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ABSTRACT

We present FIGfams, a new collection of over
100 000 protein families that are the product of man-
ual curation and close strain comparison. Using the
Subsystem approach the manual curation is carried
out, ensuring a previously unattained degree of
throughput and consistency. FIGfams are based
on over 950 000 manually annotated proteins and
across many hundred Bacteria and Archaea.
Associated with each FIGfam is a two-tiered, rapid,
accurate decision procedure to determine family
membership for new proteins. FIGfams are freely
available under an open source license. These can
be downloaded at ftp://ftp.theseed.org/FIGfams/.
The web site for FIGfams is http://www.theseed.
org/wiki/FIGfams/

INTRODUCTION

Progress in DNA sequencing technology has led to an
abundance of nucleotide sequences in community
databases (1). As the pace of sequencing increases (2) so
does the importance of creating tools to accurately
describe the protein functions encoded in the DNA
sequences. These descriptions, or ‘annotations’, are
created by using a variety of bioinformatics tools and
databases. One of our most valuable clues to decipher
functions of unknown proteins is their comparison with
existing proteins (3).

Several groups are curating large sets of existing
genomes (4–6), and even more groups are focusing their
curation efforts on sets of proteins (6–12). The common
denominator of all these approaches is that they need to
rely on automatic propagation of ‘correct’ annotations
using bioinformatics techniques. The reason for this is
that the number of newly sequenced proteins clearly
exceeds the available manpower when following the estab-
lished ‘one-protein-at-a-time’ annotation approach.

The same issue explains why few authors of genome
data sets are able to spend time curating the genome
data sets they deposited in Genbank. For the majority
of genomes, new discoveries are not used to update after
the time of initial submission. As a result, even as our
knowledge of protein function is developing, the existing
genome data sets are often out of date. This situation
presents a serious dilemma for the analysis of new
sequences because comparison with existing data is the
source for annotations of new data, the results of which
are then submitted to a number of repositories (3).
Most of the tools for analyzing new sequence data use

BLAST (13) or more sophisticated bioinformatics tools
such as HMMs (7,14–16), PSSMs (17), or integrations of
multiple tools (18). Both with BLAST-type searches and
with more complex representations, the construction
and use of protein families are central to most accurate
annotation efforts (6–8,19); see ref. (3) for a discussion.
The common requirement for these approaches is that

curation of initial protein sets [in the case of TIGRFAMS
(7)] or assignment of protein family functions [in the case
of PIRfams or OrthoMCL (20)] needs to be performed by
an expert in the protein being analyzed. As with manual
curation of complete genomes, however, manpower for
the creation of these core data sets has been the limiting
factor so far. Curation of data has restricted the number
of protein families; for example, in the manually curated
TIGRFAM core set, only 1972 TIGR equivalogs exist in
Release 8.0 of the TIGRFAMs (21).
This bottleneck for manually curating the protein

families can be overcome by using the Subsystem
approach (22) for the construction and maintenance of
protein families. Subsystem-based curation provides a
scalable alternative to the traditional manual curation
efforts for protein families.

Subsystems and FIGfams

Basically, a Subsystem is a collection of abstract functional
roles and a spreadsheet mapping those functional roles
to genes across multiple genomes. The spreadsheet has

*To whom correspondence should be addressed. Email: folker@anl.gov

Published online 17 September 2009 Nucleic Acids Research, 2009, Vol. 37, No. 20 6643–6654
doi:10.1093/nar/gkp698

� The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



functional roles as columns, and each row corresponds to
a single genome. Each cell contains the genes in the cor-
responding genome that implement the functional row
given by the column. Together, the Subsystem and the
Subsystem spreadsheet are referred to as a populated
Subsystem. The current collection of manually curated
Subsystems includes over 800 subsystems containing
over 6400 functional roles, to which >950 000 genes are
connected; see ref. (5) for details.
The FIGfam effort may be thought of as constructing

the infrastructure needed to automatically project the
manual annotations maintained within the Subsystem
collection.

Defining FIGfams

FIGfams are sets of isofunctional homologues (23).
In other words each FIGfam is supposed to contain a
set of proteins that are end-to-end homologous and
share a common function. The current release (10.0)
contains roughly 107 000 families, from careful manual
curation using Subsystems (22) and automatic annotation
of closely related strains. The families from closely related
strains are based on sequence similarity and conserved
genomic context. Figure 1 gives an overview of FIGfam
creation and the use of FIGfams for automatic
annotation.
More formally, each FIGfam can be defined as a four-

tuple: (ID, protein-set, decision-procedure, family-function),
where

(1) The ID is a stable, unique identifier that describes the
family and allows linking to a web site describing the
protein family;

(2) The protein-set is a set of protein sequences that
are similar over essentially their entire length (i.e.
they share a common domain structure; we allow
for slight differences in the C-terminal because
the correct determination of start codons is still
somewhat imperfect and would artificially split
protein sets otherwise belonging to the same
family) and are believed to implement a common
function;

(3) The decision-procedure is a decision procedure that,
given a new protein sequence as input, decides
whether the new sequence should be considered as
‘part of the same family’; and

(4) The family-function is the function believed to be
implemented by all members of the protein-set.

Creation and maintenance of FIGfams

The construction of FIGfams is based on forming protein-
sets in cases in which it can more or less reliably be
asserted that sequences implement identical functions.
Currently, there are two scenarios for creating a
FIGfam: one based on subsystems and the other based
on closely related strains.
The FIGfams are constructed by inferring which pairs

of genes must be placed in the same FIGfam (see below
for detailed discussion in each of the scenarios) and then

forming the set of FIGfams as the maximum set of
protein-sets consistent with the pairwise constraints.

Families constructed from subsystems. Two proteins will
be placed in the same FIGfam if they are similar over
their entire length and they occur within the same
column of a Subsystem (Figure 2). Genes within the
same column of a Subsystem implement a common
function.

Two genes within the same column of a Subsystem will
be placed in distinct FIGfams when one is multifunctional
and the other is not.

A low degree of sequence similarity (e-value of 10�10)
will lead to the creation of multiple FIGfams with the
same function.

These rules firmly ground the FIGfams in the manual
curation effort maintaining the Subsystems. If at any point
it appears that two proteins are part of a single protein-set
but are believed to implement distinct functions, the
solution is to make sure that Subsystems exist to which
the proteins are attached. That is, if there is a solid reason
to believe that the proteins implement different functions,
the way to force this to occur within FIGfams is to make
sure that the manual effort reflects the reasoning that the
functions are distinct.

Families constructed from closely related strains. If two or
more sequenced genomes are from closely related strains,
it is usually possible to trivially establish a reliable corre-
spondence between 90 and 95% of the genes within the
genomes. This is illustrated by the display of correspond-
ing regions from the genomes shown in Figure 3. Of
course, one needs an automated tool that uses specific
rules to detect reliable correspondences, and many have
been constructed.

We use a simple tool to implement this process; a
description is provided in the Appendix. We note that as
more genomes are sequenced from closely related strains,
the number of correspondences will rapidly grow.

Curating FIGfams over time—connecting changes in
Subsystems to changes in FIGfams

The current set of FIGfams will rapidly become outdated
as the characterization of specific proteins continues to
improve. New experimental results reported in the litera-
ture and careful manual annotation of the current
Subsystems naturally force changes and additions to the
FIGfam collection. A central feature of the existing col-
lection is that families will automatically be split, merged,
and added in response to the addition of new Subsystems
or corrections of errors in the existing collection. In a field
experiencing such rapid advance, this automated coupling
of changes in Subsystems to derived changes in FIGfams
is vital.

Once each month, the existing FIGfams are scanned
looking for cases in which a family contains two
proteins such that both proteins occur in Subsystems
and the functions of the proteins are not identical. Such
a situation forces a split of the FIGfam, which can be
achieved automatically. Similarly, if two families are
found to each contain proteins that occur in Subsystems
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and if these proteins are globally similar and implement
identical functions, then the families are automatically
merged. As new Subsystems are implemented, we find
cases in which globally similar proteins that all connect

to Subsystems and implement the same function are not
yet members of any FIGfam. If they can be added to
existing FIGfams, they are; if not, new FIGfams are auto-
matically created.

Figure 3. FIGfams constructed from closely related strains. The graphic depicts the chromosomal neighborhood of histidyl-tRNA synthetase in
closely related Bacilli. The same color indicates a set of similar proteins (bidirectional best hits) that form a FIGfam. Each of the FIGfams has a
different functional role; see Table 1 in the Supplementary Data.

Figure 2. FIGfams from a Subsystem. The manual curation of the Arginine Biosynthesis Subsystem led to the creation of multiple FIGfams. The
colored background indicates FIGfam membership. A single column can contain multiple FIGfams.
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COMPARISON OF FIGfams, TIGRFAMs AND PIRSFs

Many groups have attempted the curation of protein
families over time; here we discuss the differences and
similarities among FIGfams and two other prominent
efforts. All three efforts curate families of homeomorphic
proteins, requiring full-length sequence similarity and
common domain structure within each family. These
requirements make them different from efforts such as
the PFAM database (14) that provide protein domains.

The technologies used for curation are very different,
resulting in vastly different throughput of the various
protein family curation strategies. In the case of
FIGfams roughly 23 000 protein families are the results
of manual curation; that number is in stark contrast to
1 900 TIGRFAM equivalogs with manually curated
kernel (or ‘SEED’) alignments.

Our understanding is that curation of TIGRFAMs
starts with manual creation of a SEED alignment and
that an HMM is then created from that alignment. The
subsequent curation effort is the definition of thresholds
that allow the HMM-based decision procedure to reliably
detect new members of the protein family. It should be
noted that the TIGRFAMs distribution contains a large
number of non-equivalog based HMMs that are not a
result of manual curation of on a protein family level,
they represent broader classes of proteins.

The PIRSF concept involves the formation of a shallow
hierarchy (superfamilies, containing families, containing
subfamilies). The goal is somewhat different from, and
perhaps more ambitious than, that present in FIGfams.
The PIRSF hierarchy attempts to group things into a
hierarchy based on physical properties, realizing that sig-
nificant shifts in physical properties usually correlate
closely with functional properties. The FIGfams are
based on the Subsystems view (22) in which a bacterial
organism is composed of a set of functional Subsystems,
and each active variant of a Subsystem is thought of as a

set of functional roles. Proteins implement one or more
functional roles. Grouping sets of functional roles induces
the shallow hierarchy imposed by Subsystems.
Both notions involve protein families made up of

proteins that are globally (i.e. full-length) similar. In
most cases, the lowest-level PIRSF family (either a
family or a subfamily) is composed of proteins that are
believed to implement a common function. Hence, we
believe there exists a close correspondence between the
families produced by the two efforts, and the correspon-
dence will improve as uncertainties are gradually
eliminated. At this point the differences in perspective
become most apparent in the way families are constructed.
In the FIGfam effort, the major concern is to avoid
placing two proteins with different functions into the
same set. This leads to many small protein families (and
many distinct families that contain closely similar
sequences). In a somewhat oversimplified view, the
PIRSF families are large groupings of homologous pro-
teins in which the precise, distinct functions of subfamilies
are gradually worked out, whereas the FIGfams start with
no groups and conservatively gather proteins of identical
function. To provide perspective on what this means, we
note that the FIGfams collection now includes over
100 000 families, over half of which contain three or
fewer members, whereas the PIRSF contains 32 000
families.
All three groups maintain sets of proteins and suggest a

function for all members of that family. For TIGRfams,
the set of proteins is used for the kernel (or ‘SEED’) align-
ment subsequent used to create an HMM. For FIGfams
and PIRSF, complete sets of proteins are maintained
for each family. Table 1 lists further differences and
similarities.
In the case of the HMM based protein families it should

be noted that HMM based methods have been shown
to have excellent results in the detection of remote
homologies, however this comparison does not evaluate

Table 1. Comparison of protein family creation and maintenance

FIGfams PIRSFs TIGRFAM

Family creation Via Subsystem curation and
close strains

Via automatically generated
sets of homeomorphica

proteins incorporating protein
domain knowledge

Via manually curated kernel
(or ‘SEED’) alignment

Extending an existing family Include new genomes in Subsystem Automatic placement in
homeomorphic familyb

Adjust threshold for trusted
HMM score

Creating new families Via new Subsystem creation Via automated process
(see above)

New SEED and HMM

Curation of function
(for all proteins in set)c

Via Subsystem inclusion Define family function
for set

Not applicable

Scope Bacteria and Archaea Universal Bacteria and Archaea
Number of families 107 233 33 599 3603
Families with proteins with

manually curated function
20 699 327d 1920

Number of proteins in
manually curated families

970 682 6040d Not applicabled

aHomeomorphic= full-length homologuous with common domain architecture.
bInfo from http://pir.georgetown.edu/pirwww/about/doc/tutorials/pirsftutorial.ppt.
cTIGRFAM protein sets are not curated; only SEED sets and HMM thresholds are curated.
dInfo from ftp://ftp.pir.georgetown.edu/pir_databases/pirsf/data/pirsf_full_validated_oo.readme.

Nucleic Acids Research, 2009, Vol. 37, No. 20 6647



this ability. We also did not evaluate the option of careful
manual curation of threshold values for HMMs that to
avoid false positives.

FIGfam DECISION PROCEDURES

The third component of each FIGfam, the decision-
procedure, is used to answer the question ‘For a new
sequence X, should X be considered part of the FIGfam?’
Various technologies exist to implement this decision

procedure, ranging from a simple ‘take the best BLAST
hit’ approach to more sophisticated approaches using
machine-learning technology such as hidden Markov
models and position-specific scoring matrices.
The current implementation of the FIGfam decision

is two-tiered. A global fast screening procedure will
create a set of candidate FIGfams for a target sequence
X. A slower, more accurate decision procedure is
associated with the individual family.
In order to provide maximum throughput, the initial

screening is implemented by using a database of represen-
tative sequences for all FIGfams. Each FIGfam is
associated with a set of representative sequences. We
rely on comparing all sequences within a FIGfam to
each other via BLAST (cut-off 1e�10) to form the set. A
single randomly chosen sequence will be used in this
database to represent all sequences that are within a
1e�10 distance.
Each candidate FIGfam has its own decision procedure:

we currently implement two distinct procedures. Manual
curation is used to assign decision procedures, currently
most families use the BLAST voting procedure.
Similarity bounds decision procedure—a bounds list is

generated for each member of the protein family by
using the learning data. The bounds list is essentially a
threshold for trusted BLAST scores, in which the user

can safely assign a functional role if the BLAST score
falls below a designated threshold. The decision procedure
goes through the closest BLAST hits in the family (from
the sequence being considered for membership), and the
individual members are examined to see whether the hits
fall within the ‘safe’ threshold. If there are ever more
‘safe’ hits than those that are not, the process ends success-
fully. Otherwise, the sequence cannot reliably be assigned
to the set.

BLAST voting decision procedure—the top 10 and 20
BLAST results are voted on to select the functional role
with the most hits. When two or more functional roles
have an equal number of votes as the top choice, no
assignment is given. Figure 4 provides details on the
BLAST voting algorithm.

We have evaluated a series of decisions procedures
when designing and implementing FIGfams. In the
remainder of this section, we revisit some of the issues
that led to the existing implementation. The first test
targets pure runtime performance, the second tests for
robust classification performance in the face of noisy
data, and the third compares performance with two
related protein family efforts.

Test 1: a simple case—finding ribosomal protein L33p

FIGfam FIG000053 has a family function of LSU
ribosomal protein L33p. The decision procedure for this
family is straightforward. The central issue in choosing a
decision procedure is just performance.

Specifically, we evaluated the use of an HMM as
opposed to the use of BLAST using the set of sequences
(1313 sequences) from the FIGfam FIG000053. The
BLAST test was performed by first BLASTing the
sequences against a set of representative sequences of the
FIGfams. Subsequently, the resulting FIGfams in a
threshold were further evaluated by BLASTing against

Figure 4. BLAST voting explained. For a given FIGfam J the set of all homologs and the FIGfam members form a partition (J). (We use an e-value
cut-off of 0.01 and a minimal similarity of 30% for inclusion of sequences in the set of homologs.) For new sequences, we perform a BLAST searches
against the partition and assign the family function for FIGfam J if the majority of the top N (either 3 or 10 depending on the size of the FIGfam)
are annotated with the family function. Note that no function is returned if the majority of BLAST hits do not share the family function.
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the specific FIGfams. The HMM test was performed by
doing a search against the set of HMMs for each candi-
date protein. Currently, there are over 100 000 FIGfams,
which hampers the ability to perform an HMM search
on the FIGfams.

Both methods generated the same prediction for the
test sequences. Runtime requirements were dramatically
different, however, with the HMM procedure taking
significantly more resources. As shown in Figure 5 the
time required for the HMM case depends on the
number of families searched, whereas the time required
for the two-tiered FIGfam strategy shows only minimal
variation with increasing numbers of protein families
searched. Note that the initial rapid screening stage does
not show significant variations with growing numbers of
families.

Test 2: HisAb—using different decision procedures to
distinguish between two similar proteins

Curation of data is an error-prone process, and any
decision procedure employed to recognize new family
members (or predict functions for novel genes) is likely
to include erroneously annotated false positive members.
We therefore have devised a test to ‘poison’ carefully
verified protein families with errors.

Several decision procedures were tested using protein
sequences from a protein family implementing the
function Histidyl-tRNA synthetase (EC 6.1.1.21) and a
second family implementing ATP phosphoribosyl-
transferase regulatory subunit (EC 2.4.2.17). These two
families contain protein sequences that are similar to one
another [see (24) for details], which has led to numerous
errors in annotation over the past few years.

We call the union of these two families the HisAb set,
and we consider in detail the issue of how well different
decision procedures separate the entries of HisAb into the
two protein families. TheHisAb set offers a framework for
comparison in that the sequences are closely homologous,

and we believe that we have accurately annotated
(manually) the entire set of sequences. The FIGfam
FIG000087 implements Histidyl-tRNA synthetase (EC
6.1.1.21), and FIG000865 implements ATP phosphoribo-
syltransferase regulatory subunit (EC 2.4.2.17).
One obvious way to evaluate each decision procedure

would be to take each sequence from the HisAb set, delete
the sequence from the family containing it, and then
examine the results of asking, for each of the two
families, ‘Does the sequence belong in this family?’ For
each of these single-sequence experiments there are four
possible outcomes: the decision procedure can place the
sequence into FIG000087, FIG000865, both, or neither. If
we perform this experiment for each sequence in each of
the two families for each of the decision procedures we
wish to evaluate, we gain some insight into the relative
merits of the set of decision procedures (we display the
results of this experiment below). However, we can also
investigate the situation in which some percentage of the
sequences inHisAb has been assigned to the wrong protein
family. This more closely resembles the real situation for
most paralogous families, and we believe that it offers a
more comprehensive way to evaluate the relative merits of
the decision procedures.
Overall, the decision procedures that performed the best

in the presence of misannotated sequences were the
BLAST voting algorithms (top 1, top 20 BLAST
results). The number of BLAST hits to vote on was
directly proportional to the size of the protein family
being tested. The HMM decision procedure was
outperformed by all other decision procedures, and it
was also more time consuming.

Test methodology. Each decision procedure was tested by
using a jack-knife approach, where a sequence was used
for testing the decision procedure, while the rest of
the sequences were used as the learning data to create
the model. This process was iterated several times over
the number of total sequences in the learning data. In
addition to experimenting with each decision procedure
using the gold standard, errors were introduced to the
gold standard assignments by switching a sequence’s
assigned functional role in the learning data. The goal is
to view how each decision procedure behaves in the
presence of errors in the annotations using a controlled
environment. Each decision procedure was tested with 0,
10, 20, 30 and 40% annotation errors in the learning data.
The accuracy, sensitivity and specificity measurements
were calculated in order to compare the results of the dif-
ferent decision procedures for each of the protein families
tested. The sensitivity measures how well a binary classi-
fication test correctly identifies a condition. The specificity
measures how well a binary classification test correctly
identifies the negative cases, or those cases that do not
meet the condition under study. The specificity, sensitivity,
and accuracy measures were calculated by counting the
number of true positives (tp), true negatives, (tn), false
positives (fp) and false negatives (fn).

Test results. For FIG000087, the sensitivity of all three
procedures is identical without errors present. As errors

Figure 5. Comparison of the time (in seconds) spent searching growing
numbers of FIGfams via HMMs and BLAST. Time for searching via
HMMs increases with the number of families; for the two-tiered
BLAST-based decision procedure, the time is constant. The time
required to perform the search with BLAST remains at <10 s. These
computations were performed on a current desktop machine running
Linux (3GHz Intel CPU, 4GB RAM); with faster CPUs the ratios will
remain stable.
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are introduced into the data set, the BLAST voting pro-
cedure clearly outperforms the other procedure with
almost no loss of sensitivity at 20% errors and a 0.96
sensitivity rate at 30% errors (Figure 6).
The specificity, or rate of false positive predictions, is

another important performance measure for a classifica-
tion tool. Again the BLAST voting procedure clearly
outperforms the simple BLAST and the HMM (Figure 7).
In some cases the decision procedure associated with a

FIGfam is not the BLAST voting procedure. Instead we
use the similarity bounds procedure described earlier.
Figure 8 shows the performance characteristics of this pro-
cedure. Similarity bounds provide very good specificity
(>0.914 for 50% errors in the data), but the sensitivity
degrades badly with increasing error rates. The complete
results are available in the appendix.

Discussion of test 2. The BLAST voting procedure clearly
outperforms HMMs in the chosen example. Since we
do not include this procedure with all FIGfams,
however, we also show data for the similarity bounds
procedure. This is a very conservative procedure with
very poor sensitivity. The decision to use the similarity
bounds procedure when faced with the potential of
introducing false positives is one taken by the human
curator of the FIGfams to minimize the noise introduced
into the predictions.

Test 3: using HisAb as a gold standard for comparing
FIGfam, TIGRFAM and PIR HMM assignments

The decision procedures from different groups such as
PIRSF [1] and TIGRFAM [4] were tested to evaluate the

Figure 7. The specificity for protein family FIG000087 in the presence of varying error rates. All three procedures perform equally well in the
presence of no errors, but performance drastically drops once errors are introduced into the protein family data. The BLAST voting procedure
clearly outperforms the other procedures with >0.96 specificity in the presence of 30% errors.

Figure 6. Sensitivity results in the presence of varying error rates for FIG000087. The BLAST voting procedure clearly outperforms the other
procedures, losing virtually no sensitivity at 20% error.
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accuracy of the three protein families and the associated
algorithms. We believe that in the case ofHisAb we can use
the annotations provided in ref. (25) as a gold standard.

Table 2 provides the number of protein families inter-
secting the contents of the HisAb set associated with each
database. TIGRFAM release 7.0 provides the public with
a set of protein families covering a range of functional
roles. TIGRFAM’s preferred decision procedure is a set
of HMMs that provide a trusted and noise-cutoff score
indicating the ranges for which the results can either be
trusted or not as the specified functional role. The
HMMER package was used to make an assignment.
PIRSF (July 2007 release) also provides a set of HMMs
along with a decision procedure for its protein families.
The PIR decision procedure uses the available HMMs
together with BLAST results to assign a sequence to a
PIRSF group.

The FIGFAMs, TIGRFAMs and PIRSF protein
families provide a number of related families that intersect
with the contents of HisAb. The same HisAb sequences
used in the previous section were used to compare the
accuracy, sensitivity and specificity against the decision
procedures of the three protein family groups. The main
interest is to test whether the manually curated HisAb
sequences were correctly characterized as any of the
respective HisAb families in FIGfam, TIGRFAM, and
PIRSF. A similar procedure was used to count the tp,
fp, tn and fn as before. The same equations as in the
above section were used to calculate the accuracy, sensi-
tivity and specificity of the HisAb families. The specificity
comparisons between the HisAb protein families from
FIGfams, TIGRFAMS and PIRSF show that none tries
to overpredict the sequence’s functional role (keep false
positives to a minimum). However, using the FIGFAM
decision procedures resulted in more functional roles
assigned correctly (sensitivity). A summary of the
comparisons is shown in Figure 9.

Test 4: comparing runtime and coverage of FIGfams,
TIGRFAMS and PIRSF

The use case for the protein families is in annotating novel
sequences; here we study the percentage of proteins in five

complete microbial genome sequences (Table 3) that were
automatically assigned a function and the time require to
compute the annotations.
For FIGfams, we used the built-in method, in this case

the BLAST voting procedure; for TIGRfams, we used the
HMMs provided with the cut-off values; and for PIRSF,
we used the decision procedure provided by PIR.
The most interesting aspect of the comparison for this

test is the vast difference in the number of proteins
assigned by the different technologies to protein families
as indicated in Figure 10. The difference in coverage is at

Figure 9. Comparisons of FIGfams, TIGRFAMS and PIRSF HisAb
protein families. The high specificity levels on each protein group
indicate that no group tries to overpredict the functional roles of the
sequences. Both FIGfams and PIRSF performed well in annotating the
correct function. The TIGRFAM predictions used the HMM trusted
and noise-cutoff scores to assign the functions. The top hit of most
TIGRFAM’s non-assigned sequences was one of the HisAb families;
however, TIGRFAM failed to annotate it as a member of the HisAb
family because it missed the noise-cutoff score.

Figure 8. The similarity bounds procedure has very good specificity in
the face of errors, but the sensitivity degrades rapidly in the presence
of errors.

Table 2. HisAb protein families from FIGfam, TIGRFAM and PIRSF

Protein family
group

Name Description

FIGfam FIG000087 Histidyl-tRNA synthetase
(EC 6.1.1.21)

FIG000865 ATP phosphoribosyltransferase
regulatory subunit (EC 2.4.2.17)

TIGRFAM hisS histidyl-tRNA synthetase
hisS_second ATP phosphoribosyltransferase,

regulatory subunit
PIRSF PIRSF001549 histidyl-tRNA synthetase (validated)

PIRSF006650 ATP phosphoribosyltransferase
PIRSF000486 ATP phosphoribosyltransferase

Table 3. List of genomes analyzed

Genome Number
of proteins

Bacillus subtilis subsp. subtilis str. 168 4105
Escherichia coli K12 4133
Staphylococcus aureus subsp. aureus COL 2618
Synechocystis sp. PCC 6803 3572
Vibrio cholera cholerae O1 biovar eltor str. N16961 3835
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least 10-fold and in some cases 20-fold, resulting from the
larger number of FIGfams. Also taking into account the
runtimes for the three decision procedures (Figure 11), we
see that the FIGfam decision procedures are 10- to 30-fold
faster than the existing procedures.
Because of the lack of a gold standard, the comparisons

here are not for the actual correctness of the annotations;
instead we are comparing the fractions of proteins
annotated with the protein families and the runtime
required. We provide a complete list of all assignments
made in the appendix.

SUMMARY AND DISCUSSION

The propagation of errors from the sequence databases
has been a significant problem in genome annotation
and other areas. Several techniques have been used to
handle the results of the noise in the databases. We
present a novel solution to the problem by providing a
set of protein families that can be used for automatic
annotation based on a set of consistent, manually
derived, high-quality annotations. The fact that
Subsystems cover 50% of the known bacterial and
archaeal protein space makes FIGfams a very useful
resource. By allowing for variable decision procedures
on a per family basis, we have ensured rapid processing
at a rate that enables the annotation of several genomes
per day on a current desktop machine.

The primary benefits of our approach are as follows:

. FIGfams are fast, reliable, and robust to noise in
the data. Moreover, as more diverse genomes are
sequenced and annotated, the speed and accuracy of
FIGfam-based annotation will increase.

. The time to classify a single protein averages around
10 s on a modest desktop machine, allowing processing
of �8640 proteins per day on a single machine.

. In the examples shown in this manuscript and our
other tests, the BLAST voting procedure, the most
frequently used decision procedure for FIGfams,
performs at least as well as simple BLAST and
HMM-based procedures for the propagating the
annotations of conserved proteins (test 1), or distin-
guishing between two closely related proteins (test 2).
If errors are present in the data set, it outperforms the
other procedures in the examples we tested (test 3).

. FIGfam performance is optimized to minimize false
positive assignments.

. As Subsystems cover more and more of the known
protein space, the FIGfams will increase in value
over time.

. New results from the literature are incorporated into
the FIGfams via Subsystem curation, guaranteeing
that the FIGfams remain up to date.

As the number of proteins in FIGfam increases, auto-
matic annotation pipelines such as RAST (26) will be able

Figure 10. Percentage of proteins covered by FIGfams, TIGRFAMS and PIRSF using the appropriate decision procedures for five genomes.
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to reduce the number of genes subjected to costly in-depth
database searches. Thus, by linking accurate, mass
creation of protein annotations and protein family con-
struction using Subsystems we have achieved a novel
approach offering both high productivity and high
accuracy in protein family creation.

AVAILABILITY

The FIGfams have been used as a central component in
the RAST server (27) (http://RAST.nmpdr.org), a system
that provides rapid, accurate annotation of prokaryotic
genomes. They are also used in MG-RAST (28), a
public server focusing on the annotation of metagenomic
data (http://metagenomics.nmpdr.org).

Release 10 of FIGfams is made freely available to
anyone for any use. It contains 1 414 035 proteins
grouped into 106 775 families. All families can be
downloaded from ftp.theseed.org/FIGfams/.

Running the FIGfam decision procedure locally
requires a Linux/Unix/OS-X operating system and Perl
5.6 or greater.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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