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Objectives. Evidence suggests that about 80% of all salivary gland tumors involve the parotid glands, with approximately 20% of
parotid gland tumors (PGTs) being malignant. Discriminating benign and malignant parotid gland lesions preoperatively is vital
for selecting the appropriate treatment strategy. This study explored the diagnostic performance of deep learning system for
discriminating benign and malignant PGTs in ultrasonography images and compared it with radiologists. Methods. A total of
251 consecutive patients with surgical resection and proven parotid gland malignant or benign tumors who underwent
preoperative ultrasound examinations were enrolled in this study between January 2014 and November 2020. Next, we
compared the diagnostic accuracy of deep learning methods (ViT-B\16, EfficientNetB3, DenseNet121, and ResNet50) and
radiologists in parotid gland tumor. In addition, the area under the curve (AUC), specificity, sensitivity, positive predictive
value, and negative predictive value were calculated. Results. Among the 251 patients, 176/251 were the training set, whereas
75/251 were the validation set. Results showed that 74/251 patients had malignant tumor. Deep learning models achieved good
performance in differentiating benign from malignant tumors, with the diagnostic accuracy and AUCs of ViT-B\16,
EfficientNetB3, DenseNet121, and ResNet50 model being 81% and 0.81, 80% and 0.82, 77% and 0.81, and 79% and 0.80,
respectively. On the other hand, the diagnostic accuracy and AUCs of radiologists were 77%-81% and 0.68-0.75, respectively. It
was evident that the diagnostic accuracy of deep learning methods was higher than that of inexperienced radiologists, but there
was no significant difference between deep learning methods and experienced radiologists. Conclusions. This study shows that
the deep learning system can be used for diagnosing parotid tumors. The findings also suggest that the deep learning system
may improve the diagnosis performance of inexperienced radiologists.

1. Introduction

Parotid glands are important exocrine organs and the most
frequent site of salivary gland tumors. Evidence suggests that
80% of all salivary gland neoplasms involve the parotid
gland, with approximately 80% of parotid gland tumors
(PGT) being benign and 20% being malignant [1]. Pleomor-
phic adenoma and Warthin tumor are the most common
types of benign tumors, whereas mucoepidermoid carci-
noma and adenoid cystic carcinoma are the most common

malignant tumors in the parotid gland [2]. Most PGTs often
have no specific manifestation and are characterized by a
painless palpable mass on one or both sides. Currently, sur-
gical resection is the main treatment strategy. However, dis-
criminating benign and malignant parotid gland lesions
preoperatively is critical for selecting the best treatment
strategy [3]. A presumably benign PGT can be treated by
local excision or a lateral parotidectomy. On the other hand,
malignant lesions require more radical surgery approaches,
such as an expanded scope of resection combined with

Hindawi
Journal of Oncology
Volume 2022, Article ID 8192999, 7 pages
https://doi.org/10.1155/2022/8192999

https://orcid.org/0000-0003-1121-6635
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8192999


lymph node dissection, which might result in more compli-
cation and invasive harm for the patients.

Classification of PGTs is hampered by the diverse varia-
tions in their histopathology. Presurgical determination of
benign or malignant PGTs involves two main methods: fine
needle aspiration cytology (FNAC) [4] and imaging modal-
ities [5]. Although preoperative FNAC examination can
improve the diagnostic accuracy, its use in the diagnosis of
PGT is controversial. One study reported a sensitivity and
negative predictive value (NPV) of 66.7% and 81.6% [4],
respectively, whereas Dhanani et al. [6] reported a sensitivity
of 88.9% in the diagnosis of parotid gland lesions. Moreover,
FNAC is an invasive intervention method that has malig-
nant tumor cell seeding risk that leads to tumor dissemina-
tion and recurrence. Despite computed tomography (CT)
or magnetic resonance imaging (MRI) having superior qual-
ities in distinguishing parotid gland lesions [7], they also
have some limitations, including ionizing radiation, patients
have contraindications for internal ferromagnetic devices,
high monetary cost, and takes a long time.

It is worth noting that PGTs are easily accessible because
they are commonly located in the superficial lobe and thus
are very good for ultrasonography (US) detection [8]. US is
a well-accepted imaging technique for the diagnosis of most
PGTs because it is sensitive, noninvasive, no ionizing radia-
tion, and inexpensive. US can depict the location, size, and
characteristics of PGT, including the shape, margin, echo-
genicity, architecture, posterior echo enhancement, cystic
component, calcification, and vasculature. Benign tumors
always present with well-defined margins and regularities,
whereas malignancies show irregular, heterogeneous, and
high vascularization patterns [9]. Although grayscale, color
Doppler flow, and shear wave elastography (SWE) can show
PGT sonographic features, it is challenging to distinguish
between benign and malignant tumors because these ultra-
sound features overlap broadly within malignant and benign
nodes. A previous study reported that the sensitivity and
specificity of B-mode US for differentiating malignant from
benign nodules were 38.9% and 90.1%, respectively [10].
Therefore, this calls for development of more reliable
methods for differentiating malignant from benign nodules,
with the overarching goal of increasing the PGT differentia-
tion diagnosis rate in US. In this study, we aimed at explor-
ing whether combining US with an additional application
can achieve satisfactory results without using invasive
methods.

In recent years, deep learning (DL) is a technique that
involves many layers; particularly convolution neural net-
works (CNN) and transformer are very applied to medical
image segmentation and classification [11]. Several studies
have reported that the diagnostic ability of deep learning sys-
tems for medical image diagnosis has achieved comparable
results in various fields, including thyroid cancer [12], breast
cancer [13], and liver tumor [14]. In addition, a previous
study found that a deep learning system had a high diagnos-
tic ability for Sjögren’s syndrome using ultrasonography
images [15]. However, to the best of our knowledge, few
studies have explored deep learning methods on US data
for distinction of PGTs. This study explored the diagnostic

performance of deep learning for differentiating begin and
malignant parotid gland tumors and compared the findings
with results reported by radiologists.

2. Methods and Materials

2.1. Patients. This retrospective study was approved by the
ethics committee of the Fujian Cancer Hospital (K2021-
103-01). Written consent was obtained before surgery for
each patient. The study recruited all patients with surgical
resection and proven parotid gland malignant or benign
tumors who underwent preoperative ultrasound examina-
tions at a tertiary medical center between January 2014
and November 2020. Histopathological findings from the
surgical samples were used as the gold standard in all cases.
The inclusion criteria were as follows: (1) US examination
performed in our hospital, (2) optimal quality of US images,
(3) masses that were located in the superficial lobe, and (4)
lesions diagnosed based on US findings. The exclusion cri-
teria were as follows: (1) patients with a history of parotid
gland surgery, (2) small lesions with<0.5 cm maximal diam-
eter, and (3) lesions proven to be inflammatory.

2.2. Ultrasound Protocol. A total of 251 consecutive patients
who meet the inclusion and exclusion criteria were included
in the study. Participants comprised of 153 men and 98
women, with a median age of 54 years (range, 12-82 years).
A detailed ultrasound scan of the head and neck region was
carried out before surgery. US was performed for all patients
using a 5-12MHz linear-array transducer, such as iU22,
Philips Medical Systems, GE E11, Supersionic Aixlporer.
Conventional US was used to show the following character-
istics of lesions: maximum diameter, margin (well/poorly
defined), shape (regular/irregular), echogenicity (homoge-
neous/heterogeneous), posterior acoustic enhancement
(absent/present), cystic component (absent/present), calcifi-
cation (absent/present), and vasculature (grade 0/I/II/III).
B-mode images that contained lesions with maximal diame-
ter or plane with suspicion of malignant feature were
extracted for deep learning analysis. Next, all images were
independently reviewed by three ultrasound radiologists
(YQW with more than 15 years’ experience of US examina-
tion, SXH with more than eight years’ experience of US
examination, and ZMZ with less than five years’ experience
of US examination) who were blinded to the final histopa-
thology result.

According to Adler’s method for evaluating the vascular
distributions of lesions, grade 0 is no determined vascularity
in lesions; grade I is minimal blood flow, 1~ 2 point-like or
thin rod vessels in the lesion, and the thin rod vessels do
not exceed 1/2 of the diameter of the lesion; grade II is mod-
erate blood flow and 3~ 4 punctate vessels or one important
vessel whose length can be close to or exceed the diameter of
the lesion; and grade III is rich blood flow, and more than
five punctate vessels or two longer vessels were observed [16].

2.3. Data Preprocessing. The flowchart was shown in
Figure 1.
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The datasets were split into training, validation, and test-
ing sets through random partitioning, each consisting of
50%, 20%, and 30% of the total data. The training and vali-
dation groups consisted of 124 benign and 52 malignant
patients, whereas the testing group consisted of 53 benign
and 22 malignant patients. To obtain reliable results, the fol-
lowing data augmentation methods were applied during the
training stage:

(1) Random Flipping. A random flip with a probability
of 0.5

(2) Random Rotating. A random rotate of at most 10
degrees with a probability of 0.5

(3) Gaussian Blurring. A square Gaussian kernel with 5
× 5 was used, with a probability of 0.5

(4) Random Lighting. A random light of at most 20%
with a probability of 0.5

Specifically, the augment data is only randomly gener-
ated during the training stage, and the validation and testing
stages do not include the data augmentation step.

2.4. Diagnostic Performance of the Deep Learning System.
Two common types of deep learning models were applied
for classification: convolutional-based and transformer-
based methods, with a total of four models. The
convolutional-based methods include ResNet50 (https://
arxiv.org/abs/1512.03385), DenseNet121 (https://arxiv.org/
abs/1608.06993), and EfficientNetB3 (https://arxiv.org/abs/
1905.11946). On the other hand, the transformer-based
method was ViT-B\16 (https://arxiv.org/abs/2010.11929).
Specifically, ResNet proposed a residual structure that allevi-
ates the gradient dispersion problem in a deep neural net-
work, DenseNet can reduce the number of network
parameters through feature reuse, and EfficientNet expands
on depth, width, and resolution in the network to achieve
better efficiency and accuracy. Moreover, ViT introduces
the transformer model (https://arxiv.org/abs/1706.03762)
in natural language processing (NLP) into computer vision,
thereby achieving better performance than convolutional-
based methods.

For the practical implementation, we employed the
PyTorch framework (https://pytorch.org/) and trained the
models until convergence on a single NVIDIA 2080Ti

GPU (NVIDIA Corp., Santa Clara, CA, USA). The optimal
model was determined based on the metrics on the valida-
tion set, and the network was optimized using stochastic gra-
dient descent (SGD) with a batch size of 4. The learning rate
was initialized as 1e-3. Meanwhile, we employed cross-
entropy loss as a loss function:

LossCE = −
1
n
〠
n

i=1
yi · log pið Þ + 1 − yið Þ · log 1 − pið Þð Þ, ð1Þ

where n is the total sample number, yi is the ground
truths, and pi is the prediction probability.

Seven metrics were used to evaluate the performance,
including accuracy, area under curve (AUC), f1 score, sensi-
tivity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV). Specifically, the f1 score can
balance the precision and recall and is suitable for evaluating
imbalanced datasets. In addition, the accuracy indicates the
overall agreement between predictions and labels.

2.5. Statistical Analysis. All statistical analyses were per-
formed using SPSS version 22.0 (IBM Corp.; Chicago, IL,
USA). All parotid gland lesions were divided into malig-
nant and benign groups. Kolmogorov-Smirnov test was
used to determine normal distribution in groups. Data that
were suitable for normal distribution were recorded as
“mean ± standard deviation.” Given that age and lesion size
did not follow a normal distribution, Mann–Whitney U
tests were performed and recorded as “median (25th-
75th percentile).” The Chi-square test was used to evaluate
the categorical data, whereas Kendall’s W test was applied
to assess interobserver agreement among the three radiol-
ogists. Receiver operating characteristic (ROC) curves were
generated to determine diagnostic performance. Finally,
the specificity, sensitivity, PPV, and NPV of the models
and radiologists in groups were calculated. P < 0:05 was
considered statistically significant.

3. Results

3.1. Evaluation of Clinical Data and Ultrasound
Characteristics. Table 1 shows the obtained US images depict-
ing PGT for the training and validation sets that underwent
imaging between January 2014 and November 2020. A total
of 251 PGTs were included in this study. Among them, 176/
251 (70.12%) were grouped in the training set, and 75/251
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Figure 1: Development and validation of deep learning system for diagnosis of parotid glands lesions. DNN: deep neural network.
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(29.88%) were grouped in the validation set. With regard to
tumor classification, 93/251 (37.05%) had pleomorphic ade-
noma, 61/251 (24.30%) had Warthin’s tumor, and 74/251
(29.48%) had malignant tumor.

All patients were divided into two groups: the benign
group (177 patients, 153 males and 98 females; median age
54 years; median lesion size was 25mm; 103 located on the
left, and 74 located on the right) and malignant group (74
patients, 41 males and 33 females; median age 54 years;
median lesion size was 28mm; 42 located on the left, and
32 located on the right). Table 2 shows the clinical data for
the benign and malignant groups. Results showed that there
was no significant difference between the two groups in age
(P = 0:77), gender distribution (P = 0:31), lesion size
(P = 0:06), and location (P = 0:94).

Ultrasound characteristics among the parotid gland
benign and malignant tumor groups are shown in Table 2.
Among the 177 parotid gland benign tumors, 173 (97.74%)
showed well defined margins, 129 (72.88%) were regular in
shape, 133 (75.14%) showed posterior echo enhancement,
and 174 (98.30%) had no calcification. Among the 74
parotid gland malignant tumors, 64 (86.48%) were heteroge-
neous in echogenicity, 55 (74.32%) had irregular shape, 51
(68.92%) had absent posterior echo enhancement, and 32
(34.24%) exhibited grade III vascular pattern on CDFI. The
results showed significant differences between the two
groups with regard to margin definition, echogenicity, shape,
posterior echo enhancement, calcification, and vasculariza-
tion. On the other hand, there was no significant difference
in the cystic component.

3.2. Performance of Deep Learning Models for Differentiating
Benign from Malignant Tumors. Table 3 summarizes diag-
nostic performances of deep learning models for differentiat-
ing benign from malignant. Results indicated that the deep
learning models achieved good performance in differentiat-
ing benign from malignant tumors, with diagnostic accuracy
and AUCs of 81% and 0.81 for the ViT-B\16 model, 80%

and 0.82 for the EfficientNetB3 model, 77% and 0.81 for
the DenseNet121 model, 79% and 0.80 for the ResNet50
model, and 77% and 0.75 for experienced radiologist, respec-
tively. The diagnostic accuracy and AUCs of inexperienced
radiologists were 0.68 and 0.75, respectively. The ROC
curves for model performance and the radiologists are
shown in Figure 2.

4. Discussion

Evidence has shown that most PGTs are benign, with only
20% being malignant. However, distinguishing between
benign and malignant parotid gland tumors is challenging.
US is a low cost technique that is a well-accepted by patients.
Therefore, numerous ultrasound modalities have been estab-
lished for defining characteristics of lesions in efforts to
assess the nature of PGT, including grey-scale US, color-
Doppler US, superb microvascular imaging [17], elastogra-
phy [18], and contrast-enhanced US. On US, benign parotid
gland lesions typically present well-defined margins, homo-
geneous or inhomogeneous echotexture, and acoustic
enhancement. On the other hand, high-grade malignant
tumors usually present irregular, heterogeneous echotexture,
and cervical lymph nodes spread, whereas low-grade malig-
nant tumors may present as benign lesions. On Doppler US,
malignant tumors and Warthin tumors have rich vasculari-
zation, whereas pleomorphic adenoma appears reduced vas-
cularization. One study reported that there was appreciable
overlap between the US features of benign tumors and that
of malignant tumors within the histological heterogeneous
[19]. Therefore, it is difficult to differentiate malignant and
benign lesions based on B-mode and Doppler US.

According to the guidelines provided by several authors,
we presume that poorly defined margins, heterogeneous or
homogeneous structure, irregular, and high vascularity to
be a possible standard for malignant tumors, whereas well
defined, heterogeneous or homogeneous structure, regular,
and posterior acoustic enhancement are likely criteria for
begin tumors. Results obtained in this study showed that
benign lesions had well-defined margins, with only 2.25%
(4/177) having poorly defined margins. On the other hand,
39.18% (29/74) of the malignant lesions showed poorly
defined margins, whereas 60.81% (45/74) exhibited well-
defined margins, which is consistent with results reported
by Bozzato et al. [20]. This may be attributed to the fact that
low-grade malignant tumors appear well-defined, and only
high-grade malignant tumors present poorly defined mar-
gins. Most malignant tumors present heterogeneous echo-
genicity (86.48%, 64/74) and irregular shape (74.3%, 55/
74), whereas most benign lesions present a regular shape
(72.88%, 29/177). Benign lesions could also show heteroge-
neous echogenicity, especially pleomorphic adenoma with
cysts and calcification. In addition, 75.14% (133/177) of
benign lesions exhibited posterior acoustic enhancement.
Rzepakowska et al. [21] revealed that the increased vascular-
ity pattern was the most reliable feature for the assessment of
malignant lesions. This study found that most malignant
lesions (63.51% (47/74)) show moderate or rich blood flow
in lesions, which is consistent with Rzepakowska et al.

Table 1: The histopathologic diagnosis of the parotid masses and
data distribution of the training, validation, and testing sets.

Tumor type
Training and
validation

Testing Total

Benign 124 53 177

Pleomorphic adenoma 59 34 93

Warthin’s tumor 48 13 61

Other benign tumors 17 6 23

Malignant 52 22 74

Mucoepidermoid
carcinoma

8 6 14

Acinic cell carcinoma 8 4 12

Salivary duct carcinoma 7 2 9

Lymphoma 6 1 7

Metastases 5 4 9

Other malignant tumors 18 5 23

Total cases 176 75 251
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[21]. However, all these US approaches can be routinely
used in clinical practice, but with some limitations since
US depends on the experience of the radiologist and is diffi-
cult for junior radiologists. Therefore, there is need to
develop a new technique to objectively evaluate ultrasound
images in clinical work.

This study also investigated the diagnosis performance
of a novel method, a deep learning system that is based on
a deep neural network, in characterization of parotid gland
lesions. It should be noted that there are numerous pub-
lished articles showing that deep learning can be useful for
the diagnosis and management of various tumors [21].

Table 2: Clinical features and ultrasound characteristics among benign and malignant parotid gland tumors.

Features Benign (n = 177) Malignant (n = 74) P

Age 54 (42-62) 54 (39.25-63) 0.77

Gender 0.31

Male 112 41

Female 65 33

Lesion size (mm) 25 (19-33) 28 (21.25-35.75) 0.06

Location 0.94

Left 103 42

Right 74 32

Margin definition 1.475e-14

Well defined 173 45

Poorly defined 4 29

Echogenicity 5.253e-06

Homogeneous 79 10

Heterogeneous 98 64

Shape 1.108e-11

Regular 129 19

Irregular 48 55

Posterior acoustic enhancement 1.366e-10

Absent 44 51

Present 133 23

Cystic component 0.71

Absent 137 55

Present 40 19

Calcification 8.121e-07

Absent 174 59

Present 3 15

Vascularization 2.031e-07

0 32 9

I 64 18

II 33 15

III 48 32

Table 3: Performance of four DNN models and radiologists according to validation set.

ViT-B\16 EfficientNetB3 DenseNet121 ResNet50 Radiologist1 Radiologist2 Radiologist3

AUC 0.81 0.82 0.81 0.80 0.75 0.70 0.68

Accuracy 81 (61/75) 80 (60/75) 77 (58/75) 79 (59/75) 77 (58/75) 82 (62/75) 81 (61/75)

Sensitivity 68 (15/22) 77 (17/22) 64 (14/22) 73 (16/22) 68 (15/22) 41 (9/22) 36 (8/22)

Specificity 87 (46/53) 81 (43/53) 83 (44/53) 81 (43/53) 81 (43/53) 100 (53/53) 100 (53/53)

PPV 68 (15/22) 63 (17/27) 61 (14/23) 62 (16/26) 60 (15/25) 100 (4/4) 100 (3/3)

NPV 87 (46/53) 90 (43/48) 85 (44/52) 88 (43/49) 86 (43/50) 80 (53/66) 79 (53/67)

F1 score 68 69 62 67 67 58 53

DNN: deep neural network.
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There have also been several reports on characterizing PGTs
using deep learning. For example, Matsuo et al. [22]
reported that the deep learning method could discriminate
benign and malignant PGTs in MRI images, with an AUC
of 0.86. Gabelloni et al. [24] used magnetic resonance radio-
mics to discriminate PGTs, with results showing that radio-
mics analysis had a high diagnostic performance in
pleomorphic adenomas and malignant tumors (sensitivity,
specificity, and diagnostic accuracy of 0.66, 0.87, and 0.80,
respectively). However, no study has explored whether deep
learning can be applied in US images to differentiate benign
from malignant tumors. The findings of this study showed
that deep learning methods could improve performance in
terms of the differential diagnosis of parotid gland benign
and malignant tumors. Among the four deep learning
models investigated in this study, the EfficientNetB3 model
provided the best classification results, with the accuracy,
sensitivity, and AUC being 80%, 77%, and 0.82. We found
that deep learning software differentiated parotid gland
lesions with good diagnostic accuracy (AUC = 0:82) and a
high negative predictive value (NPV = 90%). Radiologists
demonstrated comparable accuracy (AUC 0.68-0.75) at a
lower NPV (79-86%). Although the diagnostic accuracy of
deep learning was higher than that of inexperienced radiolo-
gists, there was no significant difference between deep learn-
ing systems and experienced radiologists. This suggests that
the use of deep learning system analysis is more reliable than
descriptive evaluation in diagnosing PGT in inexperienced
radiologists. Additional, Santos et al. [25] have reported that
contrast-enhanced computed tomography can evaluate the
morphology, volume, and density of the parotid glands
before and after chemoradiation therapy in head and neck
cancer patients. This indicated that those changes in parotid

glands may be also detected by the ultrasound-based deep
learning system.

This study had several limitations. First, the number of
cases was relatively small. However, the number of parotid
gland malignant lesions included was 74 of 251 (29.4%),
which is consistent with previous studies. Nevertheless, a
large-scale sample may be required in further research to
improve the performance. It should be noted that the occur-
rence of parotid gland malignancies in routine clinical work
is relatively rare; thus, it seems difficult to increase the num-
ber of malignant cases. Second, the retrospective data might
be a limitation if the examination is carried out with differ-
ent ultrasound equipment and by different examiners.
Therefore, prospective studies should be included in future
research. Third, lesions located in the deep lobe have certain
limitations. Notably, there were no deep lobe lesions cases in
our study since US was not appropriate for these lesions.

5. Conclusion

In conclusion, B mode US evaluation of PGT may be diffi-
cult due to the appreciable overlap characteristics in benign
tumors and malignancies. The use of a deep learning system
had a promising diagnostic ability for differentiating a
benign from a malignant PGT. This suggests that deep
learning could be used for diagnostic support in the assess-
ment of parotid gland lesions in inexperienced radiologists.

Data Availability

The data used to support the findings of this study are
included within the article.
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Figure 2: ROC curves (N = 75). The figure shows a comparison between the deep learning system and radiologists in diagnosing of PGTs.
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