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Abstract
During sepsis, the importance of alterations in cell metabolism is underappreciated. The cellular metabolism, which has a 
variable metabolic profile in different cells and disease stages, is largely responsible for the immune imbalance and organ fail-
ure associated with sepsis. Metabolic reprogramming, in which glycolysis replaces OXPHOS as the main energy-producing 
pathway, is both a requirement for immune cell activation and a cause of immunosuppression. Meanwhile, the metabolites 
produced by OXPHOS and glycolysis can act as signaling molecules to control the immune response during sepsis. Sepsis-
induced "energy shortage" leads to stagnated cell function and even organ dysfunction. Metabolic reprogramming can 
alleviate the energy crisis to some extent, enhance host tolerance to maintain cell survival functions, and ultimately increase 
the adaptation of cells during sepsis. However, a switch from glycolysis to OXPHOS is essential for restoring cell function. 
This review summarized the crosstalk between metabolic reprogramming and immune cell activity as well as organ function 
during sepsis, discussed the benefits and drawbacks of metabolic reprogramming to show the contradictions of metabolic 
reprogramming during sepsis, and assessed the feasibility of treating sepsis through targeted metabolism. Using metabolic 
reprogramming to achieve metabolic homeostasis could be a viable therapy option for sepsis.
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Introduction

Sepsis is a serious life-threatening disease in the ICU, with 
at least 19 million patients reported worldwide each year [1, 
2]. In general, a strong pro-inflammatory effect eliminates 
the pathogen in the early stages of inflammation, and the 
immune system progressively shifts to an anti-inflammatory 
state as the disease progresses, mostly to minimize inflam-
mation and promote tissue healing. The balance between 

pro- and anti-inflammatory is an essential component of the 
normal functioning of the body's immune system. However, 
during sepsis, the disrupted pro- and anti-inflammatory bal-
ance typically results in inflammatory storms and immu-
nosuppression, which lead to excessive cellular damage 
and inability to respond to secondary infections, ultimately 
causing fatal multi-organ dysfunction syndrome (MODS). 
MODS is the most serious complication of sepsis, but its 
pathogenesis is still poorly understood. Severe immunosup-
pression and MODS create a therapeutic dilemma in sep-
sis, despite decades of research by researchers, there have 
been no significant breakthroughs in treatment, which is still 
dominated by antibiotics and organ support. The dynamics 
of cellular energy metabolism, the basis of cellular activity 
during sepsis, is a role that cannot be ignored.

Metabolic reprogramming occurs in almost all types 
of cells during sepsis. Immune cells undergo tumor-like 
changes—the "Warburg effect" [3–6], where cells switch 
to glycolysis as their primary source of energy instead of 
oxidative phosphorylation (OXPHOS) under aerobic condi-
tions, which is critical to immune cell activity during sep-
sis. The reprogramming that glycolysis replaces OXPHOS 

Cellular and Molecular Life Sciences

 * Dawei Liu 
 daweiliu05@163.com

 Jingjing Liu 
 ljj22893@163.com

 Gaosheng Zhou 
 gaosheng0328@163.com

 Xiaoting Wang 
 icuwxting@163.com

1 Department of Critical Care Medicine, Peking Union 
Medical College Hospital, Peking Union Medical College, 
Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, 
Dong Cheng District, Beijing 100730, China

http://orcid.org/0000-0002-7728-1870
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04490-0&domain=pdf


 J. Liu et al.

1 3

456 Page 2 of 15

is also observed in organ cells, such as tubular epithelial 
cells (TECs) [7] and cardiomyocytes [8]. Singer et al. [9–11] 
have argued that sepsis-induced MODS may represent a 
defensive strategy for the host in response to metabolic dys-
regulation and insufficient energy, which links the vital and 
functional activities of organ cells to metabolic reprogram-
ming. Furthermore, the relevance of metabolic reprogram-
ming to sepsis was highlighted again by Raymond et al. [12] 
in 2013, who found that the metabolomes and proteomes of 
patients at the hospital who would ultimately die differed 
markedly from those of patients who would survive. Sepsis 
is a disease with a complicated metabolism, and the signifi-
cance of metabolic reprogramming in sepsis requires more 
exploration. Identifying the crosstalk between metabolism 
and disease is essential for the diagnosis and treatment of 
sepsis. Moreover, as the concept that the oxygen delivered 
to the cells is sufficient is gradually recognized, "cytopathic 
hypoxia" caused by mitochondrial dysfunction or changes 
in metabolic enzyme activity may be a better explanation for 
metabolic reprogramming.

This review aims to describe alterations in oxidative 
metabolism and glycolysis in immune and organ cells dur-
ing sepsis and to summarize their interrelation with cellular 
function. We emphasized the importance and complexity of 
metabolic reprogramming in sepsis, as well as suggested to 
maintain metabolic homeostasis may be a strategy for the 
future treatment of sepsis. At the same time, the key role of 
mitochondria as a metabolic organelle in sepsis metabolism 
regulation will also be underlined.

Glycolysis is a double‑edged sword 
for the immune system during sepsis

Energy metabolism in cells is driven mainly by OXPHOS 
and glycolysis. Since the study in the 1950s demonstrated 
that lymphocyte activation was associated with an increase 
in glucose consumption [13], the key role of metabolism in 
the activation, proliferation, and differentiation of immune 
cells has been gradually identified [14] and evidenced by 
studies of tumors [15] and diabetes [16, 17]. Immune dys-
function is one of the most prominent clinical features of 
sepsis. Knowledge of the effects of metabolism on immune 
function will help to elucidate the imbalance between the 
pro-inflammatory and anti-inflammatory.

Metabolic reprogramming of immune cells 
during sepsis

Innate immune cells (monocytes, macrophages, granulo-
cytes, natural killer cells, and dendritic cells), adaptive 
immune cells (lymphocytes), and certain vascular cells 
(endothelial cells and vascular smooth muscle cells) 

all play roles in the inflammatory response. The innate 
immune cells recognize pathogen-associated molecu-
lar patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs) through surface receptors (Toll-like 
receptors (TLRs) and c-type lectin receptors (CLRs)), 
cytoplasmic receptors (nucleotide-binding oligomeriza-
tion domain (Nod)-rich leucine repeat receptors (NLRs) 
and RIG-I-like receptors (RLRs)] [18] to release sign-
aling and effector molecules to trigger inflammatory 
responses and kill invading microbes, as well as mobi-
lize adaptive immune cells (T lymphocytes and B lym-
phocytes) to generate delayed but stronger and more spe-
cific immune responses. During the activation of immune 
cells, the energy metabolic pathway is reprogrammed from 
OXPHOS to glycolysis.

Although resting dendritic cells (DCs) are dependent 
on mitochondrial OXPHOS fuelled by the β-oxidation of 
lipids [19–21], metabolic reprogramming from OXPHOS 
to glycolysis triggered by TLR signaling is essential for DC 
maturation and associated biologic functions [21]. When 
glycolysis is blocked with the glycolytic inhibitor 2-DG [6], 
DCs activation is considerably reduced with the release of 
IL-6 and TNF substantially impaired [6, 21]. Similar to DCs, 
mature neutrophils’ glycolysis is associated with their meta-
static activity [22] and the creation of neutrophil extracel-
lular networks (NETs), which kill bacteria after metastasis to 
the target region [23]. Macrophages are induced into M1-or 
M2-type after being activated by LPS. The differentiation 
between M1- and M2-type macrophages plays the opposite 
role in sepsis. Porta et al. [24] and Pena's team [25] have 
illustrated that M1-type macrophages are responsible for 
secreting pro-inflammatory factors and promoting inflam-
mation, and M2-type macrophages are responsible for reduc-
ing inflammation and repairing damaged tissues. In the rest-
ing state, macrophages create energy mostly by OXPHOS 
[26, 27], whereas M2-type macrophages primarily utilize 
fatty acid oxidation (FAO) to support the anti-inflammatory 
function and M1-type macrophages mainly use glycolysis 
not only for faster ATP production but also to obtain the 
biosynthetic raw material [28].

OXPHOS provides energy to immature T cells, whereas 
activated effector T lymphocytes switch to glycolysis to 
speed up ATP production [29–31]. Different T cell subsets, 
however, have different metabolic properties. For instance, 
effector T cells (Teffs) that dominate the pro-inflammatory 
response, such as Th1, Th2, and Th17 [29], mainly rely on 
glycolysis, whereas regulatory T-cells (Tregs) and memory T 
cells (Tmems) which mainly play an anti-inflammatory role 
mostly use fatty acids in their metabolism, and mTORC1 
activation drives Teff cells differentiation while suppressing 
Treg cells [32–34]. However, some research has found that 
sped Treg cell proliferation by Ethyl Pyruvate has been con-
nected to glycolysis rather than OXPHOS [31].
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Metabolic reprogramming mainly involves suppressed 
mitochondrial oxidative function and an increased glycolytic 
capacity. LPS causes increased glycolysis while inhibiting 
mitochondrial respiration by suppressing nitrosylation of 
cytochrome C oxidase and complex enzyme I in the electron 
transport chain [27, 35]. The mTOR-HIF-1α pathway is also 
activated in macrophages by LPS, which prompts increased 
expression of HIF-1α downstream glycolytic enzymes like 
glucose transporter protein 1 (GLUT1), fructose-2,6-bispho-
sphatase 3 (PFKFB3), hexokinase 2 (HK2), pyruvate kinase 
M2 (PKM2), and lactate dehydrogenase (LDH) to elevate 
glycolytic capacity [36]. AMPK promotes β-oxidation of 
fatty acids by regulating proliferator-activated receptor γ 
(PPAR-γ) and carnitine palmitoyl transferase 1 (CPT1), but 
in sepsis, the downregulated AMPK pathway promotes the 
glycolytic capacity of macrophages [37, 38] and directly 
affects the secretion of inflammatory and anti-inflammatory 
factors like IL-1β and IL-6.

Enhanced glycolysis contributes to immune cell 
activity

The "Warburg effect" is favorable because of its ability to 
provide not only ATP but also metabolites that contribute 
to the activities of the immune cells [39]. The increased 
expression of GLUT1 during sepsis promotes the competi-
tive uptake of glucose [40, 41], a source of carbon that can 
be used for biosynthetic in addition to being a source of 
energy [42]. When GLUT1 expression is depressed, glucose 
uptake and glycolysis are significantly inhibited, along with 
a significant decrease in Teff's vital and functional activities 
[29, 40]. On the other hand, the increased glucose uptake 
and glycolytic flux, as well as the high rate of ATP produc-
tion by glycolysis, allow ATP from glycolysis to meet the 
energy requirements of activated immune cells, even when 
OXPHOS is inhibited. The glucose 6-phosphate (G-6-P) 
produced in the first phase of glycolysis can be imported into 
the pentose phosphate pathway (PPP) to nucleotide synthe-
sis, while the NADPH produced is a cofactor necessary for a 
variety of metabolic processes, such as lipid synthesis [43]. 
Dihydroxyacetone phosphate (DHAP) and glyceraldehyde 
3-phosphate (G-3-P) from glycolysis are the raw materials 
for lipid synthesis and amino acid synthesis, respectively 
[44]. In addition, citrate is converted to cytoplasmic acetyl 
coenzyme A in the tricarboxylic acid (TCA) cycle, which 
is used to make cholesterol and fatty acids for lipid synthe-
sis [45]. Glycolysis offers the biological raw materials that 
immune cells require for proliferation and synthesis.

Glycolysis provides enough energy and biomolecules to 
activate the immune system, allowing for a more efficient 
and quick immune response. In this way, limiting glycolysis 
appears to lessen the inflammatory storm [46, 47]. Hannah 
R et al. [48] have determined in bovine heart mitochondria 

that metformin directly inhibits complex I activity in a 
non-competitive manner and ATP synthase activity, which 
in turn leads to a decrease in OXPHOS and activation of 
AMPK in cells [49, 50], which support metformin to reduce 
macrophage NLRP3 inflammasome in diabetes [51, 52]. 
However, in 2021, Hongxu Xian et al. [53] found that inde-
pendent of AMPK or NF-κB pathways, metformin blocked 
LPS-induced ATP-dependent synthesis of the NLRP3 ligand 
mtDNA and ultimately affected interleukin (IL)-1β produc-
tion, while metformin may also affect inflammasome non-
dependent IL-6 secretion via JNK and p38-MAPK activa-
tion, thereby attenuating LPS and SARS-CoV-2-induced 
ARDS. Similarly in LPS-stimulated BMDMs, metformin, 
without AMPK activation, decreased LPS-induced produc-
tion of the pro-IL-1β at both the mRNA and protein lev-
els and boosted LPS induction of the anti-inflammatory 
cytokine IL-10 [54]. ROS also has been reported involved in 
LPS-induced IL-1β mRNA production [55]; both metformin 
and rotenone influence IL-1β production by affecting ROS 
production of mitochondrial complex I [56]. mTOR is a cen-
tral regulator of cellular metabolism, and targeting mTOR 
with rapamycin or derivatives thereof will generally acti-
vate downstream molecules such as HIF-1α [57] and GLUT1 
[58] to promote glucose uptake and glycolysis [57]. Further, 
LPS-induced pro-IL-1β and subsequent ATP-induced IL-1β 
release were cut off by the rapamycin [59]. In  CD8+ T cells, 
blockade of mTOR by rapamycin also promoted the differen-
tiation of Tmem cells [60, 61], which may ultimately provide 
us with a novel therapeutic target for altering the course of 
immune disorders and inflammation.

An excessive level of glycolysis causes 
immunosuppression

The glycolysis supports the rapid activation of immune 
cells to release large amounts of pro-inflammatory fac-
tors and even cause "inflammatory storms," which are 
extremely prone to excessive cellular damage. Most 
patients can survive "inflammatory storms" but get worse 
due to immunosuppression. Immunosuppression is often 
manifested by reduced expression of genes encoding pro-
inflammatory cytokines and chemokines that recruit T 
cells (e.g. TNF-α, IL-6, CCL2) but increased expression 
of anti-inflammatory cytokines (e.g. IL-4, IL-10) [62, 63], 
which means that the host is unable to respond effectively 
to the "secondary infection." This transition from "inflam-
matory storms" to hypo-inflammation is accompanied by a 
shift in the substrate utilization of immune cells from glu-
cose to fatty acid oxidation. The human sepsis blood leu-
kocytes have shown increased fatty acid transporters (eg.
CD36) and CPT-1 levels during the immunosuppressed 
stage [64]. Divya Vats et al. [65] have shown that IL-
4-mediated activation of STAT6 in macrophages induces 
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uptake and oxidation of fatty acids as well as biogenesis, 
and PGC-1β knockdown decreases FAO while increasing 
the pro-inflammatory effector properties of macrophages. 
SIRT1 and SIRT6 link metabolism with the early and 
late stages of acute inflammation responses by support-
ing the switch from glycolysis to FAO [64]. In addition 
to FAO promoting the anti-inflammatory phenotype in 
immune cells, lactate produced by glycolysis during the 
pro-inflammatory phase also exerts a potent immunosup-
pressive effect.

Lactate's role in the clinical treatment of sepsis is undeni-
able, but it is far from being a simple metabolite, and more 
studies are identifying lactate as an active signaling mol-
ecule [66, 67], such as Lactate-GPR81 [68, 69] and Lactate-
GPR132 signaling axis [70]. Particularly the functions of 
dynamic regulation and balance to histone lactation modi-
fications and inflammation-related gene expression [71–73] 
give lactate a new identity in the regulation of immune 
function.

Zhang et al. [74] found that elevated intracellular lactate 
inhibits cytoplasmic RLRs-mediated activation of IFNs on 
M1-type cells. Also during macrophage cytosolic emesis, 
lactate increases the expression of anti-inflammatory genes 
Tgfb and IL-10 as well as M2-type genes Vegfa, Mgl1, and 
CD206 in nearby immune cells via paracrine secretion, 
which in turn promotes an anti-inflammatory milieu [75]. 
High levels of lactate also support the expression of the 
M2-type macrophage homeostatic genes Mrc1 and Arg1 to 
promote the M2-type macrophage development but suppress 
M1-type macrophages [76]. Similarly, lactate inhibits the 
inflammatory response and promotes the polarization of 
M2-type macrophages through GPR81-dependent antago-
nism of TLR4-mediated signaling pathways and conse-
quently attenuated LPS-induced NF-κB activation [68, 69, 
77–79]. High levels of lactate inhibit the differentiation of 
monocytes into DCs and hamper DCs formation and accu-
mulation [80, 81].

When lactate is transported outside the cell via the mono-
carboxylate transporter protein MCT4, it modulates migra-
tion and cytokine production of immune cells in various 
ways and induces a "stop migration" signal mediated by the 
lactate transporters SLC5A12 (CD4 T cells) and SLC16A1 
(CD8 T cells) [82]. These inhibitions of T-cells function and 
apoptosis are coupled with decreased expression of several 
glycolytic enzymes and glucose flux, such as downregulation 
of PFKFB3 leading to G-6-P toward the PPP [28, 83]. Lac-
tate efflux causes acidification of the extracellular environ-
ment, which induces an incompetent state of  CD8+ T cells 
with reduced cytolytic activity and cytokine secretion when 
the pH is between 6.0 and 6.5, and also causes immune cell 
death, whereas proton pump inhibitor treatment effectively 
restores T cell function [28]. MCT1/MCT4, lactate trans-
porters into and out of cells, have emerged as new targets 

for tumor therapy [84–86], while there were few studies in 
sepsis. The effect of MCT1 or MCT4 on immunosuppression 
in sepsis is worthy of more study.

Metabolic reprogramming of immune cells to glycolysis 
during sepsis is an essential component of the initiation of 
the host defense response. Whether glycolysis is a passive 
choice due to the inhibition of OXPHOS or an active selec-
tion of immune cells, its role in the pro-inflammatory reac-
tion is crucial. At the same time, the lactate produced by gly-
colysis feedback promotes the anti-inflammatory response, 
which is helpful to maintain immune homeostasis. However 
high-level lactate will cause immune suppression by promot-
ing immune cell death or inactivation, which disrupts the 
immune homeostasis of the body. Figure 1 shows the cross-
talk between metabolic reprogramming and the activities 
of immune cells. Cellular self-regulation is very clever and 
fine, and controlling immune cell metabolism at the right 
time is a crucial strategy for maintaining immunological 
homeostasis. Once a wide range of immune cells has been 
activated, how to modulate the degree of glycolysis at the 
right time to restrict the inflammatory response while avoid-
ing the immunosuppression induced by excessive lactate is 
what future research should focus on.

Metabolic reprogramming is a cell 
adaptability mechanism but also causes 
MODS

After Hotchkiss et al. [87] in 1999 demonstrated that cell 
death cannot explain the development of organ dysfunction 
during sepsis, Takasu et al. [88] also discovered that car-
diomyocytes and kidney cells from sepsis-dead patients did 
not show necrosis or apoptosis in 2013, which means that 
sepsis-induced MODS may have other underlying mecha-
nisms. A recent study found that mitochondrial DNA was 
broken and mitochondrial homeostasis-related genes were 
down-regulated in kidney biopsy samples from dead SAKI 
patients [89], and more and more studies have linked mito-
chondrial dysfunction to sepsis. A bold prediction appears 
plausible—energy shortage linked with impaired mitochon-
drial function in sepsis may be a crucial component contrib-
uting to MODS.

Tolerance: a new way to understand MODS

In 2008, a defense present in plants that reduces the nega-
tive effects of infection was also found in animals-tolerance 
[90, 91]. The discovery has opened up new areas of research 
into pathogen–host relationships and provided new perspec-
tives for the understanding of sepsis-induced MODS. Even 
in adverse conditions, tolerance offers cells the opportunity 
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to survive even at the expense of their functional activity, 
i.e., "where there is life, there is hope."

In the long evolutionary process of life, limited resources 
are utilized for the body's life preservation, growth, and 
reproduction, and wise energy allocation is necessary. A host 
can evolve two types of defense mechanisms to increase its 
fitness when challenged with a pathogen resistance, which 
drives the immune to clear the pathogens, and tolerance, 
which reduces infection impact on health in other ways. 
The requirement of a large amount of energy in the resist-
ance process during sepsis leads to energy competition in 
the host, especially in the case of decreased ATP due to 
mitochondrial damage or hypoxia [92, 93]. The host needs 
to make an energy trade-off between resistance (mobilizing 
immune cells) and tolerance (maintaining organ function) 
and ultimately prioritizes the needs of immune cells [94]. 
Kirthana et al. [95] demonstrated that activation of immunity 
by LPS finally triggered energy conservation, and the energy 
trade-off between immunity and homeothermy triggers entry 

into a hypometabolic–hypothermic state that enhances tissue 
tolerance. Kirthana et al. [95] also thought tissue tolerance is 
the mechanism of hibernation. Hypothermia–hypometabo-
lism have been shown to enhance survival in acute sickness 
in both animal and human studies [96, 97]. Sepsis-induced 
MODS is characterized by minimal cell death, reduced 
cellular oxygen consumption, and normal/elevated tissue 
oxygen levels [9]. In addition, in survivors, organs usually 
return to function within days to weeks [98]. So Singer et al. 
[10] hold that MODS may be a hibernation phenomenon 
due to adaptive shutdown aimed at reducing cellular energy 
requirements, with a trade-off between organ function and 
cellular viability. Miguel et al. [99] have also proposed that 
tolerance is a defense strategy to maintain the health of the 
body by limiting organ damage.

Driving immunity to clear pathogens is an energy-
intensive process, which means that less energy is avail-
able to organ cells; a reasonable energy distribution is also 
required between the vital and functional activities of the 

Fig. 1  The crosstalk between metabolic reprogramming and immune 
cells activities. Immune cells rely mainly on OXPHOS for ATP pro-
duction in the resting state. During sepsis, activated immune cells 
rely on increased glycolysis for ATP and various biosynthetic materi-
als, such as Ru-5-P, DHAP, and G-3-P, to promote immune cell dif-
ferentiation and proliferation. Macrophages differentiate into M1-type 
macrophages that promote inflammation and anti-inflammatory 
macrophages are differentiated into M2. T cells differentiate into 
pro-inflammatory effector T cells and anti-inflammatory regulatory 
T cells. Pro-inflammatory cells secrete large amounts of inflamma-
tory factors (IL-6, IL-1β, and TNF-α) causing a host inflammatory 
response, at which time the balance between OXPHOS and gly-

colysis can still be maintained. However, when glycolysis is further 
enhanced, the balance is upset and lactate suppresses pro-inflam-
matory response and promotes anti-inflammatory response through 
various mechanisms, ultimately resulting in immunosuppression. 
GLUT1 glucose transporter protein 1, PFKFB3 fructose-2,6-bispho-
sphatase 3, HK2 hexokinase 2, PKM2 pyruvate kinase M2, LDH 
lactate dehydrogenase, DHAP dihydroxyacetone phosphate, G-3-P 
glyceraldehyde 3-phosphate, 3-P-G 3-phosphoglycerate, Glu-6-P glu-
cose 6-phosphate, Fru-1,6-P 1,6-Fructose diphosphate, PPP pentose 
phosphate pathway, MCT4 monocarboxylate transporter 4, M0 Mac-
rophage, Th1,Th2 effector T cells, Tregs regulatory T cells, ARG1 
arginase 1, MGL1 Macrophage galactose-type lectin 1
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cells to ensure cells’ survival. When turtle liver cells were 
exposed to hypoxia, researchers noticed that cellular energy 
and oxygen consumption dropped, but that critical activities 
including intracellular ion balance were intact [100]. Cell 
function was likewise stopped in a model of induced hiber-
nation in rat hepatocytes, but  Na+/K+ ATPase activity was 
maintained, and hepatocytes restored oxygen consumption 
and ATP generation to normal oxidation after reoxygenation 
capability [101].

Tolerance reflects the flexibility of cells to balance their 
survival and function, and energy allocation is an important 
manifestation of tolerance. The correlation between toler-
ance, energy trade-offs, and MODS highlights the central 
role of energy in sepsis and also implies an impact of meta-
bolic reprogramming on organ cell function.

The metabolic reprogramming is a key indicator 
of tolerance.

The overarching principles and mechanisms that control 
the expression of tissue tolerance programs remain largely 
unclear, but there is no doubt that energy is an important 
factor in tolerance. We all know that infected animals' 
metabolism skews toward FAO for ATP, accompanied by 
increased levels of free fatty acids in the blood. A study 
by Khan et al. [102] showed that the level of cellular lipid 
metabolites deviates from a "safe range" when comparing 
plasma lipid metabolism profiles between septic and non-
septic patients and that the level of lipid metabolites is 
related to sepsis mortality. FAO is primarily controlled by 
PPAR-α (encoded by the NR1C1 gene), and several stud-
ies have reported decreased PPAR-α levels in the organs 
and whole blood during sepsis. The rapid decline of hepatic 
PPAR-α levels causes excess free fatty acids, and PPAR-α 
agonist pemafibrate protects against lipotoxicity and tissue 
damage by improving hepatic PPAR-α function in sepsis 
[103]. Takuma et al. [104] demonstrated that mice lack-
ing PPAR-α had poor renal functions and that diminished 
PPAR-α signaling increased the incidence of AKI. Drosatos 
et al. [105] also found that JNK inhibition prevented LPS-
mediated cardiac dysfunction by increasing PPAR-α expres-
sion to improve FAO.

Although the sepsis-induced “starvation response" pro-
motes FAO to be considered the primary energy supplier, 
there is still a suppression of FAO during sepsis, and the 
oxygen and the normal function of mitochondria for ATP are 
difficult to achieve during sepsis, so FAO is not the best way 
to enhance tolerance. Glycolysis, not required mitochondria 
and oxygen, becomes the main candidate for increased tol-
erance during sepsis. Recent studies suggest that metabolic 
adaptations to bacterial infections are a critical determi-
nant of tissue tolerance [94, 106]. As previously indicated, 
the "Warburg effect" is used in the process of immune cell 

activation to maintain energy requirements and support bio-
synthetic chemicals, as well as to create a memory for a 
specific insult and modulate the response to future insults (a 
process known as trained immunity) [57]. Katherine et al. 
[106] found that glycolysis manipulation alters the disease 
tolerance of mice suffering from malaria, and supplemental 
glucose improves survival by promoting glycolysis.

Glycolysis during sepsis is the main pathway that deter-
mines the allocation of energy to organ cells, and changes 
in glycolysis reflect the activation and strength of cellular 
tolerance. It is reasonable to assume that the reprogram-
ming from OXPHOS to glycolysis is a protective mechanism 
that maintains the cellular survival state by enhancing cel-
lular tolerance and reducing cellular damage. During sepsis, 
both glucose uptake and the expression of glycolysis-related 
enzymes were significantly altered in organ cells. Sepsis 
elevates glucose uptake and the expression of GLUT1 pro-
tein 1.7-fold in the skeletal muscle of septic rats to enhance 
glycolysis [107]. In LPS-induced pulmonary fibrosis, LPS 
causes lung fibroblast aerobic glycolysis through the activa-
tion of the PI3K-Akt-mTOR/PFKFB3 pathway [108]. LPS 
also activates key molecules that regulate metabolisms such 
as HIF-1α [109] and AMPK [110]. These reprogramming 
of OXPHOS to glycolysis may be a pre-determined defense 
mechanism.

Metabolic reprogramming may also be the result of mito-
chondrial dysfunction or hypoxia. However, it is undeniable 
that glycolysis alleviates the energy crisis and promotes the 
tolerance of cells in harsh environments. The shift to gly-
colysis of cardiomyocytes to survive ischemia and hypoxia 
is thought to be an energy compensatory mechanism [111], 
and Singer et al. [10]also suggested that sepsis-induced low 
cardiac output is a "hibernation"-like phenomenon exhibited 
by the myocardium in the presence of energy deficit. Cells 
re-prioritize energy expenditure to maintain vital activities at 
the expense of organ function in low-energy situations, and 
the decrease in cellular function may be a protective mecha-
nism facing inadequate energy production. At this point, the 
more energy produced by glycolysis, the stronger tolerance, 
and the more survival organ cells.

Switching back from glycolysis to OXPHOS 
is essential for MODS

Although switching to glycolysis enhances the tolerance 
to ensure cell survival for a short period and effectively 
avoids re-injury to mitochondria and cells by ROS, as well 
as downstream adverse reactions caused by ROS are sup-
pressed, long-term glycolysis is damaging to organ function 
cells. Exogenous lactate caused an increase in mitochondrial 
damage in HK2 cells after 6 h, and cell survival was severely 
reduced after 24 h [112]. Long-term glycolysis has been 
reported to cause permanent renal shrinkage and fibrosis in 
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TECs, increasing the probability of transitioning from AKI 
to chronic kidney disease [7]. By quickly reverting OXPHOS 
to an energy supply mode, the prognosis of sepsis can be 
greatly improved. For example, Shikonin, a powerful PKM2 
inhibitor, reduces serum lactate and HMGB1 levels to pro-
tect mice from sepsis [113]. The activation of SIRT1, an 
important facilitator protein of OXPHOS, can enhance the 
survival of sepsis mice, according to Opal et al. [114] and 
Vidula et al. [115]. Treatment with the glycolysis inhibitor 
2-DG enhanced heart function and survival outcomes in a 
mouse model of septic cardiomyopathy [8]. Although gly-
colysis may help cells survive in the early stages of sepsis, 
it is clear that a return to OXPHOS metabolism is necessary, 
especially for those relying on OXPHOS.

The strength of tolerance can alter the outcome of cells 
in adverse situations. Lives evolve under survival pressure, 
and timely trade-offs are a crucial approach to adapting to 
the rule of superiority and inferiority. Cell evolution has 
resulted in a collaboration between OXPHOS and glyco-
lysis for energy supply. When OXPHOS is disrupted, the 
small amount of ATP produced by glycolysis is mainly used 
to sustain life activities, and the restoration of OXPHOS 
is necessary for the recovery of cellular function. Toler-
ance offers us a unique perspective on MODS. As shown in 
Fig. 2, metabolic reprogramming promotes tissue tolerance 
to protect organ cells during sepsis.

Mitochondria are essential 
to the metabolism of sepsis

It is vital to re-establish the function of OXPHOS in immune 
cells as well as organ cells. The operation of OXPHOS 
requires a healthy inner mitochondrial membrane and flaw-
less mitochondrial activity, so the contribution of mito-
chondria to metabolic reprograming during sepsis cannot 
be ignored.

Factors affecting mitochondrial function in sepsis

Mitochondrial function is affected during sepsis mainly 
through several aspects, as shown in Table 1. First, suf-
ficient oxygen is a prerequisite for mitochondrial ATP 
synthesis. Although the idea that tissue hypoxia is caused 
by insufficient oxygen delivery during sepsis is gradually 
being questioned, the mismatch between macrocircula-
tion and microcirculation [116, 117], abnormal volume 
distribution, and decreased cardiac function [118] dur-
ing sepsis may all contribute to insufficient tissue oxygen 
delivery. Even if the various enzyme activity involved in 
oxygen oxidation are tolerable, ATP cannot be effectively 

generated under low oxygen levels. When ATP genera-
tion falls below a certain level, the apoptotic and necrotic 
pathway is triggered [119, 120]. Pyruvate dehydrogenase 
complex (PDC) is the major metabolic enzyme for mito-
chondrial oxidative energy production, hence, a decrease 
in its activity will have an immediate influence on mito-
chondrial energy production. Additionally, PDC is also a 
bifurcation point between OXPHOS and glycolysis, and 
its role in metabolic reprogramming cannot be ignored. 
During sepsis, PDC activity is regulated by HIF-1a [121], 
glucocorticoid receptor (GR) [122], and peroxisome pro-
liferator-activated receptor (PPAR-a) [123, 124] pathways, 
which have direct impacts on OXPHOS capability. Mean-
while, the large amounts of NO [125, 126],  H2S [127], 
ROS [128], and other reactive substances that are pro-
duced during inflammation can inhibit the mitochondria 
function by suppressing ETC complexes and the TCA 
cycle. Mitochondrial homeostasis (biogenesis, fusion, 
autophagy) plays a decisive role in the regulation of cel-
lular energy metabolism and signaling pathways. Genes 
related to mitochondrial biosyntheses, such as peroxisome 
proliferator-activated receptor-gamma coactivator-1 (PGC-
1), mitochondrial transcription factor (Tfam), and nuclear 
respiratory factor-1 (NRF-1), are also explicitly and signif-
icantly repressed [129], whereas increased PGC-1 contrib-
utes to organ function recovery [130]. FUNDC1 interacts 
with LC3 to regulate mitochondrial homeostasis [131], 
and Ripk3 induces mitochondrial apoptosis via inhibition 
of FUNDC1 mitophagy [132]. AMPK as the key player in 
metabolism focuses on the regulation of various aspects 
of mitochondrial homeostasis [133] and promotes the 
interaction between mitochondrial fission and autophagy 
through the regulation of Drp1, Mff, PINK, and Parkin 
[134]. Uncoupling protein 2 (UCP2) is thought to dissi-
pate the proton gradient across the inner membrane and 
uncouple the respiratory chain from ATP generation [135]. 
During sepsis, calcium/calmodulin-dependent protein 
kinase(CaMK)-IV shifts the balance toward mitochondrial 
fission and away from fusion by directly phosphorylating 
fission protein Drp1 and reducing the expression of the 
fusion proteins Mfn1/2 and OPA1 [136]. CaMK-IV also 
is a direct PINK1 kinase and regulator of Parkin expres-
sion to control mitophagy [136]. Also, stress response dur-
ing the early stages of sepsis promotes massive hormone 
secretion [137–140], which to some extent affects mito-
chondrial function. Thyroid hormones can increase mito-
chondrial biosynthesis [141, 142] and regulate mitochon-
drial autophagy [143]. Insulin resistance in type 2 diabetes 
is closely related to mitochondrial function [144, 145]. 
Kitada et al. [146] found that SIRT1 also can improve 
insulin resistance by promoting fatty acid oxidation and 
mitochondrial biogenesis via deacetylation of PGC-1α and 
PPAR-α activation in skeletal muscle.
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Fig. 2  Metabolic reprogramming promotes tissue tolerance to 
increase organ cell adaptation during sepsis. Under normal con-
ditions, cells obtain ATP from OXPHOS and glycolysis. Resting 
Immune cells have fewer energy requirements and therefore most of 
the energy is allocated to organ cells to support functional activities. 
In sepsis, ATP is preferentially allocated to immune cells to support 
immune activation for clearing the pathogens, which results in less 
ATP for organ cells. To reduce energy consumption, organ cells shut 
down functional activities and use ATP as much as possible to main-
tain cell life activities, which leads to stagnation in organ cell func-

tion even MODS. This is an adaptation mechanism of the host during 
sepsis. When OXPHOS is suppressed, enhanced glycolysis rapidly 
supplies ATP to maintain cellular survival and encourages stronger 
tissue tolerance to adapt to sepsis more easily. It also provides an 
opportunity for cells to restore OXPHOS to promote recovery of cel-
lular function. GLUT1 glucose transporter protein 1, PFKFB3 fruc-
tose-2,6-bisphosphatase 3, HK2 hexokinase 2, PKM2 pyruvate kinase 
M2, LDH lactate dehydrogenase, Glu-6-P glucose 6-phosphate, Fru-
6-P Fructose 6-phosphate, MODS multi-organ dysfunction syndrome
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Treatment of sepsis requires proper mitochondrial 
function

Mitochondria have long been thought to have functions in 
the progression of the disease by regulating cell metabolism 
and influencing ATP production. It is also responsible for a 
wide range of cellular functions, such as cellular calcium 
homeostasis and programmed cell death.

Mitochondrial free radicals and ROS can disrupt cell 
signaling, while the mitochondria themselves are the main 
targets of ROS damage. UCP2 is a mitochondrial mem-
brane protein that reduces mitochondrial ROS generation 
by triggering proton leak and thereby lowers mitochondrial 
ROS production [135]. In a study of septic cardiomyopathy, 
inhibiting UCP2 enhanced ROS, mitochondrial swelling, 
and cardiac damage [147], whereas overexpressing UCP2 
increased caspase3 activity and Bax protein accumulation, 
and attenuated cardiomyocyte apoptosis [148]. Upregula-
tion of SIRT3-mediated inhibition of oxidative stress pre-
served mitochondrial function and induced autophagy in 

small intestinal epithelial cells, which partially alleviated 
sepsis-induced small intestinal injury [149]. Suppressed 
PGC-1α by LPS triggers the reprogramming of cardiac 
energy metabolism, which is associated with decreased 
ventricular function in septic cardiomyopathy [150]. At the 
same time, the mitochondrial homeostasis, including the 
dynamic process of mitochondrial fusion/fission (Mfn2, 
OPA1, Drp1), mitochondrial biogenesis (NRF-1, PGC-1α, 
Tfam), and mitochondrial mitophagy (Parkin, PINK1), pro-
tects the lung [136] and kidneys [136] from ongoing oxida-
tive injury [151].

Mitochondria also play a role in modulating immune 
cell function [152]. TLRs enhanced by mitochondrial ROS 
allow macrophages to receive and conduct signals more 
sensitively, improving immune cells' ability to clear harm-
ful bacteria [153]. Secondly, mitochondria-specific protein, 
mitochondrial antiviral signaling protein (MAVS), accumu-
lates on the surface of mitochondria to serve as a signaling 
platform to participate in the anti-RNA virus RLR pathway 
[74, 154]. At the same time, mitochondrial DAMPs, such as 

Table 1  Factors affecting mitochondrial function during sepsis

Classification Factors Effect on mitochondria References

Relative hypoxia Macrocirculation Volume distribution oxygen delivery De Backer et al. [116]
Lin et al. [118]Cardiac function

Vascular tone
Microcirculatory Glycocalyx degradation O2 diffusion distance De Backer et al. [116]

Inkinen et al. [117]Endothelial dysfunction
Oxygen utilization disorder Mitochondrial homeostasis PGC-1α, Tfam, NRF1 Biogenesis Mao et al. [129]

Tran et al. [130]
Drp1, Mff Fission Seabright et al. [134]
Mfn1/2, OPA1 Fusion Zhang et al. [136]
PINK, Parkin, FUNDC1 Autophagy Zhang et al. [131]

Regulatory molecules HIF-1α, GR, PPAR-α PDC activity Dasgupta et al. [121]
Connaughton et al. [122]
Palomer et al. [123]
Nakamura et al. [124]

SIRT1 FAO, Biogenesis Kitada et al. [146]
AMPK Mitochondrial homeostasis Herzig et al. [133]

Seabright et al. [134]
CaMK-IV ΔΨm, fission, fusion, autophagy Zhang et al. [136]
UCP2 ΔΨm, ROS Mao et al. [129]

Donadelli et al. [135]
RIPK3 Autophagy Zhou et al. [132]
NO,  H2S, ROS PDC activity, TCA cycle, ETC 

complexes
Brown et al. [125]
Erika et al. [126]
Murphy et al. [127]
Zorov et al. [128]

Hormone Thyroid hormones Biogenesis autophagy Yu et al. [141]
Marín-García et al. [142]
Yau et al. [143]

Insulin OXPHOS Szendroedi et al. [144]
Tubbs et al. [145]
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mitochondrial DNA and n-formyl peptides (n-fp) [155], are 
released to the cytosol where they could be sensed by vari-
ous PRRs to activate the immune response.

The specific regulatory effects of mitochondrial metabo-
lism on the innate immune pathway are influenced by metab-
olites in the metabolic pathway. TCA is blocked by down-
regulation of isocitrate dehydrogenase and overexpression 
of immune-responsive gene 1 protein (IRG1) [156, 157], 
resulting in the conversion of accumulated citrate to itaco-
nate [158, 159]. Itaconate can highly activate macrophages 
[160, 161] but also inhibit complex II (also known as suc-
cinate dehydrogenase), which prevents succinate from being 
oxidized [160]. Furthermore, succinate oxidation governs 
the inflammatory phenotype of the macrophage, as indicated 
by increased inflammatory gene expression and decreased 
anti-inflammatory gene expression [162, 163].

Conclusion

OXPHOS is the metabolic pathway of most cells in the phys-
iological state, but during sepsis, the metabolism of cells 
is reprogrammed to glycolysis. Cells use both mechanisms 
to enhance their defenses in adverse situations. Crosstalk 
between immune activity and metabolic reprogramming 
during sepsis shows that switching to glycolysis increases 
immune activation, but that excessive glycolysis paradoxi-
cally causes immunosuppression. As the most key factor 
affecting tissue tolerance during sepsis, glycolysis can tran-
siently maintain cellular vital activity, prolong survival, pro-
tect organs from ATP deficiency-induced death in sepsis, 
and in some way reduce oxidative damage to mitochondria 
and cells by OXPHOS. But, for achieving recovery of cellu-
lar functional activity in organs, the well-timed restoration of 
OXPHOS is the most necessary process. Whereas the basis 
of repairing OXPHOS is to ensure that mitochondrial struc-
ture and function are maintained, mitochondrial protection 
deserves more attention in the treatment of sepsis.

However, facing metabolic differences among different 
cell types and different severity of the disease, the most 
important question we need to consider is how to find the 
best time to use these reprogramming mechanisms. The 
same metabolic modality may lead to opposite results, 
e.g. glycolysis is beneficial for immune cell activation but 
detrimental in TECs [164]. Early restoration of OXPHOS 
appears to be the best option, but OXPHOS is also harm-
ful to the fragile mitochondria and cells during sepsis. The 
metabolic flexibility determines the efficient operation of 
the metabolic reprogramming, which favors cells' ability to 
adapt to adverse conditions. The fixable metabolic patterns 
due to loss of metabolic flexibility exacerbate cell dysfunc-
tion. To take full advantage of the crosstalk between meta-
bolic reprogramming and cell function, we also need to find 

the key regulators that modulate the metabolic flexibility 
of the cell. However, we presently don't recognize enough 
about septic metabolism and will face significant challenges 
in the future. Mitochondria, as the core organelles of cellular 
metabolism, could be a breakthrough to exploit metabolic 
reprogramming.
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