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Aims The spatiotemporal deep convolutional neural network (DCNN) helps reduce echocardiographic readers’ erroneous 
‘judgement calls’ on Takotsubo syndrome (TTS). The aim of this study was to improve the interpretability of the spatio
temporal DCNN to discover latent imaging features associated with causative TTS pathophysiology.

Methods 
and results

We applied gradient-weighted class activation mapping analysis to visualize an established spatiotemporal DCNN based on 
the echocardiographic videos to differentiate TTS (150 patients) from anterior wall ST-segment elevation myocardial infarc
tion (STEMI, 150 patients). Forty-eight human expert readers interpreted the same echocardiographic videos and prioritized 
the regions of interest on myocardium for the differentiation. Based on visualization results, we completed optical flow 
measurement, myocardial strain, and Doppler/tissue Doppler echocardiography studies to investigate regional myocardial 
temporal dynamics and diastology. While human readers’ visualization predominantly focused on the apex of the heart in 
TTS patients, the DCNN temporal arm’s saliency visualization was attentive on the base of the heart, particularly at the 
atrioventricular (AV) plane. Compared with STEMI patients, TTS patients consistently showed weaker peak longitudinal dis
placement (in pixels) in the basal inferoseptal (systolic: 2.15 ± 1.41 vs. 3.10 ± 1.66, P < 0.001; diastolic: 2.36 ± 1.71 vs. 2.97 ±  
1.69, P = 0.004) and basal anterolateral (systolic: 2.70 ± 1.96 vs. 3.44 ± 2.13, P = 0.003; diastolic: 2.73 ± 1.70 vs. 3.45 ± 2.20, 
P = 0.002) segments, and worse longitudinal myocardial strain in the basal inferoseptal (−8.5 ± 3.8% vs. −9.9 ± 4.1%, P =  
0.013) and basal anterolateral (−8.6 ± 4.2% vs. −10.4 ± 4.1%, P = 0.006) segments. Meanwhile, TTS patients showed worse 
diastolic mechanics than STEMI patients (Eʹ/septal: 5.1 ± 1.2 cm/s vs. 6.3 ± 1.5 cm/s, P < 0.001; Sʹ/septal: 5.8 ± 1.3 cm/s vs. 
6.8 ± 1.4 cm/s, P < 0.001; Eʹ/lateral: 6.0 ± 1.4 cm/s vs. 7.9 ± 1.6 cm/s, P < 0.001; Sʹ/lateral: 6.3 ± 1.4 cm/s vs. 7.3 ± 1.5 cm/s, 
P < 0.001; E/Eʹ: 15.5 ± 5.6 vs. 12.5 ± 3.5, P < 0.001).

Conclusion The spatiotemporal DCNN saliency visualization helps identify the pattern of myocardial temporal dynamics and navigates 
the quantification of regional myocardial mechanics. Reduced AV plane displacement in TTS patients likely correlates with 
impaired diastolic mechanics.
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Key Question: Can “explainable artificial intelligence” help human readers to avoid “inattentional 
blindness” and extract latent imaging features to investigate pathophysiology?

Conclusion: The spatiotemporal DCNN saliency visualization guided clinical echocardiography 
assessment to characterize diastolic mechanics in TTS patients.
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Introduction
It is difficult to differentiate Takotsubo syndrome (TTS) from acute 
myocardial infarction (AMI), particularly ST-segment elevation myocar
dial infarction (STEMI), based solely on clinical characteristics, biomar
kers, or electrocardiograms (ECGs).1,2 Because a substantial portion of 
TTS cases are actually triggered by bleeding disorders (particularly from 
the central nervous system), frontline clinicians often face a dilemma to 
use anticoagulation (for cardiac catheterization) or thrombolysis in 
those patients with ‘STEMI’ ECGs.3,4 In real-world practice, definitive 
diagnosis of TTS often becomes chronophagous and retrospective.2,5

Nonetheless, misdiagnosing TTS as AMI in real time can lead to in
appropriate pharmacological or device-based treatment and acute 
complications.6,7 Improving diagnostic accuracy of TTS would help real- 
time patient triage and streamline clinical care pathways and give added 
impetus to prospective therapeutic trial design.2,5,6

Myocardial pathology can alter contractile and relaxing patterns dur
ing cardiac cycles. The information within or between consecutive sta
tic images from echocardiographic videos improves the perception of 
temporal features and applicability of deep learning (DL) neural models 
in recognizing latent myocardial function changes.8–10 We recently 
showed that effective spatiotemporal modelling in deep convolutional 
neural networks (DCNNs) reduced echocardiography readers’ erro
neous ‘judgement calls’ on TTS.11,12 The DCNN is usually regarded 
as a ‘black-box’ method, due to lack of explanations about how final de
cisions are made. Improving interpretability of an established DCNN 
appraises model competency and helps understand the rationales 
that have contributed to its specific decision-making and correct pre
dictions, to discover latent imaging features associated to previously un
known pathophysiology.13 In the present study, we applied saliency 
visualization on a spatiotemporal DCNN to navigate quantitative echo
cardiography evaluations on myocardial mechanics and identify the 
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pattern of regional myocardial temporal dynamics, so as to investigate 
and validate causative TTS pathophysiology.

Methods
An overview of the study design is illustrated in Figure 1.

Clinical and imaging data
Detailed methods, including DCNN Model construction, data training, and 
validation have been described in our previous publication.11 Briefly, we ob
tained clinical, laboratory, ECG, coronary angiograms (CAG), and echocar
diographic data of studied patients at the University of Iowa (UI) and eight 
other medical centres in the USA.11 The differentiation between anterior 
wall STEMI and TTS was proven by CAG, following the updated diagnostic 
criteria for STEMI14 and TTS.1 ST-segment elevation myocardial infarction 
patients had CAG-proven culprit stenosis (>70%) of the left anterior des
cending artery (LAD) with ventricular dilation/wall motion abnormalities 
consistent with the myocardial territories supplied by culprit coronary ar
teries in left ventriculography. The transthoracic echocardiograms (TTEs) 
were performed within 24 h after onset of symptoms in STEMI and TTS pa
tients. Patients were excluded if they had primary valvular disorders, signifi
cant pulmonary hypertension, atrial fibrillation, anomalous LAD origin, or 
normalized wall motion abnormality. Based on anatomic features, Gensini 
score, culprit artery location, and dominant/side-branch circulations, seg
ments were divided into culprit or non-culprit artery-supplied areas in a 
standard 17-segment left ventricle (LV) model.15 The TTE was performed 
with the Philips Epiq 7 machine (Philips North America Corporation, 
Cambridge, MA) and 3.5 MHz phased-array transducer for standard com
prehensive two-dimensional (2D), Doppler and speckle tracking echocardi
ography. The TTE was performed using standard techniques following the 
updated guidelines of the American Society of Echocardiography.15 All 

images were stored digitally for playback and offline analysis. The 2D grey
scale images were acquired in the standard apical views, and the standard 
apical four-chamber ventricular focused view images and videos were 
used for subsequent studies. Pixel data from the picture archiving and com
munication systems were pre-processed into numeric arrays, and the data 
were stored at a resolution of 800 × 600 pixels. If necessary, they were re
scaled through bilinear interpolation. The echo videos from a control group 
of patients with matched age and risk factors for coronary artery disease 
were also included. The control patients were initially referred for echocar
diography for suspected acute coronary syndrome in the absence of prior 
history of structural heart disease, and subsequent workup ruled out car
diac valvular/function (systolic) abnormalities.15

Human data visualization
Based on Qualtrics® software, the echocardiographic video image surveys 
to classify TTS and STEMI were completed in our previous study.11 In the 
present study, a total of 48 human readers used Qualtrics® to record what 
each reader marked the important myocardial regions that had influenced 
their decision-making. All human readers have identified three regions of 
interest (ROIs) among the LV segments in apical four-chamber views of 
echocardiographic videos that were perceived as important in their differ
entiation of TTS from STEMI. The prioritized ROIs from human readers 
were transformed to the percentages of readers’ choices, and a weighted 
average of all results equipped with an averaging filter was made to generate 
a human heatmap.

Data visualization with the gradient-weighted 
class activation mapping method
Feature extraction and visualization
The DCNN model consists of nine convolution layers each equipped with a 
3 × 3 × 3 kernel, as well as four max-pooling layers each with a 2 × 2 × 2 
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Figure 1 Overall study design and workflow. TTS echocardiography videos were presented to 48 human readers and a trained spatiotemporal 
DCNN classifier to classify the videos as either TTS or STEMI. The human readers highlighted the key areas they used for differentiation while a heat
map was generated for the most important pixels by the DCNN for disease classification. The myocardial mechanics and diastology were subsequently 
assessed through optical flow, longitudinal strain, and Doppler/tissue Doppler studies. DCNN, deep convolutional neural network; TTS, Takotsubo 
syndrome; STEMI, ST-segment elevation myocardial infarction.
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kernel. The last convolution layer is flattened and connected with a decision 
layer comprised of two neurons for each class prediction. The final convo
lution layer has 256 kernels and each of them contain a high-level abstract 
feature for disease classification. To visualize the feature maps from the last 
convolution layer, we implemented the gradient-weighted class activation 
mapping (GradCAM) with positive gradients, which is a variation of 
GradCAM,16 that used the gradients of the classification score for TTS 
(resp., STEMI) backpropagation into the last convolutional layer to produce 
a coarse heatmap LTTS (resp., LSTEMI) highlighting the important regions in the 
image for predicting TTS (resp., STEMI). Details on generating the heatmap 
are available in the Supplementary material online, Method.

Optical flow
We implemented the Lucas–Kanade (LK) optical flow measurement algo
rithm for quantifying pixel displacements among the echocardiogram 
frames.17–20 Details on the LK optical flow algorithm are available in the 
Supplementary material online, Method. Briefly, The LK method is a two- 
frame differential method for motion estimation when the motion in a local 
neighbourhood is similar. There was no abrupt change for ventricular mo
tion in a small region. The speckle noises in echocardiograms might yet gen
erate randomness during calculation of motion. We thus first selected a 
random number of pixels from the location of interest and use optical 
flow to calculate the frame-to-frame pixel displacements. Then the average 
displacement for all pixels in each frame was computed as the estimate of 
the motion for the specific location of interest to reduce the randomness. 
To determine the transition frame between the systolic and diastolic cycles, 
we divided the total cardiac cycle into three phases with an equal number of 
frames. Intuitively, at the end of the systolic cycle, the velocity was close to 
minimum. We selected the frame with least velocity in the middle phase as 
the transition frame. Any frame after the transition frame was considered in 
the diastolic cycle and the displacement was defined as a negative one. 
Finally, we obtained location-specific smooth velocity curve by using bicubic 
interpolation after suppressing the negligible displacements in the systolic 
and diastolic cycles. Details on measuring the frame-by-frame pixel displace
ment are available in the Supplementary material online, Method.

Speckle tracking echocardiography
The 2D greyscale images were acquired in the standard apical views. Only 
images with frame rates > 40 frames/s were selected for analysis. All images 
were stored digitally for subsequent offline analysis. Speckle-tracking ana
lysis automatically tracked myocardial motion throughout the cardiac cycle 
to quickly generate regional myocardial strain curves. We adjusted the 
width of ventricular walls to include the entire myocardium. Built-in soft
ware automatically accepted only those segments with good tracking qual
ity and rejected segments with poor tracking quality. Finally, automated 
function imaging based on speckle-tracking analysis integrated quantitative 
data of ventricular peak systolic longitudinal strain into a standard, 
17-segment model with a ‘bulls-eye’ figure, helping to detect both regional 
and global ventricular dysfunction. The average magnitudinal and longitudin
al motion of a whole cardiac cycle related to basal-inferoseptum, mid- 
inferoseptum, apical-inferoseptum, basal-anterolateral, mid-anterolateral, 
apical-anterolateral, and apex of the heart for TTS, STEMI, and control pa
tients were computed. Two echocardiographic board-certified cardiolo
gists blinded to patients’ clinical and biochemical data independently 
performed strain analyses. When there was a disagreement, a consensus 
was made by the third echocardiographic board-certified reader.

Tissue Doppler/Doppler studies
Early blood flow velocity across the mitral valve (E) and mitral annulus (both 
septal and lateral) diastolic myocardial motion velocity (Eʹ) were measured 
during early diastole with pulse wave Doppler and tissue Doppler study, re
spectively. Mitral annulus (both septal and lateral) systolic myocardial mo
tion velocity (Sʹ) was measured during systole with tissue Doppler study. 
Tricuspid annular plane systolic excursion (TAPSE) was measured with 
2D guided M-mode study following the updated guidelines of the 
American Society of Echocardiography.15

Statistical analysis
All statistical analysis was performed using the open source software 
Python 3.7.4 with the package Scipy. Statistical significance was defined as 
P value of <0.05. Quantitative data were expressed as mean ± standard de
viation (SD), compared using unpaired Student’s t-test and the Mann– 
Whitney U test (SPSS Statistics, IBM, Armonk, NY). Otherwise, the median 
(interquartile range) was used and compared using the Mann–Whitney 
U test. Categorical data were presented as absolute values and percentages 
and compared using Fisher’s exact test.

Results
Baseline characteristics
The demographic and clinical data of control, STEMI, and TTS patients 
are summarized in Table 1.

Human and saliency visualization
A total of 48 board-certified human readers performed human-side clas
sification and data visualization on the same echocardiography dataset de
veloping DCNN. They included 30 cardiologists (8 interventional 
board-certified cardiologists and 22 National Board of Echocardiography 
board-certified general cardiologists), 11 senior the American Registry 
for Diagnostic Medical Sonography board-certified cardiology sono
graphers, and 7 frontline care (emergency and critical care) physi
cians with more than three years’ experience of POCUS training 
(Acknowledgements). We retrospectively analysed the imaging pheno
type of each TTS case that human readers had missed in our previous 
study,11 and classified diagnostic difficulties based on percentage of hu
man readers who made erroneous diagnoses: we defined ‘difficult’ cases 
as those in which >70% of human readers made erroneous diagnoses, 
‘moderately difficult’ cases as those in which 40% to 70% of human read
ers made erroneous diagnoses, and ‘easy’ cases as those in which <40% 
human readers made erroneous diagnoses. Compared to ‘easy’ and 
‘moderately difficult’ cases, most ‘difficult’ cases showed atypical TTS im
aging phenotype, with smaller ‘apical ballooning (akinesis or dyskinesis)’ 
size (likely in different TTS evolving stages). The improvement in diagnos
tic accuracy from DCNNs mainly occurred in those TTS patients with 
evolving/atypical imaging phenotypes: DCNNs helped improve the diag
nostic accuracy in 70% of ‘difficult’ TTS cases, in 19% of ‘moderate diffi
cult’ cases, and in 0% of ‘easy’ cases (see Supplementary material online, 
Figure S1). Of note, while human readers’ visualization predominantly fo
cused on the apex of the heart, the DCNN temporal arm’s saliency visu
alization was attentive on the base of the heart, with both typical and 
atypical imaging phenotypes. Compared with relatively extensive activa
tion in patients with typical imaging phenotypes, the activation in patients 
with evolving/atypical imaging phenotypes appeared to be more active on 
the base of the heart, the AV plane (Figure 2).

The assessment of ventricular temporal 
dynamics and myocardial mechanics
The results on the assessment of LV myocardial mechanics in control, 
TTS, and STEMI patients are shown in the Supplementary material 
online, Table S1. Optical flow assessment showed an apex to base gra
dient with regard to temporal dynamics of myocardium in both TTS 
and STEMI patients (Figure 3). The quantification assessments with op
tical flow showed consistently weaker peak longitudinal displacement 
(in pixels) in LV basal inferoseptal (systolic: 2.15 ± 1.41 vs. 3.10 ±  
1.66, P < 0.001; diastolic: 2.36 ± 1.71 vs. 2.97 ± 1.69, P = 0.004) and ba
sal anterolateral (systolic: 2.70 ± 1.96 vs. 3.44 ± 2.13, P = 0.003; diastol
ic: 2.73 ± 1.70 vs. 3.45 ± 2.20, P = 0.002) segments in TTS patients 
compared to STEMI patients (Figure 4 and see Supplementary 
material online, Table S1). Compared to STEMI patients, TTS patients 
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Table 1 Demographic and clinical characteristics

Control AMI (AS-STEMI) TTS AMI vs. control TTS vs. control AMI vs. TTS

Patient number (n) 150 150 150 t-Test t-Test t-Test

Age, years (SD) 62.3 (14.2) 61.3 (13.4) 63.2 (13.1) P = 0.51 0.61 0.21

Male, n (%) 67 (44.7) 104 (69.3) 26 (17.3) P < 0.01 <0.001 <0.001
Previous CAD n (%) 13 (8.7) 25 (16.7) 17 (11.3) 0.05 0.47 0.22

HLD, n (%) 70 (46.7) 73 (49.0) 51 (34.0) 0.8 0.08 0.05

Systolic BP (SD) 128.7 (21.6) 124.6 (24.3) 118.5 (21.5) 0.16 <0.001 0.02
Diastolic BP (SD) 74.1 (13.1) 79.0 (18.1) 73.5 (16.0) 0.01 0.73 0.007

Heart rate (SD) 81.4 (18.6) 89.7 (22.0) 99.0 (25.1) 0.001 <0.001 0.001

DM, n (%) 29 (19.3) 37 (24.7) 37 (24.7) 0.32 0.32 1
COPD, n (%) 10 (6.7) 8 (5.3) 28 (18.7) 0.64 0.03 <0.001

CKD, n (%) 17 (11.3) 18 (12.0) 24 (16.0) 0.87 0.27 0.35

Hyperthyroid, n (%) 3 (2.0) 1 (0.67) 4 (2.7) 0.32 0.71 0.18
Smoking, n (%) 76 (50.7) 101 (68.2) 95 (66.0) 0.05 0.09 0.81

ACEi/ARB, n (%) 54 (36.0) 48 (32.0) 48 (32.0) 0.55 0.55 1

BB, n (%) 52 (34.7) 43 (28.7) 55 (36.7) 0.36 0.77 0.23
Chest pain, n (%) n/a 115 (76.7) 41 (27.3) n/a n/a <0.001

Peak CTnT, ng/mL (SD) n/a 5.72 (8.2) 0.60 (0.81) n/a n/a <0.001

AMI, acute myocardial infarction; AS-STEMI, anterior wall ST-segment elevation myocardial infarction; TTS, Takotsubo syndrome; CAD, coronary artery disease; PCI, percutaneous 
coronary intervention; HLD, hyperlipidaemia; BP, blood pressure; DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; ACEi, 
angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BB, beta blocker; CTnT, cardiac troponin; LVH, left ventricular hypertrophy; EF, ejection fraction; LA, 
left atrium.
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Figure 2 Discrepant human and spatiotemporal DCNN visualization. The gradient-weighted class activation mapping (GradCAM) interpretability 
method are used to unfold the activations of the network layers in a DCNN. In the heatmap, a brighter point indicates that the corresponding pixel 
in the input image plays a more important role in class prediction. The colour range of each of the heatmaps is from dark blue to dark red, where dark 
blue marks the least important and dark red marks the most important pixels for model prediction. (A) This is a heatmap of the prioritized regions of 
interest from human readers used to differentiate TTS and anterior wall STEMI among left ventricular segments in the apical four-chamber view echo
cardiography (the percentages of readers’ choices are depicted using the digital colour scale in panel (D). (B) This is a heatmap of accumulated DCNN 
classification on echocardiographic videos of patients with typical TTS imaging phenotypes (DCCNs outperformed human readers at the least in diag
nostic accuracy11). (C ) This is a heatmap of accumulated DCNN classification on echocardiographic videos of patients with atypical (evolving) TTS 
imaging phenotypes (DCCNs outperformed human readers at the most in diagnostic accuracy11). (D) Normalized colourmap scale used for heatmaps 
(A, B, C ). 0.0: the lowest-priority regions; 1.0: the highest-priority regions. DCNN, deep convolutional neural network; STEMI, ST-segment elevation 
myocardial infarction; TTS, Takotsubo syndrome.
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also showed impaired longitudinal displacement in RV free wall basal 
segments (systolic: 3.86 ± 2.54 vs. 5.13 ± 3.43, P = 0.002; diastolic: 
4.13 ± 3.29 vs. 5.32 ± 4.62, P = 0.027) and TAPSE (16.8 ± 3.3 mm vs. 
18.9 ± 3.6 mm, P = 0.004) (see Supplementary material online, 
Table S1). Speckle tracking echocardiography showed worse longitudin
al myocardial strain in basal inferoseptal (−8.5 ± 3.8% vs. −9.9 ± 4.1%, 
P = 0.013) and basal anterolateral (−8.6 ± 4.2% vs. −10.4 ± 4.1%, 
P = 0.006) segments in TTS patients compared to STEMI patients 
(Table 2). Meanwhile, tissue Doppler/Doppler studies showed worse 
diastolic mechanics/function (Eʹ/septal: 5.1 ± 1.2 cm/s vs. 6.3 ± 1.5 cm/s, 
P < 0.001; Sʹ/septal: 5.8 ± 1.3 cm/s vs. 6.8 ± 1.4 cm/s, P < 0.001; 
Eʹ/lateral: 6.0 ± 1.4 cm/s vs. 7.9 ± 1.6 cm/s, P < 0.001; Sʹ/lateral: 6.3 ±  
1.4 cm/s vs. 7.3 ± 1.5 cm/s, P < 0.001; E/Eʹ: 15.5 ± 5.6 vs. 12.5 ± 3.5, 
P < 0.001) in TTS patients compared to STEMI patients (Table 2).

Discussion
We investigated a new application of explainable DL in extracting latent 
spatiotemporal imaging features in echocardiography videos that 

correlate with underlying pathophysiology. Deep convolutional neural 
network saliency visualization characterized the regional myocardial 
temporal dynamics and navigated quantitative studies of myocardial 
mechanics in TTS patients. Impaired AV plane displacement likely cor
relates with TTS associated diastolic dysfunction.

In a multi-tasking human mind, the visual cortex may not be able to 
process all the diverse information that impinges on vision at the same 
time. The human biological visual system tends to ignore ‘irrelevant’ vis
ual stimuli and focus on the most ‘important’ regions to quickly parse 
complex scenes in real time.21 Although an echocardiographic video 
holds comprehensive spatiotemporal information that allows wide- 
ranging examinations of structure and function of cardiac chambers, hu
man brains are wired for a bias towards selective myocardial areas or 
features to identify pathology—‘the eye sees what it expects to see.’22

The present study shows the potential of spatiotemporal DL neural 
models to help human readers avoid ‘inattentional blindness’ and navi
gate parametric imaging assessment to extract inherent spatiotemporal 
imaging features that correlate with underlying pathophysiology.23

The ventricular contractile patterns can change at different time 
points due to the dynamic and evolving nature of TTS. Imaging diagnosis 

B CA

Control 

STEMI 

TTS

Figure 3 Myocardial optical flow assessment in control, STEMI, and TTS patients. Red, blue, magenta, green, yellow, orange, and purple pixels mark 
the basal-inferoseptum, mid-inferoseptum, apical-inferoseptum, apex, apical-anterolateral, mid-anterolateral, and basal-anterolateral sections, respect
ively, of an apical four-chamber view in an echocardiogram. (A) Motion trajectory for a systolic cycle. The lines corresponding to each colour mark the 
motion trajectory for each pixel. (B) Motion trajectory for a diastolic cycle. (C ) Motion trajectory for a full cardiac (systolic + diastolic) cycle. STEMI, 
ST-segment elevation myocardial infarction; TTS, Takotsubo syndrome.
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Figure 4 Impaired AV plane displacement and diastolic mechanics in TTS patients. Optical flow measurement: X-axis: frame change during a cardiac 
cycle; Y-axis: pixel displacement during a cardiac cycle. (A) Compared with STEMI patients, TTS patients showed significantly impaired amplitudinal dis
placement in LV basal inferoseptal (systolic: 2.72 ± 1.43 vs. 3.72 ± 1.92, P < 0.001; diastolic: 2.93 ± 1.85 vs. 3.49 ± 1.86, P = 0.15) and basal anterolateral 
(systolic: 4.23 ± 2.32 vs. 5.17 ± 2.55, P = 0.002; diastolic: 4.52 ± 2.69 vs. 5.08 ± 2.69, P = 0.091). (B) Compared with STEMI patients, TTS patients 
showed significantly impaired longitudinal displacement in LV basal inferoseptal (systolic: 2.15 ± 1.41 vs. 3.10 ± 1.66, P < 0.001; diastolic: 2.36 ± 1.71 
vs. 2.97 ± 1.69, P = 0.004) and basal anterolateral (systolic: 2.70 ± 1.96 vs. 3.44 ± 2.13, P = 0.003; diastolic: 2.73 ± 1.70 vs. 3.45 ± 2.20, P = 0.002). 
AV, atrioventricular; LV, left ventricle; STEMI, ST-segment elevation myocardial infarction; TTS, Takotsubo syndrome.
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is often challenging based on one-time echocardiographic study, which 
compromises readers’ confidence and accuracy, particularly in diagnos
ing TTS with evolving imaging phenotypes. We previously demon
strated that DL neural networks helped reduce erroneous human 
‘judgement calls’ in distinguishing TTS from anterior wall STEMI based 
on echocardiographic videos.11,12 Further analysis showed that the im
provement in diagnostic accuracy from the DCNNs mainly occurs in 
those TTS patients with evolving (therefore atypical) imaging pheno
types. These results provided the evidence that integrating DCNNs 
into echocardiography interpretation could improve readers’ diagnos
tic accuracy to support urgently needed triage and frontline manage
ment decisions during cardiovascular emergencies.

In the present study, we used GradCAM, a technique for making 
DCNN-based prediction models more transparent by visualizing the 
regions of input that are ‘important’ for predictions from these mod
els—that is, to determine which parts of supporting features are 
more important than the others among the raw imaging dataset.24

Meanwhile, we requested 48 human expert readers interpreted the 
same echocardiography dataset and prioritized the important myocar
dial regions of interest to differentiate TTS and anterior wall STEMI. 
Interestingly, while humans’ basic knowledge on this ‘apical ballooning 
syndrome’ might subconsciously draw much of their attention to the 
apex of the heart, the trained spatiotemporal DCNNs focused pre
dominantly on the base of the hearts for differentiation, particularly 
in those patients with evolving/atypical TTS imaging phenotypes 
(Figure 2). Subsequent myocardial function assessments with optical 
flow (on raw images) and clinical speckle tracking echocardiography 
both showed worse AV plane displacement in patients with TTS com
pared to patients with anterior wall STEMI. Although apical LV dysfunc
tion is a well-known crucial imaging feature in both TTS and anterior 
wall STEMI patients, the former shows worse temporal dynamics in 
the base of the heart. This finding challenges the traditional eyeball ap
pearance of ‘basal hypercontractility’ in TTS patients (possibly related 
to the contrasting markedly akinetic middle and apical segments with 
a ‘ballooning’ appearance from human visualization). The present study 
demonstrates the ability of spatiotemporal DCNNs to track and com
pute coherent changes rapidly throughout a cumulative evaluation of 

the continuous and multi-dimensional movements of different parts 
of the heart. This robust and meticulous analytic process allows the 
identification of ‘truly’ distinctive myocardial mechanics caused by dif
ferent disorders that are ‘invisible’ to naked human eyes.

Due to a paucity of automated resources for processing raw imaging 
data and lack of consistent reporting of data quality measures, 
large-scale and standardized training imaging databases are often un
available for rare cardiovascular disorders, such as TTS.25,26 As a con
sequence, echocardiography readers often must rely on instinct or 
limited personal experience to make urgently needed diagnosis and 
management decisions in clinical practice. Inter-observer variations 
and errors may occur due to inherent subjectivity. A major benefit of 
direct image interpretation with DCNNs is that predictions can be gen
erated automatically from raw imaging data alone to avoid subjectiv
ity.27,28 The DCNN data visualization can assist readers by pointing 
out the contributing regions of interest, extracting latent temporal im
aging features not obvious to the human eye, and supporting the devel
opment of new quantitative parametric reference values.29,30 This 
functionality has the potential to help ‘coach’ trainees with various 
backgrounds and experience in order to facilitate and standardize im
aging training workflows and pathways, particularly for rare cardiovas
cular disorders in future.26

The unique motion and displacement patterns of the base of the 
heart have been previously found to play vital roles in ventricular filling 
and emptying,31 and they were considered as the ‘overall’ functional ex
pression of a series of haemodynamic events.32 Particularly, character
istic longitudinal AV plane movement correlated well with intrinsic 
diastolic mechanic performance of the heart.33 In our TTS patients, 
while the real-time myocardial perfusion (see Supplementary material 
online, Figure S2) and metabolism34 are well preserved in the base of 
the heart, the motions of basal segments still appeared to be significant
ly worse than patients with anterior wall STEMI (Figure 4 and see 
Supplementary material online, Figure S3). By integrating DL navigation 
into the traditional echocardiography assessment approaches, our 
study demonstrated global myocardial stiffness and advanced diastolic 
dysfunction in TTS patients, which may be important contributors to 
their adverse long-term outcomes.35–37 These results suggest that 
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Table 2 The assessment of AV plane displacement and diastolic mechanics

Control AMI (AS-STEMI) TTS AMI vs. control TTS vs. control TTS vs. AMI

Longitudinal strain

Apex −18.0 ± 4.0 −7.0 ± 3.3 −6.3 ± 3.0 P < 0.001 P < 0.001 P = 0.228

Apical septal segment −19.2 ± 4.0 −7.2 ± 3.6 −6.6 ± 4.6 P < 0.001 P < 0.001 P = 0.401
Apical lateral segment −16.9 ± 4.6 −8.8 ± 3.9 −7.7 ± 4.3 P < 0.001 P < 0.001 P = 0.098

Mid-inferoseptal segment −18.6 ± 3.2 −8.9 ± 3.3 −8.0 ± 3.8 P < 0.001 P < 0.001 P = 0.115

Mid-anterolateral segment −16.5 ± 3.8 −9.8 ± 3.9 −9.0 ± 3.4 P < 0.001 P < 0.001 P = 0.125
Basal inferoseptal segment (%) −16.0 ± 3.2 −9.9 ± 3.4 −8.5 ± 3.8 P < 0.001 P < 0.001 P = 0.013

Basal anterolateral segment (%) −17.1 ± 3.7 −10.4 ± 4.1 −8.6 ± 4.2 P < 0.001 P < 0.001 P = 0.006

TAPSE 22.2 ± 3.9 18.9 ± 3.6 16.8 ± 3.3 P < 0.001 P < 0.001 P = 0.004
Tissue Doppler/Doppler

Eʹ (septal, cm/s) 8.5 ± 3.5 6.3 ± 1.5 5.1 ± 1.2 P < 0.001 <0.001 P < 0.001

Sʹ (septal, cm/s) 8.5 ± 2.3 6.8 ± 1.3 5.8 ± 1.3 P < 0.001 <0.001 P < 0.001
Eʹ (lateral, cm/s) 10.5 ± 3.5 7.9 ± 1.6 6.0 ± 1.4 P < 0.001 <0.001 P < 0.001

Sʹ (lateral, cm/s) 9.7 ± 2.8 7.3 ± 1.5 6.3 ± 1.4 P = 0.77 <0.001 P < 0.001

E (cm/s) 83.5 ± 24.4 77.2 ± 15.3 75.4 ± 14.1 P = 0.016 P = 0.002 P = 0.349
E/Eʹ 8.7 ± 4.1 12.5 ± 3.5 15.5 ± 5.6 P < 0.001 P < 0.001 P < 0.001

Control: 130 patients; STEMI: 129 patients; TTS: 121 patients. 
TTS, Takotsubo syndrome; AS-STEMI, anterior wall ST-segment elevation myocardial infarction; TAPSE, tricuspid annular plane systolic excursion.
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extracting latent spatiotemporal features reflecting underlying cardiac 
structural/functional abnormalities have the potential to help TTS 
phenomapping and prognostication. Further classifying and quantifying 
pre-existing myocardial pathology in TTS patients help advance our 
knowledge about the pathophysiology and support the development 
of personalized treatments.

Limitations
The present study has several limitations: (1) due to retrospective na
ture of this study, we could not exclude patients with overlapped 
STEMI and TTS phenotypes. For example, the comparable contractility 
patterns with typical apical TTS phenotype (‘Takotsubo effect’) have 
been increasingly recognized in patients with anterior wall STEMI,38–40

but they have not been excluded from our echocardiography training 
database. Including new training datasets with more delicate phenotyp
ing of STEMI may help refine the prediction models and develop dis
tinctive parametric values between these two disease groups; (2) in 
clinical practice, readers always interpret imaging results in the clinical 
context, and multitudes of imaging and other clinical features are eval
uated simultaneously to derive meaningful clinical decisions. Meanwhile, 
the different haemodynamic features of TTS and STEMI patients can 
also become confounding variables to potentially affect imaging clarifi
cation results.41,42 The present study only aimed to determine the pos
sible added value of DL neural networks to assist human imaging 
readers for urgently needed disease triage and management decisions, 
and a hybrid model combining clinical features and physician interpret
ation informed by DL needs to be further evaluated in the future; and 
(3) a larger scale of STEMI and TTS patients with diversity in ethnicity, 
gender, and age are needed to build widely applicable prediction models 
to help pathophysiology investigation, and we are collaborating with 
other international TTS registries for this research purpose.

Conclusion
The spatiotemporal DCNN saliency visualization helps identify the pat
tern of myocardial temporal dynamics and navigates the quantification 
of regional myocardial mechanics. Reduced AV plane displacement in 
TTS patients likely correlates with impaired diastolic mechanics.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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