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Abstract: Recently, deep convolutional neural networks (CNN) have become popular for indoor
visual localisation, where the networks learn to regress the camera pose from images directly.
However, these approaches perform a 3D image-based reconstruction of the indoor spaces beforehand
to determine camera poses, which is a challenge for large indoor spaces. Synthetic images
derived from 3D indoor models have been used to eliminate the requirement of 3D reconstruction.
A limitation of the approach is the low accuracy that occurs as a result of estimating the pose of
each image frame independently. In this article, a visual localisation approach is proposed that
exploits the spatio-temporal information from synthetic image sequences to improve localisation
accuracy. A deep Bayesian recurrent CNN is fine-tuned using synthetic image sequences obtained
from a building information model (BIM) to regress the pose of real image sequences. The results of
the experiments indicate that the proposed approach estimates a smoother trajectory with smaller
inter-frame error as compared to existing methods. The achievable accuracy with the proposed
approach is 1.6 m, which is an improvement of approximately thirty per cent compared to the existing
approaches. A Keras implementation can be found in our Github repository.

Keywords: indoor localisation; camera pose regression; 3D building models; long short term memory

1. Introduction

Deep convolutional neural networks (CNNs) have been successfully used to perform localisation
using single images without the need of an initial location [1–4]. These approaches consist of regressing
the camera pose (location and rotation) of a single image with deep CNNs that have been fine-tuned
using labelled real images. The labels (known poses) are generated from a 3D reconstruction of
the indoor space using images, which is usually performed using the structure-from-motion (SfM)
approach [5]. The SfM approach involves creating a database of overlapping images of the whole
indoor space, which presents challenges for large indoor environments. This challenge limits the wide
applicability of the CNN-based camera pose regression approaches [6].

Building information model (BIM)-PoseNet [7] and Bayesian BIM-PoseNet [8] eliminate the
requirement of 3D image-based reconstruction using a texture-less 3D model of the indoor space. These
approaches fine-tune a deep CNN using synthetically rendered images from a building information
model (BIM), to estimate the pose of real images. However, the camera pose for each image frame is
estimated without considering the spatial dependency between the frames. The per-frame error varies
largely, thus resulting in high variance of distances between two consecutive frames.
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Therefore, a relevant question is whether the performance of approaches that use synthetic
images for visual localisation, such as [7,8], can be improved by incorporating spatio-temporal
constraint between consecutive images. In addition, the uncertainty of camera pose plays a vital
role in the estimation, as it provides the confidence of the estimations in the absence of ground-truth.
Ideally, localisation errors should be correlated with the estimated uncertainties. The uncertainty
of camera pose has been modelled using synthetic images [8]. However, that approach estimates
the localisation uncertainty from a single image without considering the spatio-temporal continuity
of image sequences. The pose estimates vary largely for consecutive images resulting in a jagged
trajectory. Therefore, we explore another relevant question as to whether the uncertainty of camera
pose can be modelled by using a sequence of synthetic images.

In this article, we propose Recurrent BIM-PoseNet (A Keras implementation can be found at
https://github.com/debaditya-unimelb/RecurrentBIM-PoseNet), a deep Bayesian recurrent CNN
that utilises synthetic image sequences obtained from a BIM, thereby eliminating the requirement of
3D reconstruction of the indoor spaces. At the test time, the camera poses of a sequence of real image
is regressed. Our method takes advantage of temporal dependencies between consecutive images
in a sequence to model the uncertainty, reduce the pose estimation error and generate a smoother
trajectory. By smoothness, we mean having consistent inter-frame distances so that there are no sudden
jumps between two consecutive camera poses.

We show that the pose estimations by Recurrent BIM-PoseNet result in a smoother trajectory with
smaller inter-frame errors as compared to the state-of-the-art approaches. Additionally, the estimated
uncertainties show correlation with the localisation errors, suggesting the suitability of the approach
for modelling uncertainty. Moreover, we show that the proposed method does not need any colour or
texture information to perform localisation. The main contributions are:

1. We improve the localisation accuracy of pose regression networks that use synthetic images to
estimate the camera pose of real images. The spatio-temporal constraint of image sequences is
utilised to improve accuracy and to generate a smoother trajectory.

2. The uncertainty of camera pose estimation is modelled by sampling from a sliding window of
image sequences. We show that the modelled uncertainty shows correlation with the errors.

Section 2 reviews the visual approaches to indoor localisation. In Section 3, the theory and
methodology are explained, which is followed by experiments and results in Section 4. Section 5
concludes the outcomes of the research and the possible future directions.

2. Background and Related Work

The primary limitation of many computer vision approaches, such as SLAM [9], visual odometry [10]
and 3D model-based tracking [11] is the requirement of an initial location. This initial location is often
derived from image-based retrieval approaches. The image-based retrieval approaches that provide the
initial camera pose can be classified into three categories [12].

2.1. Image-Based Retrieval Approaches

2.1.1. Using Point Features

The first category includes approaches (such as [13]) that match the point features with an existing
database of features, like 3D point clouds. These approaches estimate the camera pose directly using
classical photogrammetry techniques like P3P [14], where the 3D information of each point feature is
retrieved from the point clouds. The main limiting factor for these approaches is the dependency on
the point clouds that are usually generated from SfM approaches, thus requiring a 3D reconstruction
of the indoor space in advance to localisation.

https://github.com/debaditya-unimelb/RecurrentBIM-PoseNet
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2.1.2. Depth-Based Approaches

The second category includes depth-based approaches [15,16]. These approaches use depth
cameras (or RGB-D cameras) to assign a location to each pixel of the image by comparing with
a pre-existing depth map [15]. Cavallari et al. [17] adapt offline-trained regression forests to regress
location in new indoor spaces, by dynamically updating the learnt model from a few training examples
of the new space. Brachmann et al. [18] propose a differentiable RANSAC (DSAC) framework that
uses RGB-D images to train a CNN that predicts the scene coordinates. Subsequently, the DSAC
pipeline was optimised resulting in DSAC++ where state-of-the-art accuracies are reported [16].
These approaches depend on the 3D depth map of the indoor space from depth cameras, thus limiting
their applicability only with depth cameras.

2.1.3. CNN-Based Approaches

The third category includes approaches that use deep CNNs for single image camera pose
regression, like PoseNet [1]. These approaches fine-tune pre-trained networks using annotated real
images obtained from SfM approaches to estimate the camera pose of an input image. The works
of [3,19] improve the pose regression accuracy with a new geometric loss function and data
augmentation method, respectively. Walch et al. [4] propose the use of a CNN-LSTM architecture to
perform a structural dimensionality reduction of image features derived from the CNN to improve
accuracy. Uncertainty has been modelled for CNN pose regression with Bayesian PoseNet [2]
where dropout is used to draw Monte Carlo samples. The CNN-based pose regression approaches
estimate the camera pose independently and do not exploit the valuable constraint of spatio-temporal
smoothness. The pose estimates of such approaches lead to cases where the inter-frame distances are
larger than the camera motion. Clark et al. [20] propose VidLoc, a recurrent network architecture to
smooth the estimated trajectory and model the uncertainty of camera pose estimates.

The major limitation of using the deep CNN for camera pose regression is the requirement of
large number of annotated real images. In practice, capturing thousands of overlapping images and
estimating their corresponding poses by SfM approaches is challenging for large indoor environments.
A potential solution to eliminate this requirement it to use photo-realistic synthetic images generated
from an available 3D model.

2.2. Use of Synthetic Images

Jian et al. [19] use a 3D model reconstructed from real images to improve the camera pose
regression, by generating synthetic images. A coarse visual localisation is performed using images
and a BIM [21], where the authors compare the real and the synthetic images on the basis of features
obtained from a CNN using cosine similarity. The authors classify the real image to its nearest synthetic
image of known location and orientation.

BIM-PoseNet [7] utilises synthetic images obtained from a texture-less 3D model to train
a network that estimates the camera poses of real images. The authors achieve an accuracy under
2 m by representing the real and the synthetic images as edge gradient magnitude (gradmag).
Subsequently, the uncertainty of pose estimation of real images was modelled using synthetic images
by Bayesian BIM-PoseNet [8]. However, the estimated camera poses of these approaches are less
precise, compared to the approaches using real images. Further, the estimated poses show a high
variation between consecutive images due to the missing spatio-temporal constraint between the
consecutive images.

2.3. Limitations of Current Approaches

A limitation of [13,19,20] is the requirement of 3D reconstruction by SfM methods. The drawback
of the works of [17,18] is the dependency on RGB-D cameras, thus deeming it unsuitable for most
of the smartphone cameras. The shortcoming of the work by [21] is the coarse localisation, and the
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inability to interpolate the absolute camera pose. Lastly, the works of [7,8] suffer from high variance of
distances between consecutive frames.

In contrast, we do not perform 3D reconstruction by SfM methods, rather utilise synthetic
images rendered from a texture-less 3D building model to adapt to new indoor scenes.
Moreover, our approach can interpolate the absolute camera pose effectively in space between the
synthetic training frames by regression, instead of predicting the nearest known location of the
synthetic images. Lastly, compared to [7,8], we reduce the errors and generate a smoother trajectory.

In VidLoc [20], the authors drop the fully connected layers to improve the inference time of
the network, to compensate for using multiple frames. Moreover, the authors performed all the
experiments for real images only. In contrast, we retain the fully connected layers and demonstrate
the advantage both for the real-real (fine-tuned with real and tested on synthetic) and synthetic-real
(fine-tuned with synthetic and tested on real) cases. The presence of fully connected layer improves
the camera pose estimation, especially for the synthetic-real case.

3. Methodology

The design of the proposed approach is shown in Figure 1. Recurrent BIM-PoseNet is fine-tuned
using several types of synthetic image sequences generated from a 3D indoor model or a BIM.
Subsequently, the networks are tested using real image sequences captured by a smartphone
camera. The network regresses the camera poses corresponding to each test image in the sequence.
The generation of the synthetic image sequences is described in Section 3.1. The architecture of
Recurrent BIM-PoseNet is described in Section 3.2, fine-tuning and loss function are described
in Section 3.3, and Section 3.4 explains the uncertainty modelling for camera pose estimations.
The implementation details are presented in Section 4.1.
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Figure 1. The design of the proposed approach. The network used is GoogleNet [22] containing nine
inception modules. The output of the final classification branch yields the location feature vector which
serves as input to the LSTM layer.
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3.1. Generation of Synthetic Image Sequences

Synthetic images (The synthetic and the real datasets with their corresponding ground-truth
poses are available at https://melbourne.figshare.com/articles/UnimelbCorridorSynthetic_zip/
10930457) are obtained by rendering from a 3D model using different texture and lighting options.
Previous work [7] has shown that a network fine-tuned using edge rendering (i.e., without texture and
lighting) can successfully estimate the pose of real images represented as edge gradient magnitude
(gradmag). Other types of rendering, such as the Cartoonish, photo-realistic and photo-realistic
textured can also be used for the localisation task. Therefore, the first relevant question is which
type of synthetic image is most suitable for the task of localisation with Recurrent BIM-PoseNet.
Hence, the current research proposes to use several types of synthetic image sequences derived from
the 3D indoor model to fine-tune Recurrent BIM-PoseNet and test using real image sequences.

Five sets of synthetic image sequences were generated, namely Cartoonish (Syn-car), photo-realistic
(Syn-pho-real), photo-realistic textured (Syn-pho-real-tex), Gradient magnitude of Cartoonish
(Gradmag-Syn-car) and Edge render (Syn-edge) with their respective ground-truth poses, as shown
in Figure 2. The name in the bracket represents the pseudonyms of the respective datasets for convenience,
and the naming convention is according to Blender (Blender is an open-source 3D computer graphics
software that is used to perform simulations and animated films. Visit www.blender.org for more
information.), which is used to render the synthetic images.

(a) Syn-car (b) Syn-pho-real (e) Syn-edge(c) Syn-pho-real-tex (d) Gradmag-Syn-car

Figure 2. The five types of synthetic images generated from the 3D indoor model, after Acharya et al. [7].

Syn-car images (Figure 2a) were generated using a rendering model that roughly traces the
path of the light. Syn-pho-real (Figure 2b) images were generated using an advanced light tracing
model that follows the physical rules of light scattering and reflection. Syn-pho-real-tex (Figure 2c)
images are also generated using the same light tracing model as Syn-pho-real. However, these images
contain the synthetic texture of objects like brick and carpet texture on the walls and floor, respectively.
Gradmag-Syn-car (Figure 2d) images are derived from Syn-car images by taking gradient magnitude
of the images. Edge render images (Figure 2e) were generated by rendering only the edges of the 3D
indoor model in the Field-of-View (FoV) of the virtual camera. More details of the synthetic dataset is
present in Section 4.3.

3.2. Deep Learning Architecture

The proposed network consists of a deep Bayesian CNN and an LSTM layer to capture the
spatio-temporal dependencies of consecutive frames. The LSTM [23] is a particular recurrent neural
networks that is capable of learning long-term patterns in the input data. A standard LSTM consists
of forget, input, output and reset gates in addition to a memory cell that enables the flow of data in
and out of the memory cells that is regulated by the input and forget gates. We use GoogleNet [24]
for image feature extraction by removing the softmax layers, and adding a 2048-dimensional dense
layer (location feature vector). GoogleNet pre-trained on the Places image dataset [25] are used as the
starting weights due to its suitability for the task of scene classification [1].

In the literature, sliding window has been used to generate samples from the data. These samples
have been used by the LSTMs to exploit the spatio-temporal information of consecutive samples,
and subsequently to model the uncertainty [20,26]. Therefore, to capture the spatio-temporal
information, we generate sequences of images by sliding a window of length n, from the total number

https://melbourne.figshare.com/articles/UnimelbCorridorSynthetic_zip/10930457
https://melbourne.figshare.com/articles/UnimelbCorridorSynthetic_zip/10930457
www.blender.org
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of N images. The sequences are the input to the network. The CNNs generate a sequence of location
feature vectors (v1, v2, ..., vn) which is the input to the LSTM layer (refer to Figure 1). The output of the
hidden states of the LSTM is utilised to estimate the pose of the sequence of images.

3.3. Fine-Tuning and Loss Function

The output of the LSTM units are connected to a 7-dimensional dense layer to regress n camera
pose estimates (pT

t ) at each time step, which is defined as:

pT
t = [xT

t , qT
t ] (1)

where xT
t is the 3-dimensional location vector and qT

t is the 4-dimensional rotational vector of the
camera in quaternion format, for Tth sequence for time step t.

To add the spatio-temporal constraint to the camera pose estimations during the training
procedure, a loss function L (Equation (2)) was used that represents the errors of the “whole” sequence
of images by unrolling the network and performing back-propagation through time. This constraint
enabled the network to learn to estimate consistent camera poses for the test image sequences.

L =
t=n

∑
t=1
||x̂T

t − xT
t ||2 + β||q̂T

t − qT
t ||2 (2)

where x̂T
t and q̂T

t are the estimated values of location and rotation vector of the tth image of the sequence
and β is the scaling factor to weigh the location and the rotational errors, respectively. The value of β is
dependent on the indoor scene and is determined experimentally.

3.4. Modelling Uncertainty

During the test phase, the network regresses the unknown pose of the images from a window
of real images. The uncertainty is modelled by gathering posterior distribution of the weights of the
network [27]. The Monte Carlo samples are obtained by applying dropout during testing phase on the
output of the network, and the mean of the samples is considered as the pose estimate. We use the
trace of the covariance matrices of the camera pose samples, which provides a good numeric measure
of the uncertainty. The multiple pose predictions by the network are utilised in the following manner
to model the location and rotation uncertainties:

UT
xt = sqrt(trace (C (xT

1 , xT
2 , ..., xT

n ))), UT
qt = sqrt(trace (C (qT

1 , qT
2 , ..., qT

n ))) (3)

where, UT
xt and UT

qt denote the uncertainty of camera location and rotation, respectively for the Tth

frame, and C denotes the covariance matrix. Subsequently, the correlation factor R [8] is defined
to quantify the correlation of the estimated localisation uncertainty and localisation errors in the
following equations:

RLU/LE =
cov(UN

x , EN
x )

σUN
x

σEN
x

, RRU/RE =
cov(UN

q , EN
q )

σUN
q

σEN
q

, RLU/RU =
cov(UN

x , UN
q )

σUN
x

σUN
q

(4)

where RLU/LE denotes the correlation of estimated location uncertainties vs. location errors,
RRU/RE denotes the correlation of the estimated rotation uncertainties vs. rotation errors
and RLU/RU denotes the correlation of the estimated location uncertainties vs. estimated
rotation uncertainties. UN

x = [U1
xt , U2

xt , ...., UN
xt ] is the vector containing the estimated location

uncertainties, UN
q = [U1

qt , U2
qt , ...., UN

qt ] is the vector containing the estimated rotation uncertainties,
EN

x = [E1
xt , E2

xt , ...., EN
xt ] is the vector containing the location errors and EN

q = [E1
qt , E2

qt , ...., EN
qt ] is the

vector containing the rotation errors. σUN
x

, σUN
q

, σEN
x

and σEN
q

denote the standard deviations of UN
x ,

UN
q , EN

x and EN
q , respectively, and cov represents the covariance between two random variables.
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4. Experiments and Results

4.1. Implementation Details

The networks were implemented in Keras [28] using TensorFlow libraries [29] on Linux.
Adam gradient descent optimisation algorithm with a fixed learning rate of 10−3 was used to fine-tune
the networks for 400 epochs. A Tesla P100 graphics processor unit (GPU) was used to accelerate the
code with NVIDIA CUDA R© Deep Neural Network library (cuDNN). The fine-tuning and testing
images were resized to a resolution of 320 × 240 pixels, and a central crop of dimension 224 × 224 was
applied. The mean of the fine-tuning dataset was subtracted from the input images during fine-tuning
and test time.

4.2. Experimental Design

To evaluate the performance of Recurrent BIM-PoseNet and determine which rendering of
synthetic images is the most suitable for camera pose estimation and modelling uncertainty, we design
the following experiments.

• Experiment 1: Using real images for training and testing. A baseline accuracy was established by
fine-tuning Recurrent BIM-PoseNet using real images, to compare the results obtained from the
proposed approach being fine-tuned using synthetic data. Parameters such as ideal LSTM length,
ideal window length and the correlation of localisation errors with the estimated localisation
uncertainties are identified. The results are presented in Section 4.4.

• Experiment 2: Using synthetic images for training and real images for testing. In this experiment,
Recurrent BIM-PoseNet was fine-tuned using several types of synthetic image sequences.
Subsequently, pose regression ability of these fine-tuned networks were evaluated by using
real image sequences during test, and compared with the previous approaches. The results are
presented in Section 4.5.

• Experiment 3: Modelling uncertainty. This experiment consisted of modelling the uncertainty
of the estimated camera poses, and evaluating the correlation of the localisation errors with
the estimated localisation uncertainties. The results are compared with the results of Bayesian
BIM-PoseNet, and are presented in Section 4.6.

4.3. Dataset

Synthetic image dataset: A 3D indoor model was obtained from a BIM that was created as
a part of the ISPRS benchmark on Indoor modelling [30], and was used in our previous works [31–33].
The BIM consists of the third floor of Block B of the Department of Infrastructure Engineering at
the University of Melbourne, Australia and covered a part of the corridor with an area of 230 m2.
The level-of-detail (LoD) of this BIM can be considered as LoD 300 as per the BIM specifications [34,35].

The synthetic images were generated by moving a virtual camera in the BIM at a spacing of
5 centimetres along a trajectory that is approximately 30 m long. Additional images were generated by
rotating the camera by 10◦ around the Y and Z axes, to address the problem of the lower number of
images for fine-tuning the networks as pointed out by Jian et al. [19]. For each type of rendering, 2500
synthetic images were generated, having a resolution of 640× 480 pixels.

Real image dataset: A total number of 950 images having a resolution of 640× 480 were captured
by a smartphone camera having a FoV approximately equal to 56◦. The focus of the camera was fixed
to avoid any out-of-focus images, and the exposure of the images was fixed to limit underexposed
images. The camera was calibrated to estimate the intrinsic parameters that were used to design the
virtual camera. However, the distortion of the images was not modelled for the virtual images.
The images were acquired at a constant rate of 30 frames per second. The edge images of the
real images were generated by taking the gradmag of the images and suppressing the weak edges
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below a threshold. A sample real image and its corresponding gradmag image are shown show in
Figure 3a,b, respectively.

(a) Real image (b) Gradmag image

Figure 3. (a) A real sample image and (b) the corresponding gradient magnitude (gradmag) image
after thresholding weak edges.

4.4. Experiment 1: Baseline Performance Using Real Image Sequences

A baseline accuracy was established using real image sequences with known ground-truth camera
poses (see Supplementary Material). We set the value β in the loss function (Equation (2)) as 600 based
on our previous experiments [7]. The whole dataset was used to create real image sequences containing
consecutive images, which was partitioned randomly into fine-tuning, validation and testing sets
(split 60:20:20).

Achievable accuracy: The length of the LSTM units is important to the performance of the
network. A longer length of LSTM units will lead to over-fitting the network, where the network will
perform excellently for the validation data but will perform poorly for other unseen test data. On the
other hand, short LSTM units will lead to under-fitting where the network will not be able to perform
well on validation and test data as well. Additionally, the input to LSTM units are the location feature
vector, having a length of 2048. Therefore the short length of LSTM units might not be able to correlate
the image features with the camera pose.

To identify the ideal number of LSTM units required for the proposed network, we performed
an experiment by fine-tuning networks with different LSTM lengths (64, 128, 256, 512, 1024 and
2048). The window size for this experiment was maintained at a constant of three images. It was
experimentally identified that there is no improvement in the accuracy of the estimations using more
than 512 LSTM units. Therefore, for the rest of the experiments using real data, we use 512 LSTM units.

To identify the ideal window length, the networks were fine-tuned and tested using different
window lengths of images. We fine-tuned four networks using a window of 3, 5, 10 and 15 images
and tested them with a window of 1, 3, 5, 10 and 15 images. It was identified that the network
fine-tuned using a window of ten image sequences and tested with a window of ten images performs
best amongst the other networks, and the median of test error is 0.17 m and 0.83◦ Figure 4f shows the
distribution of the predicted points by the network.
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Figure 4. The predictions of (a) PoseNet [1], (b) Bayesian PoseNet [2], (c) differentiable RANSAC
(DSAC)++ [16], (d) Walch et al. [4], (e) VidLoc [20], (f) Recurrent building information model
(BIM)-PoseNet fine-tuned and tested using a sequence of ten real images. The colour represents
the magnitude of error of each point, and the red line denotes the ground-truth trajectory.

Comparison with previous approaches: We compare the proposed approach with PoseNet [1],
Bayesian PoseNet [2], DSAC++ [16], our implementation of VidLoc [20] and Walch et al. [4].
Figure 4 shows the estimated trajectories for the different approaches. It is observed that PoseNet,
Bayesian PoseNet and DSAC++ lack the temporal smoothness for the whole trajectory, and contains
large errors near the turn AB of the corridor which is prone to motion blur. Although the approaches
proposed by [4] and VidLoc produce considerably smoother trajectories, they fail to generate
consistent results near the turn AB of the trajectory. It is observed that the trajectory predicted by
Recurrent BIM-PoseNet is consistent and smoother for the whole trajectory length as compared to the
other approaches.

Table 1 summarises the errors and the inter-frame distances for the approaches. It is observed
that the errors and the inter-frame distances of PoseNet and Bayesian PoseNet are similar. DSAC++ is
known to perform poor for datasets containing a lesser number of training images, and can
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plausibly explain the poor performance for the current dataset with approximately 600 training
images. The approach proposed by [4] performs better than the aforementioned approaches. It is
observed that by using a window of ten images, the location and rotation errors for Recurrent
BIM-PoseNet approach are reduced by a factor of 3 as compared with PoseNet and Bayesian PoseNet.
Although VidLoc and Recurrent BIM-PoseNet show comparable results in terms of inter-frame
distances, Recurrent BIM-PoseNet performs better in terms of absolute errors, and demonstrates
the advantage of retaining the fully connected layers.

Table 1. The comparison of the median errors and inter-frame distances of different approaches.

Approach Errors (Metres, Degrees) Inter-Frame Distances (Metres)

PoseNet [1] 0.33 m, 1.85◦ 0.30 m
Bayesian PoseNet [2] 0.29 m, 1.53◦ 0.38 m

DSAC++ [16] 0.53 m, 0.61◦ 0.64 m
Walch et al. [4] 0.15 m, 1.62◦ 0.14 m

VidLoc [20] 0.16 m, 0.87◦ 0.10 m
Recurrent BIM-PoseNet (ours) 0.10 m, 0.83◦ 0.10 m

Figure 5 shows the cumulative distribution function (CDF) of the location errors and the
inter-frame distances for the approaches. The location errors are calculated as the Euclidean distances
from the ground-truth, and the inter-frame distances are the Euclidean distances between two
consecutive frames. Figure 5 shows that Recurrent BIM-PoseNet is the most precise in terms of
localisation errors, and its performance is competitive compared to VidLoc in terms of inter-frame
distances. The precision of the approach proposed by [4] is also challenging to Recurrent BIM-PoseNet
and VidLoc. The performance of PoseNet and Bayesian PoseNet are very close, DSAC++ being the
worse performing.
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Figure 5. Cumulative distribution function (CDF) plots of the (a) errors and (b) inter-frame distances
of the estimated camera poses for different approaches for Experiment 1.

Estimated uncertainty: Figure 6 shows the correlation between the estimated uncertainties and
the actual errors for the predictions of a network that was fine-tuned and tested with a window of
ten images. Compared to the uncertainty modelled by Bayesian BIM-PoseNet on the same dataset [8],
Recurrent BIM-PoseNet shows a better correlation between the estimated location uncertainty vs.
location errors (R = 0.31), as well as for the estimated rotation uncertainty vs. rotation errors
(R = 0.67). However, the location uncertainty vs. rotation uncertainty estimated by Recurrent
BIM-PoseNet shows low correlation (R = 0.22) with the rotation errors as compared to Bayesian
BIM-PoseNet.
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Figure 6. The modelled uncertainty by Recurrent BIM-PoseNet. (a) Estimated location uncertainty vs.
location errors. (b) Estimated rotation uncertainty vs. rotation errors. (c) Estimated location uncertainty
vs. estimated rotation uncertainty. R denotes the correlation factor.

Figure 7 shows the training and validation losses for network fine-tuned and validated with real
image sequences, with a window of 10 images. The results indicate that the validation loss did not
improve after 250 epochs, and the best network was selected as the one having the least validation loss.
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Figure 7. The training and validation losses for the network fine-tuned and validated with real image
sequences, having a window size of 10.

4.5. Experiment 2: Performance of the Network Fine-Tuned Using Synthetic Images and Tested with
Real Images

Recurrent BIM-PoseNet was fine-tuned with the five synthetic image datasets as shown in
Figure 2, using β = 600, and subsequently, these fine-tuned networks were tested with real images as
shown in Figure 3. The networks fine-tuned with images Syn-Car, Syn-photo-real and Syn-Pho-real-tex
were tested with the real image (Figure 3a) and the networks fine-tuned with Gradmag-Syn-Car and
Syn-edge images were tested with gradmag of the real image (Figure 3b). We used naive (0–0.5) and
variational dropouts (0–0.5) for the LSTM units [36] which improved the accuracy of camera pose
regression being tested with real images.

Similar to the experiments with real data, to identify the ideal length of the LSTM units for
synthetic image sequences, we fine-tune networks using different LSTM lengths (64, 128, 256, 512,
1024 and 2048 units). Gradmag-Syn-car dataset, which has shown the best performance among different
renderings [8] was used to fine-tune the networks. For fine-tuning and testing, a window of length
three was used. It was identified that there is no improvement in the location and rotation accuracy
beyond using 256 LSTM units. Compared to using real data (512 units), this is lower and can be
explained by the less information content of synthetic images as compared to real images.

Figure 8 shows the location and rotation errors for the network that was fine-tuned using different
window lengths of Gradmag-Syn-Car dataset and tested with varying window lengths of gradmag
of real images. Similar to the benchmark experiment using real images, Figure 8 indicates that the
localisation accuracy of the network fine-tuned using a window of ten synthetic images and tested
with a sequence of ten real images is the best amongst the other combinations, where the achievable
accuracy is 1.62 m and 9.29◦.
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Figure 8. The effects of window length on the (a) location errors and (b) rotation errors for networks
fine-tuned using Gradmag-Syn-car dataset and tested on gradmag of real images.

The fine-tuned networks can generalise better on a longer window of test image sequences than
when it was fine-tuned. For instance, consider the network that was fine-tuned on a window of
three synthetic images, which makes good predictions of the location and rotation of the real image
sequences having a window length of 5, 10 and 15 images. The performance of the networks to predict
the location of image sequences having a shorter window length is worse, compared to testing with
the same window length. For example, consider the network fine-tuned using a window of ten images,
where its performance for predicting the location of the sequence of images having a length of 1 and
three images is worse, compared to testing it using a window of ten image sequences. In contrast,
this trend is not valid for rotational errors, where the networks can make sound predictions of rotation
for a longer and shorter window of image sequences than when it was fine-tuned. Figure 8b shows
that there is a slight decrease in the rotation errors with the increase in the length of the window of the
image sequence.

Accuracy evaluation and comparison with previous works: To evaluate and compare the
performance using different types of synthetic images, five networks were fine-tuned using the
five different synthetic datasets and tested using real images. As the datasets, Syn-car, Syn-pho-real
and Syn-pho-real-tex are similar in appearance to the real image, the networks fine-tuned using these
datasets were tested directly using real images. However, the networks that were fine-tuned using the
gradmag datasets, namely Gradmag-Syn-car and Syn-edge were tested using gradmag of real images.
For fine-tuning all the networks, a window of ten synthetic images was used, and for testing a window
of ten real images was used.

Figure 9 shows the estimated trajectories by Recurrent BIM-PoseNet fine-tuned with different
synthetic image datasets. It is observed that the distribution of the estimated points for the network
fine-tuned with Gradmag-Syn-car images (Figure 9d) is more consistent with the ground-truth, and a
similar trend is noticed for the Syn-edge images (Figure 9e). Additionally, the bias or shift in the
location of the estimated points reported in [7,8] is greatly reduced, especially for the Gradmag-Syn-car
dataset. The predictions for the network fine-tuned with Syn-Car, Syn-pho-real and Syn-pho-real-tex
are skewed and deviate from the ground-truth.

Figure 10 shows the CDF plots of the localisation errors and the inter-frame distances of
the different approaches. The errors and the inter-frame distances are calculated as explained in
Experiment 1. It is evident that Recurrent BIM-PoseNet outperforms all the other approaches in terms
of precision. The inter-frame distances of all the approaches are comparable; however, only a slight
improvement is identified for Recurrent BIM-PoseNet.
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Figure 9. Estimated camera poses by the Recurrent BIM-PoseNet fine-tuned using (a) Syn-car,
(b) Syn-pho-real, (c) Syn-pho-real-tex, (d) Gradmag-Syn-car, (e) Syn-edge. Networks fine-tuned with
Syn-Car, Syn-pho-real and Syn-pho-real-tex images were tested with real images, whereas networks
fine-tuned with Gradmag-Syn-car and Syn-edge were tested with gradmag of real images.

0 2 4 6 8 10
Location error (metres)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

PoseNet
Bayesian PoseNet
Walch et al. (2017)
VidLoc (Clark et al., 2017)
Recurrent BIM-PoseNet

(a)

0 2 4 6 8 10
Inter-frame distances (metres)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

PoseNet
Bayesian PoseNet
Walch et al. (2017)
VidLoc (Clark et al., 2017)
Recurrent BIM-PoseNet

(b)

Figure 10. CFD plots of the (a) localisation errors and (b) inter-frame distances of the estimated camera
poses for different approaches for Gradmag-Syn-car dataset.
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Table 2 shows the test errors of Recurrent BIM-PoseNet compared to the other approaches.
From Table 2, we observe that Recurrent BIM-PoseNet fine-tuned with Gradmag-Syn-car images
achieves the best localisation accuracy (1.62 m, 9.29◦) amongst all approaches. Compared to [7,8],
we see improvements in the accuracies for all the image renderings, with the exception of Syn-car
images. Compared to [4] we notice improvements for all renderings except for Syn-pho-real images. In
addition, Recurrent BIM-PoseNet achieves better results in contrast to VidLoc for the Syn-pho-real-tex,
Gradmag-Syn-car and Syn-edge images. This improved accuracy of Recurrent BIM-PoseNet demonstrates
the advantage of retaining the fully connected layers, as compared to VidLoc. This could be plausibly
because the fully connected layers aid in the identification of the high-level structural information in
the gradmag images, which the shallow layers of the network are incapable of. The improvement
on rotation accuracy of Recurrent BIM-PoseNet is however apparent only for some of the renderings.
DSAC++ [16] did not converge for any of the synthetic image renderings, in spite of having 2500 training
images. Interestingly, for all approaches the performance of Gradmag-Syn-car and Syn-edge is quite
similar and noticeably better than the other types of synthetic images.

Table 2. The comparison of the errors of different approaches for the five synthetic image datasets
being tested using real images. DSAC++ [16] did not converge for all the synthetic datasets in spite of
containing 2500 training images.

Approach Syn-Car Syn-Pho-Real Syn-Pho-Real-Tex Gradmag-Syn-Car Syn-Edge

BIM-PoseNet 6.25 m, 37.16◦ 5.99 m, 11.33◦ 3.06 m, 12.25◦ 2.63 m, 6.99◦ 1.88 m, 7.73◦

Bayesian BIM-PoseNet 3.87 m, 8.38◦ 4.08 m, 25.03◦ 3.73 m, 13.53◦ 1.98 m, 7.33◦ 2.41 m, 12.53◦

Walch et al. [4] 4.09 m, 22.28◦ 2.88 m, 15.31◦ 2.50 m, 11.99◦ 2.89 m, 19.22◦ 1.90 m, 12.42◦

VidLoc [20] 3.04 m, 11.81◦ 2.78 m, 11.45◦ 2.73 m, 11.12◦ 2.60 m, 11.42◦ 2.30 m, 7.26◦

Recurrent BIM-PoseNet 3.97 m, 15.20◦ 3.01 m, 8.50◦ 2.23 m, 8.31◦ 1.62 m, 9.29◦ 1.87 m, 11.15◦

Figure 11a shows the distribution of the errors and some of the frames that resulted in large errors
along the trajectory (fine-tuned on Gradmag-Syn-car dataset), to identify error-prone areas. Table 3
shows the errors and estimated uncertainties for these frames. The large errors are likely the result of
poor geometry of the scene, where the doors are far away from the camera, for example, near Point A.
Other error sources include the motion blur that results in larger errors for the Points B, C and D of
the trajectory. Additionally, the objects that are present in the images, but not in the 3D indoor model,
such as the notice boards, poster and light flares (seen in Point E and F), are the other sources of errors.
The errors near Point D in Figure 11a are reduced for Recurrent BIM-PoseNet (up to 6 m) as compared
to [7] (up to 8 m) and [8] (up to 10 m).

Table 3. The comparison of the errors and estimated uncertainties for the frames of Figure 11.

Frame Location Error (Metre) Location Uncertainties (Metre) Rotation Error Rotational Uncertainty

11 6.82 0.36 4.52◦ 0.09
149 7.60 0.41 2.85◦ 0.08
188 9.11 0.73 30.61◦ 0.16
250 5.92 0.68 9.67◦ 0.14
400 6.45 0.53 4.51◦ 0.09
568 6.91 0.53 15.16◦ 0.12
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Figure 11. The distribution of the (a) location errors and (b) estimated location uncertainties along the
trajectory for the network fine-tuned using Gradmag-Syn-car dataset. The first row shows some of the
frames with large location errors near Points A–E. Table 3 shows the errors and estimated uncertainties
of the frames.

4.6. Experiment 3: Modelling Uncertainty Using Synthetic Images

Figure 12 shows the correlation between the estimated uncertainties and the actual errors.
Figure 12a–i show the (1) localisation errors vs. estimated location uncertainties, (2) rotation error
vs. estimated rotation uncertainties and (3) estimated location uncertainties vs. estimated rotation
uncertainties for the networks fine-tuned using the Syn-car, Syn-pho-real and Syn-pho-real-tex datasets.
The network fine-tuned using Syn-pho-real-tex dataset shows the highest correlation for location
errors vs. estimated location uncertainties, estimated location uncertainties vs. estimated rotation
uncertainties and similar rotational errors vs. estimated rotation uncertainties, compared to the network
fine-tuned using Syn-pho-real dataset. With the exception of the network fine-tuned using Syn-car
dataset, there is an improvement in the correlation of the location and rotational uncertainties for
Recurrent BIM-PoseNet compared to Bayesian BIM-PoseNet for Syn-pho-real (R = 0.50 vs. R = 0.04)
and Syn-pho-real-tex (R = 0.66 vs. R = 0.33) datasets. However, the network fine-tuned using Syn-car
dataset shows a negative correlation with location errors vs. estimated location uncertainties as well as
with rotation errors vs. estimated rotation uncertainties. In addition, the correlation of the estimated
location uncertainties vs. estimated rotation uncertainties are least as compared to the other datasets.
Table 4 compares the correlation factor of Bayesian BIM-PoseNet with Recurrent BIM-PoseNet.

Figure 12j–o show the errors and the uncertainties for the networks fine-tuned using
Gradmag-Syn-car and Syn-edge datasets. It is identified that the network fine-tuned using
Gradmag-Syn-car dataset performs better as compared to the network fine-tuned using Syn-edge
dataset for rotation error vs. estimated rotation uncertainty, and estimated rotation uncertainty vs.
estimated location uncertainty. However, there is a slight decrease in the correlation for the location
error vs. estimated location uncertainty. Compared to Bayesian BIM-PoseNet, the correlation of
estimated location uncertainty vs. estimated rotational uncertainties improves for both the datasets and
is summarised in Table 4. Moreover, the location error vs. estimated location uncertainty, and rotation
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error vs. estimated rotation uncertainty for the network fine-tuned using Gradmag-Syn-car dataset are
better as compared to Bayesian BIM-PoseNet (Table 4).
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Figure 12. The uncertainty modelled by the network (a–c) fine-tuned using Syn-car and tested on
real images, (d–f) fine-tuned using Syn-pho-real and tested on real images, (g–i) fine-tuned using
Syn-pho-real-tex and tested on real images, (j–l) fine-tuned using Gradmag-Syn-car and tested on
gradmag of real images, (m–o) fine-tuned using Syn-edge and tested on gradmag of real images.
The first column shows the estimated location uncertainty vs. location error. The second column shows
the estimated rotation uncertainty vs. rotation error, and the third column shows the estimated location
uncertainty vs. estimated rotation uncertainty.

Figure 11b shows the trend of the uncertainties modelled by the network fine-tuned on
Gradmag-Syn-car dataset for the visualisation of the uncertain areas of the trajectory. It is observed
that there is a good correlation between the errors (Figure 11a) and the uncertainties throughout
the trajectory, except for Point A, where the errors are large, but the modelled uncertainties are low.
Recurrent BIM-PoseNet is more confident in handling perceptual aliasing; for instance, near Point
D in Figure 11. However, the uncertainty of camera pose estimation increases in the presence of
artefacts such as notice boards, posters and light flares, and that explains the high uncertainties for
Points E and F.

Table 4. The comparison of error and uncertainties for Recurrent BIM-PoseNet with Bayesian BIM-PoseNet.

Fine-Tuned on Bayesian Recurrent
BIM-PoseNet BIM-PoseNet

RLU/LE RRU/RE RLU/RU RLU/LE RRU/RE RLU/RU

Syn-car 0.12 0.31 0.34 −0.32 −0.03 0.03
Syn-pho-real 0.36 −0.01 0.04 0.26 0.54 0.50

Syn-pho-real-tex 0.33 0.53 0.33 0.46 0.51 0.66
Gradmag-Syn-car 0.42 0.50 0.59 0.29 0.49 0.65

Syn-edge 0.46 0.40 0.41 0.34 0.36 0.51

Figure 13 shows the training and validation losses for the networks fine-tuned with a window of
10 synthetic images and validated with a window of 10 real images. It is observed that the validation
losses of the networks are significantly higher as compared to the networks fine-tuned on real images
(Figure 7). The higher validation losses might be a result of the differences between the synthetic and the
real images (artefacts), and points towards a future research direction (explained in the conclusions).
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Figure 13. The training and validation losses for the networks fine-tuned with synthetic image
sequences and validated with real images sequences, having a window size of 10.

4.7. Computation Times

Table 5 shows the fine-tuning times and test times of the networks for different window lengths.
A Tesla P100 GPU (@1.32 GHz) having a memory of 12 GB and a Xeon (@2.20 GHz) CPU was used for
fine-tuning the networks. A memory of 64 GB was allocated for the fine-tuning process and for testing
a memory of 16 GB was allocated for all the networks. A batch size of 25 was used to fine-tune the
networks, except for the network trained on a window of 15 images, where a batch size of 15 was used
due to memory constraints. For reference, the test times of BIM-PoseNet and Bayesian BIM-PoseNet
are 5 milliseconds and 67 milliseconds on a similar GPU, receptively.

Table 5. The fine-tuning time and test times for the networks using different window lengths.
The network with window length 1 is the implementation of BIM-PoseNet for comparing times.

Window Length Fine-Tune Time (Hrs) Test Time GPU (ms) Test Time CPU (s)

1 1:44 12 0.13
3 4:34 16 0.40
5 7:07 35 0.67
10 12:43 52 0.94
15 23:48 108 2.12

As most of the smartphones are equipped with a GPU [37], Recurrent BIM-PoseNet can run in
real-time on such devices, deeming it suitable for practical applications. However, there will be a lag
in the camera pose estimation depending on the window length. For instance, while using a window
length of ten images, there will be a lag of ten frames, which is feasible for real-time operations.

5. Conclusions

We propose a deep Bayesian recurrent CNN that, when fine-tuned using sequences of synthetic
indoor images, can estimate the camera pose for a sequence of real images. The proposed approach
eliminates any requirement of 3D reconstruction of the indoor space by SfM approaches. The results
of the experiments suggest that an accuracy of 1.6 m can be achieved by fine-tuning the proposed
network using synthetic edge image sequences, that do not contain any colour or texture information,
but only structural edges.

It is identified that a window of ten synthetic images is ideal for fine-tuning the proposed network
for camera pose regression. The estimated camera poses results in a slightly smoother trajectory
as compared to the existing approaches by exploiting the spatio-temporal information of the image
sequences. Moreover, we show that the modelled uncertainty of the estimated camera poses is
correlated with the errors.

The errors due to perceptual aliasing are reduced using image sequences as compared to the
previous approaches, and as a result, the proposed network estimates the camera poses more accurately.
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The large errors are caused either due to the presence of motion blur or artefacts in the image, such as
light flare or notice boards. Poor geometry of the scene is another error source where the image
landmarks such as doors cover a small portion of the image being far away from the camera.

There is still some room for improvement in the current study that points towards interesting
future directions. The semantic information of the BIM can be used to generate segmented images that
can be used to fine-tune the proposed network, to reduce the effect of the artefacts. At the test time,
semantically segmented real images [38] can be used.
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