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In vitro Chondrocyte Responses 
in Mg-doped Wollastonite/
Hydrogel Composite Scaffolds 
for Osteochondral Interface 
Regeneration
Xinning Yu1,2,4, Tengfei Zhao1,2, Yiying Qi1,2, Jianyang Luo1,2, Jinghua Fang1,2,4, Xianyan Yang3, 
Xiaonan Liu1,2, Tengjing Xu1,2, Quanming Yang1,2, Zhongru Gou   3 & Xuesong Dai1,2

The zone of calcified cartilage (ZCC) is the mineralized region between the hyaline cartilage and 
subchondral bone and is critical in cartilage repair. A new non-stoichiometric calcium silicate (10% 
Ca substituted by Mg; CSi-Mg10) has been demonstrated to be highly bioactive in an osteogenic 
environment in vivo. This study is aimed to systematically evaluate the potential to regenerate 
osteochondral interface with different amount of Ca-Mg silicate in hydrogel-based scaffolds, and 
to compare with the scaffolds containing conventional Ca-phosphate biomaterials. Hydrogel-
based porous scaffolds combined with 0–6% CSi-Mg10, 6% β-tricalcium phosphate (β-TCP) or 6% 
nanohydroxyapatite (nHAp) were made with three-dimensional (3D) printing. An increase in CSi-Mg10 
content is desirable for promoting the hypertrophy and mineralization of chondrocytes, as well as cell 
proliferation and matrix deposition. Osteogenic and chondrogenic induction were both up-regulated in 
a dose-dependent manner. In comparison with the scaffolds containing 6% β-TCP or nHAp, human deep 
zone chondrocytes (hDZCs) seeded on CSi-Mg10 scaffold of equivalent concentration exhibited higher 
mineralization. It is noteworthy that the hDZCs in the 6% CSi-Mg10 scaffolds maintained a higher 
expression of the calcified cartilage zone specific extracellular matrix marker and hypertrophic marker, 
collagen type X. Immunohistochemical and Alizarin Red staining reconfirmed these findings. The study 
demonstrated that hydrogel-based hybrid scaffolds containing 6% CSi-Mg10 are particularly desirable 
for inducing the formation of calcified cartilage.

An osteochondral defect is common, especially in athletes, and this defect is often concomitant with subchondral 
bone injury1. However, current surgical interventions are prone to causing suboptimal clinical outcomes due to 
donor site morbidity, poor integration, and/or formation of fibrocartilage2,3.

The zone of calcified cartilage (ZCC) is a mineralized region in between the hyaline cartilage and subchondral 
bone. The ZCC serves as a physical barrier and an osteochondral interface to transmit forces. Hunziker et al.  
reported that such a barrier facilitates the formation and maintains the integrity of newly formed cartilage by 
suppressing the upgrowth of blood vessels into the cartilage compartment and ectopic mineralization4. Therefore, 
regeneration of the calcified cartilage layer is a prerequisite for functional and integrative cartilage repair. The 
ideal osteochondral interface scaffold must support viability and hypertrophy of the chondrocytes and promote 
the formation of a calcified cartilage matrix5.

Tissue engineering has now emerged as one of the promising alternatives for human tissue or organ repair. 
Scaffolding is a key component of tissue engineering. It is imperative that the materials with which the construct 
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is made resemble the tissue it replaces6. Due to their compositional similarity to natural bone minerals, the syn-
thesized calcium phosphates (CaPs), such as hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP), have 
been applied in clinic and osteochondral interface tissue engineering7,8. However, lack of osteoinductivity is the 
major drawback for these materials9,10.

Wollastonite (CaSiO3; CSi) has been used as an alloy coating, as granules, or as a sintered porous body due 
to its higher osteoconductivity. Compared with the clinically used bone CaPs implants, wollastonite exhibits 
higher bioactivity and osteogenesis due to the release of Ca2+ and SiO3

2− ions11,12. Magnesium (Mg) ranks fourth 
among intracellular elements and is crucial to bone mineralization13. Recently we developed a series of nonstoi-
chiometric wollastonite materials via dilute Mg substitution of Ca (CSi-Mg) which showed excellent mechanical 
properties and bioactivity14. The mechanically strong CSi-Mg porous scaffolds were successfully fabricated via a 
bioceramic ink-writing technique for the highly efficient regeneration and repair of femoral or calvarial defects 
in situ in rabbit models. It was demonstrated that the surface bioactivity of CSi-Mg also benefited osteogenic cell 
proliferation and osteogenic gene expression in comparison with the clinically available β-TCP material15,16.

As the ZCC is a transitional interface, some researchers incorporated inorganic bioceramics (bone-phase 
material) into alginate/collagen hydrogel (cartilage-phase material) to mimic its composition. Alginate has been 
utilized extensively for chondrocyte culture and cartilage tissue engineering17. Chondrocytes have been shown to 
maintain their native morphology and produce proteoglycan and a collagen rich matrix in alginate, which also 
has the merit of being biocompatible, nonimmunogenic, and biodegradable. Type I collagen is one of the most 
abundant compositions in human tissues. The biocompatibility and controllable biodegradability of type I colla-
gen make it fit for bone and cartilage tissue engineering18.

Herein, for the first time, we introduced novel CSi-Mg10 into osteochondral interface tissue-engineering scaf-
fold fabrication. The objective of this study is to evaluate the potential effects of the novel 3D-printed hydrogel/
CSi-Mg10 hybrid scaffolds on ZCC formation via a human deep zone chondrocyte (hDZC) culture experiment in 
vitro. It is hypothesized that the scaffolds containing 10% Mg-substituted CSi (hereby denoted CSi-Mg10) could 
more effectively induce the formation of ZCC in vitro than could the control hydrogel (without CSi-Mg10) or 
those containing nHAp or β-TCP.

Results
Characterization of inorganic powders and porous scaffolds.  The CSi-Mg/hydrogel hybrid scaffolds 
were fabricated with a bioink writing 3D printing system (Fig. 1A). Based on the 3D model of the designed scaf-
fold (3D view, top-view in Fig. 1B), examination of the macroscopic appearance and morphology revealed that 
the as-printed scaffolds (9.1 mm × 9.1 mm) have vertically connected pores, with a strut diameter of ~450 µm and 
pore size of ~230 × 230 µm (Fig. 1C). In addition, the X-ray diffraction (XRD) patterns of bioceramic powders 
(CSi-Mg10, β-TCP, nHAp) presented in Fig. 1D confirmed that the β-TCP and nHAp powders were highly crys-
talline Ca-phosphates, while the CSi-Mg10 powders exhibited the pure wollastonite phase.

Figure 1.  Characterization of nHAp, β-TCP and CSi–Mg10 ceramic powders and hydrogel-based scaffolds. (A) 
Photograph of 3D bioprinter. (B) The 3D model of the designed scaffold. (3D view, top view) (C) The outward 
appearance of the scaffold. (D) XRD patterns for the ceramic powders. Scale bars represent 5 mm.
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Cell proliferation.  Figure 2 shows that the chondrocytes remained viable and cell number increased for all 
groups over time. The overall cell viability of the four groups was higher than that of the control hydrogel group. 
Particularly, by day 14, it was seen that a significantly higher number of cells was found on the 6% CSi-Mg10 
scaffolds than on the 2% CSi-Mg10 and control hydrogel scaffolds.

However, no significant difference was detected between the 6% CSi-Mg10, β-TCP and nHAp groups at all 
timepoints.

GAG deposition.  GAG/DNA was measured at different time stages (Fig. 3). A significant difference in GAG/
DNA was measured at day 7 in the 6% CSi-Mg10 scaffold group compared with that of the 2% CSi-Mg10 scaf-
folds and the control hydrogel (p < 0.01). At day 14, the GAG/DNA maintained highest in 6% CSi-Mg10 scaffold 
groups compared with control hydrogel (p < 0.01) and 2% CSi-Mg10 scaffold (p < 0.05), while the difference 
between the 2% and 6% CSi-Mg10 groups was reduced.

At day 7, a significant difference was observed between the 6% CSi-Mg10 and nHAp group (p < 0.01). 
However, no significant difference was detected between the 6% CSi-Mg10, β-TCP and nHAp groups at day 14.

Immunohistochemistry Analysis.  To evaluate the specific osteogenic, chondrogenic or hypertrophic 
chondrogenic ECM protein zones within the scaffold, an immunohistochemistry technique was used to analyze 
type I collagen, type II collagen and type X collagen at days 7 and 14 as shown in Fig. 4. A significantly lower colla-
gen type I deposition was found in the 6% CSi-Mg10 scaffolds, along with significantly higher collagen type II and 
collagen type X deposition, compared with the depositions found in the control hydrogel and the 2% CSi-Mg10 
scaffold. Furthermore, the difference increased as time progressed.

Immunohistochemistry staining also showed that the collagen type I deposition was lowest in the nHAp 
group, with a significant difference at day 7. The collagen type II and type X deposition was similar and did not 
show any significant difference when comparing the 6% CSi-Mg10 scaffold with the 6% β-TCP and nHAp scaf-
folds at days 7 or 14.

Figure 2.  Cell proliferation of chondrocytes on (0–6)% w/v CSi-Mg10, β-TCP, and nHAp scaffolds. MTT assay at 
days 1, 7 and 14 for the control hydrogel, 2% and 6% CSi-Mg10, 6% β-TCP, 6% nHAp groups (**p < 0.01, n = 6).

Figure 3.  GAG deposition. GAG content at days 1, 7 and 14 for the control hydrogel, 2% and 6% CSi-Mg10, 6% 
β-TCP, and 6% nHAp groups (*p < 0.05, **p < 0.01, n = 6).
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Mineralization and hypertrophy.  For mineralization deposition tests, Alizarin Red S staining was per-
formed at day 7 and 14. As seen from Fig. 5, calcium nodules appeared in all groups at day 7 and 14. Compared 
with the calcium nodules and staining intensity in the control hydrogel and 2% CSi-Mg10 groups, those in the 
6% CSi-Mg10 group increased significantly, while the maximum calcium nodule appearance was found in the 6% 
CSi-Mg10 group compared with that in the 6% β-TCP and nHAp groups at both day 7 and 14.

Chondrocyte ALP activity was measured at day 1, 3, 7 and 14 as shown in Fig. 5A. A significant increase in 
ALP activity was observed over time in all groups (p < 0.05). At day 3, a significant difference in ALP activity 
was detected in the 6% CSi-Mg10 group compared with that in the control hydrogel (p < 0.05). At days 7 and 14, 
the 6% CSi-Mg10 scaffold group measured the highest ALP activity among all the other groups with significant 
difference, except when compared with the activity of the β-TCP scaffold group at day 14. At days 7 and 14, no 
significant difference was found between either the control hydrogel and the 2% CSi-Mg10 group or the β-TCP 
and the nHAp scaffold group.

An osteocalcin (OC) assay was also performed to evaluate mineralization and hypertrophy (Fig. 5B). The 
trend was generally similar to that of the ALP activity. The OC content in the 6% CSi-Mg10 scaffold was highest 
compared with that of the control hydrogel and the 2% CSi-Mg10 scaffold at both days 7 and 14; it was also higher 
than that of the β-TCP and the nHAp scaffolds, although the difference was not found to be significant.

Western blot for protein expression.  The effect of biomaterials on transcription of osteogenic, chondro-
genic and hypertrophic chondrogenic protein expression at day 14 was examined in this study (Fig. 6). Among 
all groups, the expression of collagen type I was lowest in the nHAp scaffold (p < 0.01). The expression levels of 
collagen type II, type X, Runx2 and Sox-9 were increased with increasing CSi-Mg10 percentage.

Additionally, the expression of Sox-9 in the 6% CSi-Mg10 scaffold was significantly higher than that in the 
β-TCP (p < 0.05) and nHAp scaffolds (p < 0.01). The expression of Runx2 was significantly higher in nHAp than 
that in β-TCP (p < 0.01).

Discussion
In this study, a CSi-Mg10 bioceramic-hydrogel was combined with aerosol crosslinking and additive manufac-
turing techniques to successfully fabricate bioactive porous scaffolds for the first time. Effects of different types 
of scaffolds on chondrocyte mineralization, hypertrophy and matrix deposition were evaluated in vitro. The 
results demonstrated that all biomaterials are biocompatible for chondrocytes. An increase in the CSi-Mg10 
dose in the scaffolds was followed by enhanced mineralization and GAG production, with elevated expression 
of hypertrophic and chondrogenic markers for chondrocytes. In particular, enhanced mineralization without 
elevated GAG production for the 6% CSi-Mg10 scaffold group was noted while comparing with frequently used 

Figure 4.  Immunohistochemistry. (A) Immunohistochemistry staining for collagen type I, II and X at day 7 for 
control hydrogel, 2% and 6% CSi-Mg10, 6% β-TCP, and 6% nHAp groups and (B) quantitative analysis at days 7 
and 14 (*p < 0.05, **p < 0.01, n = 6). The black bar represents 50 μm.
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Ca-phosphate biomaterials in clinic. The 6% CSi-Mg10 scaffold was therefore assumed to be optimal, as the 
hypertrophic chondrocytes balanced the matrix and the mineral production to meet with the description of 
calcified cartilage.

Hypertrophic chondrocytes in the cartilage are found to express OC during the mineralized state, such as in 
endochondral ossification19. Pullig et al. reported that the expression of OC in chondrocytes correlates with chon-
drocyte hypertrophy20. OC is considered a specific indicator of osteoblast activity and is involved in bone for-
mation21. The upregulation of OC in our study indicates the hypertrophy and subsequent mineral production of 
chondrocytes. GAG has been reported as one of the utmost important matrix constituents in cartilage22, and the 
osteochondral interface has collagen-rich ECM, which mainly includes types I, II, and X collagens23. Interestingly, 

Figure 5.  Mineralization and hypertrophy. Alizarin Red S staining for the control hydrogel, 2% and 6% 
CSi-Mg10, 6% β-TCP, and 6% nHAp groups, respectively, at day 7 and 14 (n = 3). (A) Cell ALP activity analysis 
at day 1, 3, 7 and 14 (*p < 0.05, **p < 0.01, n = 6). (B) Cell osteocalcin analysis at days 1, 3, 7 and 14 (*p < 0.05, 
**p < 0.01, n = 6). The black bar represents 100 μm.

Figure 6.  Western blot. (A) Specific protein expression by western blot at day 14 for the control hydrogel, 2% 
and 6% CSi-Mg10, 6% β-TCP, and 6% nHAp groups. (B) Quantitative analysis of western blot for osteogenic, 
chondrogenic and hypertrophic protein expression levels at day 14 (n = 3).
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collagen types II and X were upregulated, while collagen type I was unchanged in western blot for the 6% CSi-Mg10 
scaffold group. The higher expression of collagen type II is a reflection of both secretion stimulation as well as the 
cartilaginous, instead of osseous, resemblance of ECM24. Sox-9 is a member of the SOX (Sry-related high mobility 
group box) family of transcription factors. The expression of Sox-9 can be detected in progenitor cells in many 
different organs25 with chondrocytes excluded. In our study, expression of Sox-9 was upregulated with the addition 
and increasing dose of CSi-Mg. As was observed during endochondral ossification, the expression of Sox-9 starts 
in mesenchymal progenitor cells, remains high in chondrocytes, and ceases in prehypertrophic chondrocytes26,27. 
According to Daisuke et al., the deletion of Sox-9 in flat chondrocytes caused the absence of hypertrophic chon-
drocytes28. These suggests that the expression of Sox-9 is essential for chondrocyte hypertrophy and necessary for 
the appropriate subsequent endochondral bone formation to chondrocytes and the survival of hypertrophic chon-
drocytes. Mineralization was thought to be an indicator of the formation of the osteochondral interface29. In our 
study, it was observed that the response of hDZCs to CSi-Mg10 was dose-dependent. Chondrocyte ALP activity and 
precipitation of calcium nodule were found to be the highest in the scaffolds with 6% CSi-Mg10. Taken together, 
chondrocyte hypertrophy (collagen type X, Sox-9 and OC), elevated collagen depositions and expressions (as shown 
in immunohistochemistry staining and western blot) and mineralization are indicators of a calcified cartilage matrix 
formation, since collagen regulates the size and shape of mineral crystals and mineral deposition30.

In fact, numerous studies have paid attention to Ca-silicate (CSi) ceramics due to their high bioactivity in 
vitro and in vivo over the past two decades31. These bioceramics are superior to calcium phosphates (CaPs) in 
cell attachment, proliferation and differentiation32. The positive effects resulting from the release of some ele-
ments (ions), such as calcium and silicon from CSi, on their surrounding biological environment have been 
widely demonstrated33,34. Fiocco and colleagues confirmed that the biocompatibility of Ca-Mg silicate ceramics 
and the osteogenic differentiation were enhanced by Mg addition35. It has been reported that magnesium ions 
(Mg2+) enhance bone regeneration by promoting the proliferation and differentiation of osteogenic (stem) cells 
via osteogenesis signaling pathways in vitro36,37. Additionally, Landi et al. found that Mg-doped HAp showed 
greater bioconductivity than that of pure HAp38. Our study also demonstrated the superiority of the 6% CSi-Mg10 
scaffolds over conventional Ca-phosphate materials. For the two Ca-phosphate materials (β-TCP and nHAp), 
the properties of both were mostly similar, but higher collagen type I deposition and expression was found in the 
β-TCP scaffold group. This result is in line with the observation of Rojbani et al. that at 8 weeks, the new bone 
formation was significantly higher in the β-TCP group than that in the HAp group39. Previous studies have shown 
that cartilage mineralization is proceeded by accumulation of some critical mineral elements such as calcium ions 
and phosphate groups40,41. As mineral deposits in calcified cartilage are often associated with collagen fibers, the 
elevated collagen deposition may facilitate cell-mediated mineralization.

In our study, DZC was selected as source of cells. Khanarian et al. compared the response of full-thickness 
chondrocytes with that of DZC in alginate and alginate + HAp scaffolds and found that DZC produced more 
collagen and proteoglycan and had higher ALP activity than did full-thickness chondrocytes24. It is noted that 
the expression level of the hypertrophic marker and mineralization potential were increased when DZCs were 
cultured in alginate + HA scaffolds24. In addition, surface and middle-zone chondrocytes seeded in hydrogel scaf-
folds with or without HA only had basal ALP activity over time. The above indicates that DZC-like cells seeded in 
the composite scaffold is a rational approach.

Cartilage regeneration is a multifaceted and elusive process. In the case of articular cartilage lesions, clinically 
available cell-based tissue engineered scaffolds such as Hyalograft® C, NeoCart®, NOVOCART® 3D, INSTRUCT 
and (M)ACI techniques have achieved good outcomes. However, these scaffolds are not capable of subchondral 
bone repair. The treatment becomes more challenging when the chondral lesion is larger and subchondral bone is 
involved. The dysfunction of zone of calcified cartilage impairs the process of osteochondral repair.

In view of the above concerns, triphasic scaffolds (gradual change in ratio between collagen type I and HA 
in each layer) known as MaioRegen® were investigated, where the orderly osteochondral tissue was regener-
ated with formation of hyaline-like cartilage42. It is envisioned that when our scaffold is utilized together with 
hydrogel and ceramic scaffolds as chondral and bony phase scaffold respectively, it might simultaneously pro-
mote chondrogenic differentiation in chondral layer, osteogenic differentiation in subchondral bone, and recon-
struction of calcified layer in the middle. Additionally, the autologous DZCs can be harvested from cartilages in 
non-weightbearing area of knee via arthroscopic biopsy and co-cultured with scaffolds.

There are some limitations in this study. The osteochondral interface is one of the most complex tissues to 
regenerate due to its small size and high degree of heterogeneity. On one hand, the mechanical evaluation of the 
scaffolds is still insufficient, and improved and delicate processing methods of the scaffolds must be explored. 
On the other hand, future studies will focus on evaluating the effect of adding triiodothyronine (T3) during cell 
culture to enhance hypertrophy. Biological outcomes of such scaffolds in vivo with a long-term goal of achieving 
functional and integrative OCD repair will be investigated.

Conclusion
This study incorporated CSi-Mg10 to fabricate bioactive composite scaffolds aiming to regenerate ZCC for the 
first time. The scaffolds containing 6% CSi-Mg10 were optimal for the formation of a calcified cartilage-like 
matrix in vitro and are promising for osteochondral interface tissue engineering.

Materials and Methods
Preparation of inorganic powders.  CSi–Mg10 powders with 10 mol% Ca substituted by Mg were synthe-
sized by a wet-chemical precipitation method as described previously43. The powders were ground in a planetary 
ball miller to a particle size of below 5 μm. β-TCP powders were synthesized as reported44 and then ground to a 
particle size of below 5 μm. nHAp powders were purchased from Sinopharm Reagent Co., Ltd. The phase compo-
sition of the powders was confirmed by XRD (Rigaku Co., Akishima, Japan).
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3D-printing scaffolds.  Sodium alginate was dissolved in distilled water at a concentration of 4% (w/v), 
collagen type I at a concentration of 2% (w/v) and inorganic superfine powders (control hydrogel, 2% CSi-Mg10, 
6% CSi-Mg10, 6% β-TCP and 6% nHAp) were added under stirring until a homogeneous solution with a suitable 
viscosity for 3D-printing was achieved. The 3D scaffolds were fabricated using 3D direct bioceramic/hydrogel ink 
writing equipment (with a homemade precision three-axis positioning system and an extruding device derived by 
the step motor, which is mounted on the x-axis). For layer-by-layer writing, the ink was added to a 1 mL syringe 
and extruded through a conical nozzle by moving a piston rod. An aerosol humidifier (SKEEN; China) con-
taining a CaCl2 solution (5% (w/v)) was used to solidify the structure every time a layer was printed. The nozzle 
diameter was 400 μm, and the moving speed of the dispensing unit was set to 6 mm s−1. After printing and pri-
mary crosslinking treatment, the 3D structure was then further cross-linked with a CaCl2 solution (5% (w/v)) for 
5 min. The scaffolds (denoted control hydrogel, 2% CSi-Mg, 6% CSi-Mg, 6% β-TCP, and 6% nHAp) were washed 
with PBS (Shanghai Long Island antibody diagnostic reagents company (FL-2004), Shanghai, China) and were 
exposed to 60Co radiation for sterilization before subsequent in vitro cell seeding.

Cell culture in vitro.  Primary articular chondrocytes were isolated from human knee joints after patients 
signed an informed consent form. All methods were carried out in accordance with the relevant guidelines and 
regulations of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, and all experimental protocols 
were approved by the 2nd Affiliated Hospital, School of Medicine, Zhejiang University Ethics Committee. Cells 
that were digested from the bottom third of articular cartilage (removing ZCC) were designated hDZCs45. The 
cartilage fragments were digested for 16 h with type II collagenase (Sigma) dissolved in Dulbecco’s modified 
Eagle’s medium (DMEM; HyClone, Utah, USA) containing 10% fetal bovine serum (FBS; HyClone, Utah, USA), 
2% antibiotics (10,000 U/mL penicillin and 10 mg/mL streptomycin), and 0.2% antifungal (amphotericin B). The 
cell suspension was then filtered with a 30 μm filter before plating. The isolated chondrocytes were incubated in 
high-density culture (1 × 106/mL) in DMEM supplemented with 10% FBS.

Cell proliferation and GAG deposition.  MTT assay (MTT, Sigma-Aldrich) was used to evaluate the cyto-
compatibility of the 3D-printed organic/inorganic hybrid scaffolds (control hydrogel, 2% CSi-Mg, 6% CSi-Mg, 
6% β-TCP, and 6% nHAp; n = 6). Briefly, the concentration of hDZCs was adjusted to 1 × 106 cells/mL, and 
hDZCs were seeded into the different scaffolds and incubated at 37 °C, with 5% CO2 for 1, 3, 7 and 14 days. Then, 
10 μL MTT was added to each well, and the plate was incubated at 37 °C under 5% CO2 in the cell incubator for 
3–4 h away from light. Then, 200 μL of DMSO was added after fluid was aspirated from the well, and the plate was 
shaken with a shaker (Aohua, Changzhou, China) for 10 min. The absorbance of the culture media was measured 
at 492 nm using a Microplate Reader (Thermo Scientific, USA).

Sample glycosaminoglycan (GAG) content (n = 6) was determined with a modified 1,9-dimethylmethylene 
blue (DMMB) binding assay, with chondroitin-6-sulfate (Sigma-Aldrich) as the standard, at days 1, 7 and 14. 
Briefly, the cells were digested with 0.25% trypsin (Solarbio, Beijing, China). The cell suspension was centrifuged 
at 1000 rad/min for 10 min in a 10 mL centrifuge tube. The precipitate was collected and was put into 1 mL of 
papain digestion solution and digested at 60 °C for 16 h. The samples were centrifuged at 1000 rad/min for 10 min, 
100 μL of supernatant was collected and 2.5 mL of DMMB staining liquid was added in. The absorbance was 
measured at 525 nm and recorded with spectrophotometer. To normalize GAG, DNA content was quantified with 
DNA Quantification Kit (Solarbio) according to the manufacturer’s instruction.

Mineralization and hypertrophy.  Alkaline phosphatase (ALP) activity (n = 6) of the hDZCs was eval-
uated by an assay reagent kit (Nanjing Jiancheng Bioengineering Institute, Jiangsu, China). Briefly, at days 1, 3, 
7 and 14, the samples were lysed in 0.1% Triton X-100 solution (Beyotime (ST795), Shanghai, China), and after 
incubation, the lysate was transferred and incubated in a water bath for 15 min at 37 °C. The plate was shaken 
gently, and the OD value of each well was measured at the wavelength of 520 nm.

Osteocalcin (OC) detection with ELISA (control hydrogel, 2% CSi-Mg, 6% CSi-Mg, 6% β-TCP, 6% nHAp; 
n = 6) was performed at day 1, 3, 7 and 14. Briefly, hDZCs were seeded on scaffolds and incubated at 37 °C, 
with 5% CO2. The supernatants of the cells were collected and OC levels were detected with an ELISA kit for 
OC (You’er Shengmao (SEA471Hu), Wuhan, China) according to the manufacturer’s instructions at appropriate 
timepoints respectively.

Western blotting.  At day 14, western blot analysis (n = 3) was conducted to analyze the relative expression 
level of collagen types I, II, X, Sox-9 and Runx2 in the hDZCs. The lysis buffer (Radio-Immunoprecipitation 
Assay buffer, Beyotime, Shanghai, China) was added (100 μL), and the proteins were transferred to nitrocellulose 
membranes (Millipore, Darmstadt, Germany). The membranes were put into plates, and a blocking solution 
containing 5% skim milk powder at room temperature was added. The plate was then shaken with oscillations 
for 1.5–2 h, after which the membranes were placed in plates containing the primary antibody dilution solution 
and shaken at 4 °C overnight; subsequently, the plates with the membranes were incubated with goat anti-rabbit 
HRP-labeled secondary antibody (A0208, Beyotime, Shanghai, China) for 1 h at room temperature. Anti-β-actin 
antibody was used as a protein loading control. Quantitative analysis was performed using a Gel Pro analyzer 6.0 
(Media Cybernatics, USA) and was shown as the relative expression to β-actin.

Alizarin Red S staining and immunohistochemistry staining.  Alizarin Red S staining (n = 3) was 
performed using an Alizarin Red Detection Kit (Fiveheart Inc., Xi’an, China). After 7 and 14 days of culturing, 
1 mL of 4% paraformaldehyde (80096618, Sinopharm Group, China) solution was added to each well, and the 
plate was incubated at 4 °C for 15 min. The supernatant was discarded, the wells were washed 3 times with PBS, 
and 500 μL Alizarin Red dye staining solution was added to each well. The plate was incubated at room temper-
ature for 30 min. The calcium nodule formation was observed using an inverted microscope (Leica, Germany).
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At days 7 and 14 immunohistological staining was used to investigate the extracellular matrix (ECM) pro-
teins, including collagen types I, II and X, which were produced by the hDZCs (n = 6). After fixation, samples 
were treated with 1% hyaluronidase for 30 min at 37 °C to remove proteoglycan and then were incubated with 
primary antibody overnight. The images of the slices were taken on an optical microscope (BX41, Olympus, 
Japan). Quantitative analysis was performed using Image Pro plus 6.0 software (Media Cybernatics, USA). 
Immunohistological staining was repeated for six times to calculate average staining intensity.

Statistical analysis.  All numerical data were expressed as the mean value ± standard deviation (SD), with 
n equal to the number of samples analyzed. Statistical analysis was performed with a one-way analysis of var-
iance (one-way ANOVA), and p < 0.05 was considered to be significant. The Tukey HSD/Dunnett T3 post hoc 
test was used for all pairwise comparisons, and significance was attained at p < 0.05. All statistical analyses were 
performed using the SPSS 20.0 software (SPSS, Chicago, IL, USA). p < 0.05 was considered to be significant and 
is indicated by *. p < 0.01 is indicated by **.
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