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The multitude of functions performed in the cell are largely controlled by a set of carefully orchestrated protein
interactions often facilitated by specific binding of conserved domains in the interacting proteins. Interacting domains
commonly exhibit distinct binding specificity to short and conserved recognition peptides called binding profiles.
Although many conserved domains are known in nature, only a few have well-characterized binding profiles. Here, we
describe a novel predictive method known as domain–motif interactions from structural topology (D-MIST) for
elucidating the binding profiles of interacting domains. A set of domains and their corresponding binding profiles were
derived from extant protein structures and protein interaction data and then used to predict novel protein interactions
in yeast. A number of the predicted interactions were verified experimentally, including new interactions of the mitotic
exit network, RNA polymerases, nucleotide metabolism enzymes, and the chaperone complex. These results
demonstrate that new protein interactions can be predicted exclusively from sequence information.
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Introduction

The interaction between two proteins is a geometric and
electrostatic match between two polypeptide surfaces that
results in a stable set of bonds between amino acid side chains
or backbone atoms. The interacting amino acids are often
part of conserved sequence features such as domains or short
linear motifs that constitute the interaction site between the
two proteins. Despite the increased coverage and sensitivity
of experimental techniques for detecting protein interactions
[1–6] (reviewed in [7]), elucidating the precise interacting
residues remains experimentally difficult. In most cases, all
that is known about an interaction is the identity of the two
interacting proteins, with little information about the under-
lying binding site. However, detailed knowledge of inter-
action specificity is important for understanding reaction
mechanism, interaction prediction, and drug development.

Interacting domains are autonomous structural elements
that exhibit distinct binding specificity to a multitude of
target polypeptides. Such domains act as independent
elements that can be ‘‘plugged’’ into a new protein and
thereby introduce new functionality to the emerging protein
[8]. From an evolutionary perspective, such rearrangements
and the multiplication of existing conserved domains is a
likely mechanism by which organisms generate new proteins,
pathways, and novel functionalities [9,10]. Several protein
interaction prediction methods exploit the conservation of
protein-binding interfaces by identifying domain pairs that
consistently co-occur in interacting proteins or coevolve,
which are then used to predict new interactions [11–16].
Structure-based prediction methods use known protein
complexes to model interactions between proteins that are
homologous to the complex components [17,18]. Other
prediction methods use integrative approaches that incorpo-

rate interaction experiments with additional functional
information such as correlated expression level, common
functional annotation [19,20], and cross-species comparisons
[21]. Alternative approaches attempt to identify correlated
sequence motifs that represent generic interacting sequence
elements that may or may not be components of conserved
domains [22–25]. In a few limited cases, detailed experimental
data are used to generate high-resolution definition of
domain binding profiles; however, such information is
available only for a small number of domains [26,27].
Our primary objective is to predict interaction between

proteins strictly from sequence information. Our approach is
based on identifying the binding specificity of interacting
domains that can then be used to predict new interactions.
Here, we use existing physical interaction data to derive
sequence profiles of the binding sequences that are presumed
to determine the binding specificity of interacting domains.
Our method, called domain–motif interactions from struc-
tural topology (D-MIST), is based on a two-step approach.
First, potential domain-binding motifs are extracted from
structural data. Second, these motifs are converted to
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sequence profiles in the form of position-specific scoring
matrices (PSSMs). These PSSMs are derived using a subset of
experimentally determined binary interactions that contain
the domain of interest (Figure 1). Gibbs sampling, seeded with
the motif extracted from structural data, is used to generate a
PSSM from similar sequences that occur in a subset of
established interacting proteins. We used the domain-binding
profiles to predict protein interactions in yeast. The
predictions were compared to a hidden set of known
interactions reported in the literature, and several predicted
interactions were confirmed directly by in vivo coprecipita-
tion experiments.

Results

The library of 3-D structures of protein complexes contains
a detailed description of the binding interfaces between
interacting proteins that include atom contacts and residue
side-chain interactions [28]. Using more than 10,000 struc-
tural complexes, we identified the domains in the binding
sites and extracted their associated sequence motifs on the
opposing chain. Interacting residues were defined as two
residues on opposite polypeptide chains separated by a
maximum of 5 Å (Figure 1A). On average, each domain had
two spatially separated interacting sequence motifs per
interaction. Most domains were present in multiple 3-D
structures in a variety of conformations, resulting in varied
interacting sequence motifs with different levels of similar-
ities.

The binding specificity of a domain is determined by a
combination of physiochemical properties and structural
constraints at the binding site that can be satisfied by
multiple variations of the consensus sequence motif [29].
The interacting sequence motifs extracted from the protein
structures represent a first approximation of the binding
specificity of the interacting domains, but do not represent
the full evolutionary variations of the residue–residue
interactions available in one binding topology. A more
informative representation of the possible motif variations

is a sequence profile in the form of a PSSM that captures the
compositional variance by assigning probabilities to each
amino acid at each position. These sequence variations of the
binding profiles can be learned from proteins that are known
to interact through the same domain.
We collected a set of 87,894 nonredundant protein

interactions from four databases containing binary protein
interactions from multiple species. Interactions derived from
structural studies were excluded to preclude self-identifica-
tion, as well as high-throughput protein complexes identi-
fication experiments [30,31] (see Methods). Gibbs sampling
[32] was used to learn the PSSM binding profiles for a specific
domain by sampling positions in the set of proteins that
interact with proteins that contain the domain of interest.
The majority of the proteins in the learning set are assumed
to interact through the common domain, and the generated
PSSM will represent its binding profile (Figure 1B). Gibbs
sampling enables the incorporation of prior knowledge about
the length and composition of the binding profiles. The
motifs identified in the 3-D structural analysis were used as
prior knowledge in seeding the profile detection step to bias
the sampling towards similar sequence regions. The result is a
set of sequence PSSMs that represent the binding profiles of
the interacting domains (Text S1).
The learned PSSMs were used to predict interactions for

703 yeast proteins with domains for which we successfully
derived binding profiles. A physical interaction was predicted
between proteins containing interacting domains and pro-
teins with one or more of the interacting profiles associated
with those domains (Figure 1C). A total of 18,459 interactions
were predicted between 2,313 proteins (Dataset S1). We
compared the predicted interactions to a comprehensive list
of physical and genetic yeast interactions extracted from the
literature [33] and found that 609 predicted interactions have
reported experimental evidence (;3%; p¼1.0310�13; Figure
S1). We note that 591 predicted interactions were found in
both the 87,894 set of interactions used for the PSSM
derivation and in the set of yeast literature curated
interactions (;32,000). However, none of the 609 predicted
interactions that have supporting evidence in the literature
overlap with those common 591 interactions. We did not
incorporate additional experimental information such as
cellular localization, functional annotation, surface accessi-
bility, or gene expression data that would likely improve our
prediction accuracy given that our primary goal was to
predict novel interactions exclusively from sequence infor-
mation.
Experimental verification of a subset of the predicted

interactions was performed by a one-step immunoaffinity
purification of one of the two interaction partners, followed
by mass spectrometric identification of associated proteins
(IP-MS) as previously described [31]. The IP-MS method
confirmed 37 predicted interactions, including 23 novel
interactions (Figure 2). As a second means to experimentally
verify our predictions, we immunoprecipitated one protein
in the interacting pair, followed by antibody detection of the
second protein (IP-western), also as described in [31]. The IP-
western method reaffirmed five of the interactions confirmed
by IP-MS (yellow edges; Figure 3) and identified an additional
four novel interactions (green edges; Figure 3). We note that
six interactions confirmed by the IP-MS approach were not
detected by IP-western (red dashed edges; Figure 3); this
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Author Summary

Many functions performed within a living cell are mediated by
specific interactions between proteins. Precise geometric and
chemical matches between segments of the protein structures
facilitate those interactions. Such binding surfaces are often
evolutionarily conserved elements of protein structures known as
conserved domains that recognize specific binding elements on the
interacting proteins. Binding domains and their corresponding
interacting profiles constitute basic interacting modules that are
replicated in multiple protein pairs, where they mediate similar
interactions. Although many conserved domains are identified, only
a handful have known, well-characterized binding elements. This
paper describes a computational method that aims to elucidate the
binding specificity of many domains. The utility of the derived
binding specificity is demonstrated by predicting new interactions
between yeast proteins. The predictions are based solely on
sequence information by identifying the conserved domains and
their corresponding binding sequences. A number of the predicted
interactions were confirmed experimentally, demonstrating the
feasibility of this approach.
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discrepancy may be due either to nonspecific interactions
detected by IP-MS or to interference of the second epitope
tag with some interactions and/or expression levels in vivo. Of
the 18 predictions that were tested by IP-western, nine novel
interactions were confirmed, and a total of 30 new inter-
actions were identified by both the IP-MS and IP-western
methods.

Experimentally Confirmed Predictions
Among the experimentally confirmed predictions were

interactions between the five components of the PRS
complex, which together compose the 5-phosphoribosyl-
1(a)-pyrophosphate synthetase enzyme (EC number 2.7.6.1).
This complex is a key component in the production of the
precursors for purine, pyrmidine, and pyridine nucleotides

Figure 1. Outline of D-MIST Method for Predicting Protein Interactions by Learned Binding Profiles

Identification of domain-binding profiles begins by extracting the short sequence motifs from structural complexes that contain the domain of interest.
(A) In this example, RhoGAP-interacting motifs are extracted from two structural complexes (PDB ID 1AM4, 1TX4) where RhoGAP is bound to small G
proteins.
(B) Protein interactions containing the RhoGAP domain were collected from four databases to form the learning set for the Gibbs sampling to generate
the binding profiles (shown here as sequence logos [57]). The sampling step is biased towards motifs that are similar to those found in the structural
dataset.
(C) The resulting PSSMs are used to predict interactions for proteins with RhoGAP domains, such as the human ARHGAP1. A subset of the predicted
interactions is subsequently tested by two experimental methods.
doi:10.1371/journal.pcbi.0030182.g001
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[34]. An additional interaction was confirmed between the
alcohol dehydrogenase (NADPþ) Adh7 and Prs5, the latter
being a member of the PRS complex. This result suggests a
possible direct link between NADP/NADPH balance, which is
controlled by Adh7 [35], and the biosynthesis of the purine
and pyrimidine precursors. A predicted interaction between
the histone H2A protein Hta1 and God1, a component of the
SWR-C protein complex that incorporates Htz1 into the
chromatin, was also confirmed. Chromatin remodelling by
the exchange of Hta1 with Htz1 is thought to induce
chromatin restructuring that favours gene transcription,
RNA polymerase II recruitment, and gene expression
induction near silent heterochromatin [36]. Another con-
firmed interaction is between a member of the HSP40 family
(Apj1) with two HSP70 proteins (Ssa1, Ssa2). HSP40 family
members form complexes with HSP70 chaperone proteins,
which facilitate the folding of specific proteins at various
cellular locations [37]. We also identified new interactions
between the RNA polymerase II subunit Rpb2 with Rpb10,
which is a common subunit of all three RNA polymerases [38].
Additional interaction was demonstrated between Rpc40, a
known shared subunit of RNA polymerases I and III, and
Rpb2, an exclusive component of RNA polymerase II. It is

possible that some of these interactions are bridged or
stabilized by other RNA polymerase subunits [39].
One might argue that the above successful predictions

could be easily predicted from the orthology of the
interacting proteins to the structural complexes used, such
as the interactions between members of the PRS complex. We
therefore tested several nonobvious predicted interactions
that cannot be easily inferred from structural or sequence
homology to other interacting pairs. The critical downstream
effector of the mitotic exit network is the phosphatase Cdc14,
which activates Clb degradation and Sic1 accumulation by
dephosphorylation of key substrates [40]. We confirmed an
unexpected predicted interaction between Cdc14 and the
protein kinase Cbk1, which functions in a parallel pathway
(called RAM [regulation of Ace2p activity and cellular
morphogenesis]) at the end of mitosis to facilitate cytokinesis
and mother–daughter abscission [41]. The Cdc14–Cbk1
interaction suggests that the activity of the mitotic exit
network and RAM pathways may be coordinated via Cdc14-
mediated dephosphorylation of RAM components and/or
Cbk1-mediated phosphorylation of mitotic exit network
components [42]. Other nonobvious interactions between
known components of clathrin-associated (AP-1) complex
Apm1 and Apl2, as well as between components of the RNA
splicing complex Smd2 and Lsm2, were detected by the IP-MS
experiments but not by IP-western under the conditions used.
Given the strength of the D-MIST predictions for these latter
interactions, further investigation using more sensitive
reagents seems warranted. These confirmed predictions of
nonobvious interactions illustrate the potential of the D-
MIST approach to generate new biological hypotheses.

Discussion

As noted previously, we excluded additional experimental
evidence, such as localization and expression data from our
prediction method. Although additional experimental infor-
mation and functional annotation would likely improve
prediction accuracy, it may also limit predictions only to
those proteins with prior experimental or functional in-
formation. In addition, the use of functional annotation such
as Gene Ontology terms (assigned by human experts or
predicted computationally) in a prediction method will
penalize predicted interactions between proteins with un-
related functions. Therefore, it restricts the ability to predict
interactions between apparently unrelated proteins that
could illuminate new cellular functions [43].
The D-MIST method for identifying domain-binding

modules is currently limited in a number of ways. The first
limitation is the availability of detailed binding information,
as attained primarily through structural studies and peptide-
based approaches such as phage display [44] and random
peptide libraries [45]. In addition, several studies have
concluded that the repertoire of protein structures in the
Protein Data Bank is significantly biased in that trans-
membrane and disordered domains are underrepresented
due to limitations in structure determination [46,47]. Con-
sequently, D-MIST analysis that depends on structural
representation of protein interactions is similarly biased.
The existing detailed examples of interactions are therefore
sparse and noncomprehensive, with only a small subset of all
possible domains that is represented. The second limitation

Figure 2. Predicted Interactions Verified by IP-MS

Immunoaffinity purification of bait proteins complexes followed by mass
spectrometry identification of associated proteins confirmed 37 pre-
dicted interactions. Predictions between proteins that were both co-
purified with the tagged bait protein (i.e., both proteins were prey) were
not considered validated. Proteins are coloured according to their Gene
Ontology biological process annotation.
doi:10.1371/journal.pcbi.0030182.g002

PLoS Computational Biology | www.ploscompbiol.org September 2007 | Volume 3 | Issue 9 | e1821786

Protein Interaction Prediction



is that the derived motifs do not represent the entire
repertoire of all possible domain-binding sequences, even
for those domains where structural data exist. The third
limitation arises from the statistical framework of the Gibbs
sampling method that requires a sufficient number of
proteins to sample from in order to converge towards a
meaningful PSSM. We restricted the analysis to domains with
five or more putative interactors, thereby excluding domains
that are infrequently found in our set of protein interactions.
Fourth, some domains are not amendable to this type of
analysis due to the diverse nature of their binding motifs that
lack sequence conservation [29]. Last, many interactions are
governed by posttranslational modifications or precise
physiological states, which may also hamper the accuracy of
D-MIST predictions. Despite the above limitations, we have
shown that novel protein interactions can be predicted
strictly from primary sequence information. D-MIST not
only predicts interactions between proteins but also provides
sequence level predictions about the binding sites that can be
verified experimentally. Predicting protein interactions with-
out the need for additional information or prior experiments
is particularly valuable when studying uncharacterized
proteins and for predicting interactions in poorly studied
organisms where typically only sequence information and
predicted open reading frames are available. The sole
dependence on sequence information allows for interaction
prediction in other organisms without further modifications
to the method or input datasets. With the advent of
structural genomics initiatives [48], the power of the D-MIST
approach will certainly increase.

Methods

Extracting motifs. The domain-binding motifs were extracted from
BIND protein interaction records that were generated from 10,064
structures [28]. Interactions were filtered for crystal-packing artifacts
using the PQS server [49], and all the interactions are available as a
subset of the BIND database. Domain annotation was assigned to the
protein structures using our in-house adaptation of CDD [50] with an
e-value cutoff of 103 10�6 and then converted to InterPro identifiers
[51]. Binding motifs are defined as polypeptide segments of five
residues or longer in which the amino acids side chains are ,5 Å
from the interacting domain’s side chains on the opposing protein.
Two motif residues that are in direct contact with the interacting
domain can be separated by a maximum of two noncontacting
residues. For example, the first motifs in Figure 1A contain a tyrosine
and an arginine that are within 5 Å from the side chains of the
RhoGAP domain separated by a distal residue, marked by X, that is
not within contact range with the RhoGAP domain.

Learning the binding modules. A total of 87,894 nonredundant
protein interactions were collected from 204 species from four
database sources: BIND [52], DIP [53], Mint [54], and IntAct [55]. We
excluded all interactions that were derived from 3-D studies, high-
throughput protein complex identification studies [30,31], or
interactions inferred from synthetic lethal experiments. The inter-
actions were indexed in a relational database by domain annotation
such that a single query can provide the full list of proteins that
interact with a domain of interest (Figure 1B). We used Gibbs
sampling [32] seeded with sequence motifs identified in the structural
studies to compute a PSSM using the subset of pairwise protein
interactions that contain the domain to which the motif was bound in
the 3-D structure. The length of the structural motifs was used to
approximate the length of the PSSMs. The frequency of residue j at
position i in the PSSM (the i,j entry in the matrix) is computed as
follows:

qi;j ¼
ci;j þ bj
N þ B

ð1Þ

where ci,j is the observed counts of residue j at position i in the
sampled proteins, bj is pseudocounts for residue j, N is the number of

Figure 3. Predicted Interactions Confirmed by Experiments or by Previously Published Results in the Primary Literature

Interactions are coloured according to their verification source. Dashed red lines are predictions that were confirmed by IP-MS but not confirmed by IP-
western; dashed green lines are predictions that failed experimental validation by IP-western.
doi:10.1371/journal.pcbi.0030182.g003
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sequences sampled, and B is the total number of pseudocounts for all
residues. By increasing the pseudocount term (bj) for specific
positions in the PSSM, the sampling algorithm is biased to favour
positions where the residue at position i in the sampled protein is
similar to the residue at position i of the structural motif. We set the
pseudocounts to equal 62% of the residue counts in the sampled
proteins.

Predicting new interactions. Two proteins were predicted to
interact if one protein had a domain and a second protein matched
one or more of the binding profiles for that domain (Figure 1C). We
attempted to predict interactions between all yeast proteins by
searching for domain-binding profiles as described in [56] using
PSSMs with a score cutoff .10.0 (as scored by the Gibbs sampler) and
a cutoff .0.20 for the match between the PSSM and the protein.
Potential interactors among the yeast proteome were identified for
703 domain-containing proteins with derived binding profiles. In
total, 18,459 interactions were predicted between 2,313 proteins
based on the presence of a domain and its binding profile in the
interacting pair.

Experimental verification. Recombination-based cloning, culture
growth, and protein complex isolation were performed essentially as
described [31] with minor modifications. Each uncharacterized open
reading frame was tagged at the 39-end with the FLAG-tag epitope
using the Gateway recombination-based cloning system (Invitrogen,
http://www.invitrogen.com). Bait complexes were immunopurified on
anti-FLAG M2 antibody resin, resolved by denaturing gel electro-
phoresis, and visualized by colloidal Coomassie stain. Protein
identification by automated liquid chromatography tandem mass
spectrometry on a Finnigan LCQ DECA ion trap (Thermo Finnigan,
http://www.thermo.com) mass spectrometer was as described previ-
ously [31]. Predicted protein interactions were also confirmed by IP-
western [31] using interaction partners tagged either as C-terminal
HA or Myc3 epitope fusions and detection with 12CA5 anti-HA or
9E10 anti-Myc monoclonal antibodies, respectively (Figure S2).

Overlap with literature. The predicted interactions were compared
to a new set of yeast curated interactions collected from more than
50,000 abstracts and publications [33] (available at www.thebiogri-
d.org). The probability of the observed overlap between the predicted
interactions and the literature curated is approximated by a Poisson
distribution. A random variable Y has a Poisson distribution if

PðyÞ ¼ e�kky

y!

where k¼Np, N is the sample size, and p is the probability of a single
event; i.e., the probability of selecting a true interaction by random
chance. In the current analysis, N is the number of predicted
interactions (18,459), y is the number of literature-validated
predictions (609), and p is the probability of predicting a correct
interaction by random chance for the 703 proteins for which
interactions were predicted. The value of p is approximated as the
frequency of true interactions among all possible protein pairs that
were considered. Since there is no known complete set of interactions
for any reference organism, we cautiously assume an upper bound of
100 physiological interactions per bait protein. This number is likely
an order of magnitude larger than the true value. Potential
interactors for the 703 proteins containing domains with derived
binding profiles were identified by scanning the entire yeast
proteome (;6,000 proteins) for proteins that matched the domains
binding profiles. Hence, the total number of proteins pairs that were
considered (i.e., the entire search space) is 7033 6,000. The value of p
is then 7033 100

7033 6;000 ’ 0:017. Given these parameters P (y � 609) under a

Poisson distribution is 1.0 3 10�13. Similar calculation using a
hypergeometric distribution (sampling without replacement) yields a
p-value of 1.0 3 10�8.

Supporting Information

Dataset S1. Cytoscape Session File Containing the Validated and
Predicted Protein Interactions

A Cytoscape session file containing the complete set of predicted
interactions as well as the networks in Figures 2, 3, S1, and S2. The
networks can be viewed using the Cytoscape network visualization
tool freely available at http://www.cytoscape.org.

Found at doi:10.1371/journal.pcbi.0030182.sd001 (2.0 MB ZIP).

Figure S1. The Overlap between the Predicted Interaction Network
and a Comprehensive Set of Literature-Curated Interactions [33]

The predicted interactions were compared to a new and exhaustive
set of curated interactions extracted from the literature that includes
physical interactions from both high-throughput and directed studies
as well as genetic interactions. The overlap contains 609 interactions
that represent ;3% of the predicted interactions. Proteins are
coloured according to Gene Ontology biological process annotation.

Found at doi:10.1371/journal.pcbi.0030182.sg001 (519 KB PDF).

Figure S2. IP-Western Results for the Novel Interactions Predicted by
D-MIST

Bait proteins were purified using FLAG antibodies, and their
interacting proteins were detected by antibodies specific to C-
terminal HA or Myc3 epitopes.

Found at doi:10.1371/journal.pcbi.0030182.sg002 (325 KB PDF).

Text S1. The Domain-Binding Profiles Derived by D-MIST

Each domain-binding profile is specified as a list of sequence motifs.
The sequence motifs are used as input to a PSSM search program [56].
Source code available at http://www.people.fas.harvard.edu/;junliu/
index1.html#Computational_Biology.
Found at doi:10.1371/journal.pcbi.0030182.sd002 (2.7 MB TXT).
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