tramolecular bioluminescence resonance energy transfer (BRET)-based PTEN conformation-
specific biosensor as a reporter, they uncovered that PTEN was activated by several G
protein-coupled receptors, including the thromboxane A2 receptor (TPαR) and the mus-
carinic M1 receptor (M1MR), which were not previously recognized as PTEN regulators.

As mentioned above, PTEN localizes both to the cytoplasm and nucleus. At the
plasma membrane, PTEN plays an important role in activating apoptosis by suppressing
AKT and, as a result, activating caspase-8 and caspase-9, increasing expression of several
pro-apoptotic genes [59].

Localization and activity of PTEN is regulated largely through post-translational
modifications. PTEN monoubiquitination is implicated in the mediation of the nuclear
accumulation of PTEN by several E3 ligases such as NEDD4, WWP2, XIAP, CHIP, and
others, whereas, on the contrary, the polyubiquitination of PTEN induces its proteasome-
mediated degradation [60–65]. SUMOylation of PTEN at lysine 254 was shown to be
also involved in its nuclear translocation [66]. In this respect, it should be noted that
Ca2+ mediates the interaction of PTEN with major vault protein (MVP) and regulates the
localization of PTEN in the nucleus [67]. Furthermore, it was shown that PNUTS (protein
phosphatase-1 nuclear targeting subunit, PPP1R10) interacts with PTEN, blocking the access
of PTEN to membrane lipids and hence activating its translocation to the nucleus [68]. In
turn, nuclear PTEN participates in DNA repair and replication, and gene expression, as
well as controlling cell cycle progression [69]. Notably, members of the PI3K pathway, PI3K
and AKT, are also found in the nucleus. Thus, PTEN can act as a lipid phosphatase both at
the plasma and nuclear membranes [70,71].

Importantly, PTEN also regulates the stability and transcriptional activity of another
tumor suppressor, p53 [72]. Moreover, PTEN was demonstrated to be a transcriptional
target of p53 [73], thus forming a positive regulatory feedback loop. On the contrary, another
transcriptional target of p53, E3-ubiquitin ligase MDM2, which is a negative regulator of p53,
mediates its proteasome-mediated degradation [74]. Various inhibitors of the p53-Mdm2
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interaction have been developed and are currently being investigated at different stages
of clinical trials [75,76]. Interestingly, AKT can phosphorylate MDM2, which leads to the
stabilization of the latter and thus keeps low levels of the tumor suppressor p53 [77]. In turn,
inhibition of the PI3K/AKT pathway by PTEN mediates the accumulation of MDM2 in
the cytoplasm [78] (Figure 2). Chung et al. [79] showed that, being localized in the nucleus,
PTEN inhibits the expression of cyclin D1, thereby causing cell cycle arrest. Nuclear PTEN
plays an important role in the maintenance of chromosomal integrity by association with
the centromere specific binding protein C (CENP-C)—a key component of centromeres that
is important for kinetochore attachment during mitosis [80,81]. Moreover, PTEN regulates
the expression of and recruits Rad51 to chromatin favoring double strand break (DSB)
repair [81]. Rad51 is one of the central figure factors of the DSB repair machinery that
mediates homologous recombination repair [82]. In the nucleus, PTEN may act as regulator
of DNA repair at different levels, and it is not surprising that cells lacking nuclear PTEN
are sensitive to DNA damage. Importantly, the functioning of PTEN in the nucleus does
not require its functional catalytic domain [66].
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Figure 2. Schematic relationships between PTEN, MDM2, and p53. In addition to being the main
negative regulator of the PI3K/AKT pathway, PTEN also regulates stability and transcriptional
activity of p53 (tumor suppressor). Moreover, PTEN itself is a transcriptional target of p53. Another
transcriptional target of p53 is a E3-ubiquitin ligase, MDM2. Importantly, MDM2 mediates the
proteasomal degradation of p53. In addition, MDM2 also mediates autoubiquitination thus rendering
itself an unstable protein. AKT can phosphorylate MDM2 thereby stabilizing the latter and promoting
the degradation of the tumor suppressor p53. Expression of the constitutively active form of AKT
augments the nuclear entry of MDM2. Light blue arrows denote activating transduction events
between the members of a particular pathway (shown as circles of different colors). Red crossbars
denote the inhibitory events.

It is important to note that a number of mutations in the Tp53 gene convert p53
from a tumor suppressor to an oncogene. In this respect, Li et al. [83] showed that by
increasing the level of mutant p53 (gain-of-function) via the inhibition of Mdm2-mediated
degradation, PTEN can also be an oncogene. Thus, the mutational statuses of p53 and PTEN
are important factors to be considered for understanding the aggressiveness of a tumor.

3. PTEN and EMT
3.1. PTEN and EMT Transcription Factors

The ZEB family of transcription factors consists of two members: ZEB1 (alternatively,
TCF8 and δEF1) and ZEB2 (SIP1 and ZFXH1B). The members of this protein family interact
with DNA through the binding of the two zinc-finger domains to E-boxes, and repress the
expression of E-cadherin (Figure 3).
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Figure 3. Schematic diagram of the epithelial–mesenchymal transition (EMT) and EMT transcription
factors. There are a limited number of critical transcription factors that activate EMT. This core
set of EMT master regulators includes zinc-finger E-box-binding homeobox 1 (ZEB1) and ZEB2,
Snail (SNAI1), Slug (SNAI2), and Twist-related protein 1 (TWIST1). The EMT is a process by
which epithelial cells lose their apicobasal polarity and intercellular contacts and transform into
mesenchymal cells, acquiring the ability to migrate. The process of EMT causes suppressed expression
of epithelial markers (such as E-cadherin) and upregulation of mesenchymal markers (such as
N-cadherin). As a result, cells acquire motility and invasive properties.

Liu et al. [84] showed that the repression of ZEB1 leads to the induction of PTEN.
More detailed experiments revealed that ZEB1 affects the AKT pathway and inhibits the
expression of PTEN in breast cancer cells. Moreover, ZEB1 binds to the PTEN promoter
region in the MCF7 cell line. Using a luciferase reporter assay, Gu et al. [85] demonstrated
that ZEB1 suppresses the transcription of the PTEN gene and as a result activates the
AKT pathway.

ZEB2 is the transcription factor that, along with ZEB1, controls EMT. Interestingly,
ZEB2 transcripts act as ceRNA towards miRNA targeting PTEN in melanoma cells. More-
over, the depletion of ZEB2 activates the AKT pathway and enhances oncogenic cell
transformation of melanoma [86].

The SNAIL family of transcription repressors encompasses three members: SNAIL1
(SNAIL), SLUG (SNAIL2), and SNAIL3 (SMUC). Being important effectors of EMT, these
proteins inhibit the expression of E-cadherin. In addition, the SNAIL family members were
also shown to participate in PTEN regulation. It was demonstrated that SNAIL1 prevents
p53 association with the PTEN promoter region after γ-radiation, thus downregulating the
expression of PTEN [73,87]. Another member of this protein family, SLUG, was shown to
repress PTEN by directly binding to the PTEN promoter in prostate cancer cells [88].

3.2. PTEN and Tumor Microenviroment

The EMT is triggered not only by intrinsic but also by extrinsic factors. Tumor cells
interact with the tumor microenvironment (TME), including stromal cells, the extracellular
matrix, and secretome elements (cytokines, growth factors, hormones, and so on). There is
much evidence accumulated to date suggesting that hypoxia and reactive oxygen species
(ROS) affect the onset of EMT. A common feature of various solid tumors is intra-tumoral
hypoxia or a low level of oxygen. Hypoxia correlates with altered gene expression, inhibi-
tion of apoptosis, activation of autophagy, and EMT. Hypoxia also favors the production of
ROS via several mechanisms [89–91]. Increased ROS levels have been detected in many
types of cancers, correlating with tumor development and progression. Moreover, the re-
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verse scenario is also true, i.e., that hypoxia can be mediated by increased levels of ROS [92],
and the mitochondrial ROS is considered to be instrumental for hypoxia-induced EMT [93].
PTEN itself contains nucleophilic cysteine residues in the active site and thus is considered
to be sensitive to oxidation. Cysteine residues (Cys-124 in the catalytic domain) can form
an intramolecular disulfide bridge with Cys 71, inhibiting the phosphatase activity [94].

EMT is promoted by direct interaction between tumor and stromal cells. The tumor
stroma consists of an extracellular matrix, immune and endothelial cells, as well as cancer-
associated fibroblasts (CAFs). CAFs represent the major cellular component among all the
stromal cells. Normal fibroblasts can become CAFs under the influence of cancer-derived
cytokines. Inactivation of PTEN in the stroma correlates with poor outcomes of cancer
patients [95]. For example, mutations in the PTEN gene of stromal fibroblasts were detected
in mammary carcinoma [96]. Although these PTEN mutations identified in stromal cells
might be due to contaminations by carcinoma cells or to EMT, downregulation of PTEN
in CAFs might contribute to neoplastic progression. Trimboli et al. [97] showed that the
inactivation of PTEN in stromal fibroblasts leads to the progression of mammary epithelial
tumors. Moreover, PTEN-specific signatures in the tumor stroma of patients with breast
cancer were identified by gene expression profiling. Thus, it is prudent to say that PTEN
can be considered a critical tumor-suppressive component of stroma-specific signaling
pathways in solid tumors.

3.3. TGF-β and PTEN

Transforming growth factor β (TGF-β) is a multifunctional cytokine family that reg-
ulates cell proliferation, apoptosis, differentiation and migration. This signaling protein
family is considered to be one of the key regulators of the EMT process. The TGF-β family
in mammals includes three members, TGF-β1, TGF-β2, and TGF-β3. TGF-βs are expressed
as pro-proteins, and furin proteases are necessary for proteolytic processing and the acti-
vation of TGF-βs. Activated TGF-β complexes bind to serine/threonine kinases-TGF-β
receptors [98]. There are two signaling pathways triggered by TGF-β: the canonical path-
way induces the phosphorylation of the SMAD family of transcription factors, while the
non-canonical pathway includes MAPK, PI3K/AKT, and Rho GTPase. Upon phosphoryla-
tion, SMADs form a trimeric structure (SMAD2, SMAD3, and SMAD4) and translocate to
the nucleus to regulate the transcription of target genes by directly binding to DNA [99]
(Figure 4).

The regulation of PTEN expression by TGF-β signaling is multifaceted and de-
pends on the cellular context. While PTEN was initially identified as a TGF-β-regulated
and epithelial cell-enriched phosphatase (TEP1) [100], this concept was challenged by
Kimbrough-Allah et al. [101], who reported that, in prostate cancer cells, TGF-β increased
the protein level of PTEN, but had no effect on the PTEN mRNA expression level. However,
it should be noted that the effect of TGF-β on the protein level of PTEN was very modest
and is unlikely to be physiologically relevant. In turn, PTEN overexpression decreased
AKT phosphorylation induced by TGF-β [101].

In contrast to the report of Kimbrough-Allah et al., in SMAD4-null pancreatic cancer
cells, it was shown that TGF-β suppressed PTEN expression. It is important to note that the
PTEN-coding gene is rarely mutated in pancreatic cancers and the authors hypothesized
that PTEN regulation by TGF-β can confer changes in cell growth [102].

Furthermore, in SMAD4-null colon cancer cells, TGFβ also downregulated PTEN
mRNA and concomitantly induced growth proliferation [103]. Collectively, the literature
data strongly suggest that, in most cancer types, TGF-β attenuates PTEN expression.

Interplay between PI3K/AKT and TGF-β/SMAD signaling pathways was identified
in wild-type mouse endometrial epithelial cells. Eritja et al. [104] demonstrated that TGF-
β induced apoptosis via the activation of PTEN transcription and the inhibition of the
PI3K/AKT pathway. Additionally, it was shown that both the expression of PTEN and
AKT phosphorylation depend on SMAD3 activity. Thus, in this study, the link between
AKT/PTEN/SMAD3 in response to TGF-βwas demonstrated [104].



Cancers 2022, 14, 3786 9 of 22

 

SMAD2
SMAD3

SMAD4

SMAD3

Cytoplasm

Nucleus

TGF-βR

N
I
C
D

N
I
C
D

NOTCH

IkB
⍺

p6
5

p5
0

p6
5

p5
0

P

active integrins

PI3K RAS

AKT MEK

Src

FAK
Paxillin

P

LTRs, TNFR, IL-1R

ERK
AKT

ERK

⍺Vβ6 integrin

PTEN

AKT

PTEN

PTEN

PTEN

PTEN

SNAIL1/2,
EMT-TFs

Figure 4. Positive and negative effects of PTEN on TGF-β, Notch, TNF, and integrin signaling
pathways. Upon binding of TGF-β, the TGF-β receptor (TGF-βR) induces the phosphorylation of and
nuclear translocation of SMADs, while the latter regulate transcription of EMT factors. TGF-βmay
potentially increase the protein level of PTEN via its phosphorylation. Notch signaling also regulates
the expression of PTEN. The cleaved part of Notch receptors affects the transcription of different
genes, including PTEN, which is a direct transcriptional target of Notch3. Notch1 downregulates
PTEN expression. The NF-κB (Nuclear factor-κB) pathway is activated via LTRs, TNF receptors,
and receptors for cytokines (e.g., IL-1R). The NFκB family consists of five subunits: Rel (c-Rel),
p65 (RelA, NFκB3), RelB, p50 (NFκB1), and p52 (NFκB2). AKT-dependent activation of NF-κB
induces the expression of Snail, which in turn inhibits the expression of PTEN, thereby forming the
PTEN/Akt/NF-κB/Snail feedback loop. Integrins are involved in the regulation of cell adhesion to
an extracellular matrix. The expression of PTEN inhibits migration and invasion through the αVβ6
integrin signaling pathway. There is a crosstalk between PTEN and FAK. On the one hand, PTEN
interacts with and de-phosphorylates FAK tyrosine kinase thereby inhibiting the integrin-mediated
migration and invasion of cancer cells. On the other hand, FAK phosphorylates PTEN at Tyr336,
which increases the phosphatase activity and protein stability of PTEN. Interactions of PTEN with
FAK and paxillin, respectively, weaken their interactions with ECM components. Thus, PTEN may
contribute to the process of destabilization of cell adhesion to ECM.

PTEN activity depends on various post-translational modifications such as oxidation,
acetylation, and ubiquitination [105]. For example, phosphorylation at sites Ser380, Thr382,
and Thr383 leads to the suppression of PTEN phosphatase activity [106]. Aoyama et al. [107]
demonstrated that the activation of TGF-β increased the phosphorylation of PTEN at
these residues. Moreover, the expression of PTEN with mutations in these inhibitory
phosphorylation sites was able to repress EMT induced by TGF-β by blocking β-catenin
translocation from E-cadherin complexes at the cell membrane into the cytoplasm [107].

Indeed, β-catenin plays the central role in the canonical Wnt/β-catenin signaling
pathway, which regulates embryonic development and, in the event of abnormal activation,
leads to metastases. There is a crosstalk between TGF-β and Wnt/β-catenin signaling
pathways [108,109]. β-catenin is involved in various processes such as the regulation of
cell adhesion and the transcription of genes. E-cadherin binds to β-catenin and promotes
cell–cell adhesion. The activation of TGF-β induces the dissociation and stabilization of
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β-catenin in the cytoplasm, allowing β-catenin to be translocated to the nucleus. β-catenin
is a critical element of Wnt signaling. Nuclear β-catenin reflects the aberrant activation of
Wnt/β-catenin signaling in cancer cells, leading to dysregulated transcription and hence
the activation of EMT [110,111].

3.4. NOTCH and PTEN

The Notch signaling pathway is transmitted through evolutionarily conserved Notch
receptors, which are localized on the plasma membrane and affect the transcription of
different genes. There are four isoforms of Notch proteins: Notch1, 2, 3, and 4, which work
as heterodimeric receptors by binding two classes of ligands: Delta-like proteins and Jagged.
The binding of ligands allows proteolytic cleavage to release active Notch intracellular
domains (NICD). Active NICD translocate to the nucleus and bind transcription factors
to regulate gene expression. The activity of Notch receptors is regulated not only by
binding to ligands but also by post-translational modifications, epigenetic factors, and
ligand cleavage [112]. Notch pathways take part in numerous embryonic developmental
processes and are implicated in cancer progression and EMT (Figure 4). Saad et al. [113]
demonstrated that the overexpression of Notch1 increases Snail1 expression and decreases
the level of E-cadherin. Indeed, the Notch pathway regulates EMT in different types of
cancer. For example, the activation of Notch1 enhanced EMT in gefitinib-resistant lung
cancer cell lines. On the contrary, the inhibition of Notch1 reversed the mesenchymal
phenotype of cancer cells to the epithelial one and increased the sensitivity of cancer cells
to gefitinib [114]. At the same time, Notch3 has the opposite effect on EMT through the
transactivation of Hippo/Yap signaling in breast cancer [115]. Zhang et al. [116] showed
that the PTEN gene was transactivated by Notch3 in breast cancer cells, resulting in the
inhibition of their migration and proliferation, thereby contributing to a favorable prognosis
for breast cancer patients.

Some of the earlier proofs of the link between PTEN and EMT came from the study
demonstrating that PTEN inhibits cell migration through the phosphatase-mediated de-
phosphorylation of the FAK (focal adhesion kinase) protein [117]. FAK is a cytoplasmic
tyrosine kinase that plays an important role in EMT and mediates the signaling of growth
factor receptors and integrins. Moreover, FAK induces a PI3K signaling pathway and
regulates the transcriptions of vimentin and Snail. Thus, Li et al. [118] demonstrated that
Notch1 signaling regulates the expression of PTEN, EMT-associated genes, and the acti-
vation of FAK through the transcriptional regulator RBP-Jκ in tongue cancer. The study
by Baker et al. [119] confirmed that Notch1 downregulates PTEN expression leading to the
inhibition of ERK1/2 signaling in HER2-positive breast cancer.

3.5. NF-κB and PTEN

NF-κB (Nuclear factor-κB) represents several inducible transcription factors, which
regulate the transcription of genes involved in the immune response, survival, angiogenesis,
and EMT. The NFκB family consists of five subunits: Rel (cRel), p65 (RelA, NFκB3), RelB,
p50 (NFκB1), and p52 (NFκB2). These proteins contain the Rel-homology domain (RHD),
which is responsible for homo- or hetero-dimerization, nuclear localization, and transcrip-
tion [120]. Multiple links between the EMT and NFκB pathway have been demonstrated
(Figure 4).

By using a luciferase reporter assay and chromatin immunoprecipitation, Pires et al. [121]
showed that NF-κB/p65 directly binds promoters of the SLUG, TWIST1, and SIP1 genes in
breast cancer cells. Several lines of evidence point to the link between NF-κB and EMT. The
correlation between NF-κB expression and EMT-specific transcription factors was shown
in breast cancer, renal carcinoma, prostate cancer, and other types of cancer [122–124].
Julien et al. [125] demonstrated that the AKT-dependent activation of NF-κB induces
the expression of Snail, which in turn inhibits the expression of PTEN, thereby forming
the PTEN/Akt/NF-κB/Snail feedback loop. Moreover, it was shown that the A-kinase-
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interacting protein 1 (AKIP1) induced NF-κB-mediated EMT by downregulating PTEN in
cervical cancer [126].

Elegant experiments performed by Zhao [127] and colleagues established the link
between PTEN and the chromatin-mediated regulation of the NF-κB pathway in prostate
and breast cancers. Decreased expression of PTEN resulted in the stabilization of the
chromatin helicase DNA-binding factor CHD1, which engages the trimethyl lysine-4
histone H3 modification to activate the transcription of cancer-promoting genes involved
in the NF-κB pathway [127].

3.6. Integrins and PTEN

Integrins represent a family of transmembrane receptors that mediate cell adhesion
to extracellular matrices. These receptors are presented by heterodimers composed of
18α and 8β subunits, which form at least 24 different integrin heterodimers. The general
structure of α and β subunits appears to be similar. These subunits possess a globular
N-terminally located extracellular domain, the transmembrane domain, and the small
C-terminal cytoplasmic tail [128]. The α-subunits mediate ligand specificity, and the β
subunits form a bridge between the extracellular matrix and integrins. These receptors
control a variety of signaling pathways including actin polymerization, nucleation, PI3K,
AKT, and MAPK [129]. Being key regulators of cellular adhesion, integrins also participate
in the EMT process. Integrins support the colonization of metastatic cells and mediate the
survival of circulating tumor cells [128]. Integrins act as receptors and transduce signals
through additional proteins that connect to the cytoskeleton, transmembrane growth factor
receptors, and cytoplasmic kinases [130]. Integrins themselves lack any enzymatic activity
and all of the functions they exert are mediated via protein–protein interactions, resulting
in the assembly of actin filaments [131]. The clustering of integrins and the reorganization
of actin through adaptor proteins enhances the formation of stable aggregates named focal
adhesion sites (FAS) [130]. These FASs mediate signal transduction to ensure different
aspects of the EMT process such as proliferation, wound healing, and migration [132]
(Figure 4).

Using several lung cancer cell lines with an ectopic expression of PTEN, Yu et al.
identified differentially expressed genes by microarray analysis. One of the genes on top of
the microarray list was αVβ6 integrin. The expression of PTEN decreased the protein level
of αVβ6 integrin, thereby affecting the migration and invasion of lung cancer cell lines. As
mentioned above, one of the earliest studies elucidating the impact of PTEN on the extra-
cellular matrix (ECM) rearrangement during EMT was performed by Tamura et al. [133].
Importantly, PTEN-mediated dephosphorylation of FAK at Tyr397 is a key event ensuring
the formation of intercellular contacts mediated by integrins. PTEN therefore negatively
regulates cell interactions with the extracellular matrix [134]. Interestingly, on the other
hand, PTEN is a substrate of FAK-mediated Tyr336 phosphorylation. This event, in turn,
leads to increased phosphatase activity, an augmented protein–lipid interaction, and the
stability of PTEN [135]. Thus, there is a crosstalk between the activity of FAK and the
stability of PTEN.

Moreover, dephosphorylation by PTEN affects FAK adhesion to collagens. Collagens
are the major fibrous proteins of ECM [136], while paxillin is a multidomain protein
that transduces signals from integrins in order to reorganize the actin cytoskeleton. It
also modulates actin filament dynamics and mediates the engagement of integrins with
extracellular matrices [137]. It was demonstrated that the interactions of PTEN with FAK
and paxillin weaken their interactions with ECM components, e.g., collagens I/IV [138].
Thus, PTEN may contribute to the process of destabilization of cell adhesion to ECM.

3.7. PTEN and Some Scaffolding Proteins

As mentioned above, one of the main hallmarks of EMT is the loss of epithelial mark-
ers, i.e., E-cadherin. The lipid phosphatase activity of PTEN is instrumental in stabilizing
E-cadherin on the protein level. The expression of wild-type PTEN suppressed the invasive
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phenotype in an E-cadherin-dependent manner. Thus, the inactivation of PTEN can activate
cell dissemination and metastasis [139]. While the extracellular region of E-cadherin ex-
tends from the cell surface and is involved in cell adhesion, the intracellular region interacts
with catenins to form a complex E-cadherin/catenin. E-cadherin/catenin protein complexes
are considered to be a part of bigger complexes that involve growth factor receptors and
scaffolding molecules. For example, MAGI-1b, which belongs to the group of membrane-
associated guanylate kinases (MAGUK), interacts with β-catenin. Kotelevets et al. showed
that PTEN interacted with β-catenin by binding MAGI-1b, a scaffold protein with PDZ
domains that mediate multiple protein–protein interactions [140]. Moreover, the expres-
sion of MAGI-1b is important for the interaction of junction complexes and PTEN, which
promotes E-cadherin-dependent cell aggregation, thus suppressing invasion [140]. Inter-
estingly, MAGI1 interacts with Thyroid Hormone Receptor Interactor 6 (TRIP6). In turn,
enhanced levels of cytoplasmic TRIP6 compete away β-catenin from MAGI1. Thus, TRIP6
allows β-catenin translocation to the nucleus and subsequently activates Wnt/β-catenin
signaling [141]. In addition, TRIP6 favors the dissociation of PTEN from the E-cadherin
complexes, thereby activating invasiveness [142]. Thus, scaffold proteins play an important
part in the participation of PTEN in EMT, affecting both protein–protein interactions and
signaling pathways.

Furthermore, PTEN interacts with a scaffolding protein β-arrestin1, which regulates
the signal transduction mediated by G protein-coupled receptor (GPCR). β-Arrestin1
regulates proliferation, apoptosis, angiogenesis, invasion, and migration in a variety of
tumors. PTEN controls the multicellular assembly by controlling the localization and
interaction of β-Arrestin1 [143]. On the other hand, β-arrestin is an important regulator of
the lipid-phosphatase activity of PTEN and can regulate PTEN-dependent cell proliferation
and migration [144].

Qi et al. identified a new substrate of PTEN, Abi1, which is a core adaptor protein
of the WAVE regulatory complex (WRC). Abi1 is a scaffolding protein within the WRC
and mediates the membrane recruitment and stabilization of WRC subunits [145]. WAVE
proteins play an important role in immunity, neurogenesis, embryogenesis, cancer invasion,
and metastasis [146]. It was shown that Abi1 is significantly upregulated in PTEN-deficient
breast cancer cells [147]. The protein phosphatase activity of PTEN is required for the de-
phosphorylation and degradation of Abi1, which otherwise promotes EMT in breast cancer.

4. miRNA and PTEN

miRNAs are short non-coding RNAs that play an important role in the regulation
of their target genes and are involved in different cellular processes such as differentia-
tion, embryonic development, and EMT. In most cases, miRNAs interact with the 3′UTR
(untranslated regions) of their target mRNAs and subsequently downregulate their expres-
sions [148]. Notably, several microRNAs (miRNAs) have been recognized as regulators of
PTEN [149].

Unsurprisingly, several miRNAs have been shown to regulate EMT by targeting
PTEN/PI3K pathways. For example, miRNA-410 was shown to induce EMT and ra-
dioresistance in lung cancer cells by targeting the PI3K/mTOR pathway [150]. Another
miRNA, miR-21 post-transcriptionally down-regulates the expression of PTEN and stim-
ulates the invasiveness of non-small cell lung cancer cells [151]. In recent years, different
miRNA regulators of PI3K/AKT/PTEN pathways have been discovered in various cancers.
miRNA-221/222, miRNA-20a, and miRNA-200c were reported to target PTEN and modu-
late metastases in ovarian and breast cancer stem cells [152,153]. In addition, a number of
microRNAs including miRNA-106b, miRNA-93, miRNA-144, and miRNA-202-5p regulate
cell proliferation by targeting PTEN in breast cancer [154–156]. A list of various miRNAs
is shown in Table 1. More information about the role of miRNAs in the regulation of the
expression and activity of PTEN is available in the review by Ghafouri-Fard et al. [157].
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Table 1. miRNAs targeting PTEN transcripts.

miRs Interaction with PTEN Role in EMT Process

miR-21 downregulation of PTEN promotes EMT progression in lung epithelial cells [158]

miR-410 downregulation of PTEN activation of EMT in non-small cell lung cancer [150]

miR-106b and miR-93 inhibits PTEN promotes cell migration, invasion, and proliferation in vitro (in breast cancer cells) and
tumor growth in vivo (breast cancer) [155]

miR-202-5p downregulation of PTEN increases DOX resistance and cell proliferation as well as inhibiting apoptosis (in breast
cancer cells) [156]

miR-23b-3p silence of PTEN promotes EMT and migration in bronchial epithelium (lung) [159]

miR-499a-5p decreases the expression levels of PTEN mRNA and protein promotes 5-FU resistance and cell proliferation and migration in pancreatic cancer [160]

miR-29b
targeting the 3′-UTR of PTEN mRNA

upregulation of PTEN and downregulation of PI3K in
cervical cancer cells

decreases cell proliferation, migration, and invasion abilities of NSCLC cells [161]

miR-148a, miR-152 and miR-200b downregulation of PTEN presence of these miRs correlates with metastasis in patients with prostate cancer and
metastatic prostate cancer [162]

miR-454-3p suppresses PTEN promotes oxaliplatin resistance and inhibits apoptosis in Colorectal cancer cell line [163]

miR-4310 suppresses PTEN
SP1 activates miR-4310 gene expression promotes proliferation, migration, and invasion in glioma tissues [164]

miR-513b-5p decreases the level of PTEN migration and invasion in cervical cancer tissues and cell lines [165]

miR-144-3p inhibition of miR-144-3p expression can up-regulate PTEN induces cell proliferation and invasion, and reduces apoptosis, in thyroid cancer [166]

miR-19 inhibits PTEN mRNA expression
decreases the expression of E-cadherin and increases the expression of α-SMA and

fibronectin, while inhibition of miR-19 reverses TGF-β1-induced EMT in renal tubular
epithelial cells, thereby promoting renal fibrosis [167]

miR-106b suppresses the expression of PTEN induces EMT in esophageal squamous cell carcinoma [168]

miR-17-5p inhibits PTEN enchases survival of breast cancer cells [169]

miR-552-5p inhibits PTEN
promotes proliferation and migration and inhibits apoptosis in gastric cancer cells and

stimulates metastasis in vivo; upregulation of miR-552-5p led to an increase in
N-cadherin and vimentin and a reduction in E-cadherin [170]
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Table 1. Cont.

miRs Interaction with PTEN Role in EMT Process

miR-616-3p reduced the mRNA and protein levels of PTEN promotes proliferation and migration of endometrial stromal cells [171]

miR-181a inhibits PTEN promotes the proliferation and metastasis of Hepatocellular carcinoma cells in vitro and
in vivo [172]

miR-221 regulates PTEN promotes invasion and metastasis in Extrahepatic cholangiocarcinoma [173]



Cancers 2022, 14, 3786 15 of 22

5. lncRNA and PTEN

A number of recent publications have demonstrated the role of long-non-coding RNA
(lncRNA) as important regulators of various cellular processes. Those RNAs are transcribed
longer than 200 nucleotides but not translated into functional proteins. lncRNAs can
regulate gene expression at different levels: chromatin organization, transcription, mRNA
stability, miRNA sponging, and post-translation modifications of proteins. Moreover, they
are involved in the formation of nuclear condensates and non-membrane organelles [174].

In this respect, the expression of a lncRNA named GAEA (Glucose Aroused for EMT
Activation), which is induced by a variety of stimuli including high glucose, TGF-β, CTGF,
SHH, and IL-6, was shown to enhance the enzymatic activity of the MEX3C RNA-binding
E3 ligase that mediates the K27-linked polyubiquitination of PTEN. This covalent modi-
fication can change the specificity of PTEN activity from phosphatidylinositol/tyrosine
phosphatase to serine/threonine phosphatase. Polyubiquitinated PTEN can dephosphory-
late TWIST1, SNAIL, and YAP1, thereby mediating an accumulation of EMT transcription
regulators [175].

Another lncRNA, Linc00702, is usually under-expressed in colorectal cancer. Impor-
tantly, the overexpression of Linc00702 reduced the invasion and migration of colorectal
cancer cells. Mechanistically, Linc00702 induces PTEN expression and thus represses the
PI3K/AKT pathway, thereby playing a tumor suppressive role in cancer [176]. Linc00702 is
also downregulated in non-small cell lung carcinoma. The overexpression of this lncRNA
in lung cancer cell lines inhibits cell growth and invasiveness by sponging miR-510, which
targets PTEN transcripts [177].

On the contrary, Yan et al. [178] showed that Linc00470 mediated the degradation of
PTEN mRNA in gastric cancer. Moreover, the expression of Linc00470 correlated with a
poor prognosis and distant metastases in patients with gastric cancer. Thus, it can be con-
cluded that lncRNAs differentially affect PTEN depending on their molecular targets and
the cellular context and hence have different effects on the EMT and metastasis formation.

6. Conclusions

Here, we attempted to summarize the current knowledge regarding the role of PTEN
in the EMT process. PTEN, being the major inhibitor of the PI3K/AKT pathway, plays
an important part in the regulation of cell proliferation, differentiation, metabolism, and
migration. The coordination of different signaling pathways, including PI3K/AKT, TGF-
β/Smad, Notch, and NF-κB, is required to control such cellular processes as EMT. The
molecular particularities of crosstalk between these signaling pathways were not fully
explored. In this review, we provided evidence suggesting that PTEN is involved in
the regulation of EMT. Specifically, we found that the expression of PTEN is regulated
by EMT transcription factors. In turn, PTEN regulates the activity of different signaling
pathways that orchestrate the EMT and metastasis formation in cancer. Moreover, we
referred to recent works demonstrating the influence of PTEN-targeting miRNAs and
lncRNAs on the EMT.

To conclude, we would like to set the following questions that need to be answered in
the future to decipher the molecular mechanism of PTEN participation in the EMT process:

- Does complete ablation of PTEN or loss of its enzymatic function activate EMT on its
own, or does this process require additional signaling?

- Is PTEN required for the reverse process of EMT, mesenchymal-to-epithelial transition?
- Can PTEN be a therapeutic target for the treatment of metastatic cancer?

Mutations in the tumor suppressor PTEN occur in different tumors. Understanding
the role of PTEN in cancer invasion and in the development of metastasis provides new
insights for drug development and in the search for promising new potential biomarkers.
PTEN plays a crucial role in the activity of cancer stem cells, which are responsible for
resistance to therapy and tumor metastatic spread [179].

Importantly, recent studies show that PTEN directly regulates resistance to radiation,
chemo-, and immunotherapy [180]. The link between EMT and resistance to anticancer
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therapy has been reported in several reviews [10,181,182]. The general mechanism under-
lying EMT-driven drug resistance is related to an increased drug efflux by multiple cell
membrane transporter proteins, especially the ABC transporter family of proteins, avoiding
drug-induced apoptosis, slow cell proliferation, and the altered expression of molecules
involved in immunosuppression [10,11]. Though cancer metastasis is the major cause of
death from cancer, it is hard to overstate the problems caused by resistance to anticancer
drugs. Thus, novel therapeutic strategies to activate PTEN in cancer cells may yield a more
efficient way to treat drug-resistant cancers.
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