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Abstract

PURPOSE—Several in silico tools have been shown to have reasonable research sensitivity and 

specificity for classifying sequence variants in coding regions. The recently-developed Combined 

Annotation Dependent Depletion (CADD) method generates predictive scores for single 

nucleotide variants (SNVs) in all areas of the genome, including non-coding regions. We sought to 

determine the clinical validity of non-coding variant CADD scores.

METHODS—We evaluated 12,391 unique SNVs in 624 patient samples submitted for germline 

mutation testing in a cancer-related gene panel. We compared the distributions of CADD scores of 

rare SNVs, common SNVs in our patient population, and the null distribution of all possible SNVs 

stratifying by genomic region.

RESULTS—The median CADD scores of intronic and nonsynonymous variants were 

significantly different between rare and common SNVs (p<0.0001). Despite these different 

distributions, no individual variants could be identified as plausibly causative among rare intronic 

variants with the highest scores. The ROC AUC for non-coding variants is modest, and the 

positive predictive value of CADD for intronic variants in panel testing was found to be 0.088.

CONCLUSION—Focused in-silico scoring systems with much higher predictive value will be 

necessary for clinical genomic applications.
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Introduction

Multi-gene testing of cancer susceptibility is widely applied in clinical practice to attempt to 

predict the risk of developing cancer. Estimating the effect of DNA variants in these large 

gene panels is a major clinical challenge. As it is impractical to functionally classify every 

variant identified, several in silico tools have been developed to predict the pathogenicity of 

single nucleotide variants (SNVs). Many of these tools focus on protein-coding regions of 

the genome (summarized in 1). However, the number of non-coding variants far outstrips 

coding variants in the human genome (2, 3), and approximately 88% of trait/disease-

associated SNVs in collective genome wide association studies are in intronic or intergenic 

regions (4). The Combined Annotation-Dependent Depletion (CADD) method is designed to 

predict the pathogenicity of SNVs at any location in the genome. Kircher et al. (5) described 

the receiver operating characteristics (ROC) curves of CADD scores for curated, pathogenic 

mutations defined by the ClinVar database, and showed that a CADD score has a greater 

area under the curve (AUC) than GerpS, PhCons and phyloP scores for a set of defined 

variants. They also examined two enhancers and one promoter in which saturation 

mutagenesis had been previously performed, and showed that CADD had the highest 

Spearman rank correlation between the predictive score and the observed changes in protein 

expression (5, Supplementary Figure 17 of that reference), stating that CADD provides, “in 

principle, a genome-wide, data-rich, functionally generic and organismally relevant estimate 

of variant effect” (5). Based on claims of genome-wide relevant estimates of variant effect, 

we sought to test the clinical validity of CADD scores by comparing their distributions in 

common and rare variants identified in 624 patients tested in our large cancer-risk gene 

panel, with specific attention on non-exonic variants that did not alter protein coding or 

canonical splice sites. We evaluated the rare variants with the highest CADD scores in these 

non-coding regions where CADD score distributions were significantly different than 

expected. We also explored the hypothetical sensitivity and specificity cutoffs that would be 

required to achieve meaningful clinical positive or negative predictive values.

Materials and Methods

Samples

We evaluated a total of 624 consecutively submitted, unique DNA samples clinically 

requested for germline cancer susceptibility testing using the University of Washington 

(UW) BROCA assay (6) between June 2014 and February 2015. All variant data was de-

identified prior to release to the investigators in this study. De-identified minimal cancer and 

family history phenotypes were retained with the data to aid in interpretation of potential 

variant significance. This project was deemed non-human subjects research consistent with 

ongoing quality improvement and assurance activities as a component of clinical testing.

Targeted deep sequencing by BROCA

Library construction, gene capture and massively parallel sequencing were performed using 

clinical ColoSeq and BROCA assays as previously described (6) and detailed online (http://

web.labmed.washington.edu/tests/COLOSEQ, http://tests.labmed.washington.edu/BROCA). 

Briefly, DNA was sonicated, purified and subjected to end repair, A-tailing and ligation to 
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Illumina paired-end adapters. The adapter-ligated library was amplified, and individual 

paired-end libraries were hybridized to a custom design of complementary RNA biotinylated 

oligonucleotides spanning all exons and non-repetitive intronic regions spanning 49 genes 

(Supplementary Table 3). The library-bait hybrids were purified and washed. Each library 

was amplified by PCR using primers with a unique index. After amplification, libraries were 

quantified, and equimolar concentrations were pooled, denatured, and cluster amplified on a 

single lane of an Illumina flow cell. Sequencing was performed with 2 × 101-bp paired-end 

reads and a 7-bp index on a HiSeq 2000 (Illumina Inc, San Diego, CA). Mean sequencing 

depth was over 100 for all samples.

We used a custom targeted sequencing bioinformatics pipeline (7). Reads were mapped to 

human reference genome 19 (hg19, GRCh37), and alignment was performed using BWA 

and SAMtools. SNV calling was performed with GATK and VarScan. The entire pipeline 

was validated and shown to have >99.9% accuracy for single nucleotide changes (7).

Variant curation

Variant evaluation was limited to probable germline mutations, defined as SNVs with variant 

read fraction >30%. For this project, rare variants were defined as those identified at a minor 

allele frequency of less than 1% by the 1000 Genomes Project (1KG; 8). All variants with 

computed CADD scores were included in the analysis.

Statistical analysis

Distribution of variant scaled CADD scores was compared for three variant types: rare 

variants in patient samples, common variants in patient samples, and all possible variants as 

defined by Kircher et al in Supplementary Table 8 (5). We further grouped variants by 

genomic region to determine if CADD performed effectively in different genomic contexts. 

Genomic regions were defined using ANNOVAR (9) as: downstream, intronic, intergenic 

nonsynonymous, splice site, synonymous, stopgain, upstream, 3' untranslated region (UTR) 

and 5' UTR. We compared the sample median using the Wilcoxon Rank-Sum test to evaluate 

the significance of differences.

As we were testing 30 comparisons, we chose a p value of 0.001 as our cutoff for 

significance. We calculated ratios between the proportion of variants in a group with a given 

CADD score and plotted these to visually evaluate differences in CADD score for different 

groups. Statistical tests were performed using built-in R functions (10).

Evaluation of validity of CADD scores for non-coding variants

To evaluate possible causative variants we used several criteria to narrow the list of variants 

of interest (VOI) for further analysis. 1) Rare variants had to be in genes broadly consistent 

with the patient phenotype. For example, we excluded rare variants in known breast cancer 

risk genes if they were only seen in patients with personal history of colorectal cancer (or 

patients with a family history excluding breast cancer for those without a personal cancer 

history). For SNVs that were present in multiple samples, variants were considered if the 

majority of those patients had cancer phenotypes consistent with the gene mutated. 2) If a 

pathogenic mutation consistent with patient phenotype was present, other rare variants for 
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that patient were considered unlikely to be causative and excluded. 3) The variant base was 

compared to the reference base in up to 100 vertebrate species (the default of the UCSC 

genome browser [11]). If the variant base was present as the reference base in any of the 

species for which data was available, the variant was excluded. Remaining variants after this 

step were considered VOI.

In order for CADD scores to be clinically useful in non-coding regions, we first expect the 

distribution of CADD scores for rare variants to be different from the null distribution of 

CADD scores, particularly for variants with high CADD scores. We evaluated rare variants 

with the highest 10% of CADD scores for intronic variants to determine if these variants 

might possibly explain patient disease phenotypes. We used the pROC program in R (12) to 

create a ROC curve for the results of this analysis. The PhyloP score (13) for pairwise 

alignment of 100 vertebrate species (the default of the UCSC genome browser) was also 

calculated for the 10% of intronic variants with the highest CADD scores (PhyloP, 

Supplementary Table 3). Each VOI was evaluated along with the 50 bases proceeding and 

the 50 bases following the variant base using the Berkeley Drosophila Genome Project (14), 

Human Splicing Finder 3.0 (15), and NetGene (16) splice site prediction algorithms to 

predict changes in splice sites along the transcribed strand (Supplementary Table 4).

Modeling of sensitivity and specificity needed to achieve clinically acceptable 
identification of possible pathogenic variants

For an in silico predictive tool to be clinically useful, it must either rule out benign variants 

with high certainty or identify pathogenic variants with modest certainty to minimize the 

necessary follow-up functional or co-segregation studies necessary to definitively classify 

variants. For our practice, we determined that an optimal rule-out predictor would have at 

least 95% negative predictive value (NPV) consistent with accepted definitions of what 

constitutes a likely benign variant (17,18). Because of the extensive work that is required to 

confirm a pathogenic variant, we desire at least a 50% positive predictive value (PPV) to 

minimize unnecessary follow up of unknown variants.

For given sensitivity and specificity, PPV and NPV vary with the prevalence pathogenic 

mutations within the set of variants evaluated. We calculated the sensitivity and specificity 

required to achieve a minimum PPV of 50% and a minimum NPV of 95% using 

approximate representative mutation prevalence estimates: 50% for evaluation of coding 

elements in a single gene, 10% for evaluation of coding and non-coding elements of a single 

gene, 5% for evaluation of coding elements in panel testing, 0.5% for coding and non-coding 

elements in panel testing, 0.05% for exome testing, and 0.0001% for genome testing (3, 

19-24).

Results

Comparison of CADD score distribution between rare, common and all possible variants

We identified 12,391 unique SNVs with computed scaled CADD scores in the 624 patient 

samples. The specific number of variants in downstream, intergenic, intronic, 
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nonsynonymous, splicing, synonymous, upstream, 3' UTR and 5' UTR regions is 

summarized in Supplementary Table 1.

We compared rare, common and all possible variants in each category to each other using 

the Wilcoxon Rank-Sum test. There were statistically significant differences between 

common and all possible variants for intergenic, nonsynonymous, and upstream SNVs 

(Supplementary Table 2). As shown in Supplementary Figure 1, when the proportion of 

common variants at any given CADD score was graphed over the proportion of all possible 

variants at that score for these significant regions, nonsynonymous variants with CADD 

scores less than ten were significantly overrepresented in the common variants 

(p=4.8×10−14). This is consistent with the hypothesis that common nonsynonymous variants 

have been subject to evolutionary selection and are thus enriched for benign variants. 

Surprisingly, there was an upward trend from the lowest to the highest CADD scores for the 

intergenic (p=2.6×10−5) and upstream variants (p=1.9×10−12). This suggests that high 

CADD score variants in these regions are more likely to occur in our patient samples than 

would be expected by chance.

There were statistically significant differences between rare and all possible variants for 

downstream, intergenic, intronic, upstream and 5’ UTR SNVs (Supplementary Table 2). As 

shown in Supplementary Figure 2, when graphed over the proportion of all possible variants 

at each possible CADD score for these significant regions, we found that rare downstream 

variants with CADD scores greater than 15 were overrepresented compared to all possible 

variants (p=6×10−8), as were intronic variants with CADD scores greater than 25 

(p=2.2×10−16) and 5’ UTR variants with CADD scores greater than 17 (p=2.2×10−16). Rare 

variants in these regions, therefore, were more likely to have high CADD scores than would 

be expected by chance. Rare intergenic variants with CADD scores less than four were 

underrepresented (p=1.3×10−11), as were rare upstream variants with CADD scores less than 

five (p=2.2×10−16) and rare 5’ UTR variants with CADD scores less than six (p=2.2×10−16). 

This means that rare variants with low CADD scores are statistically less frequent in our 

patient population than would be expected by chance. These findings are consistent with the 

hypothesis that rare variants have not been subjected to extensive selective pressure and are 

more likely to be functionally deleterious. Comparing rare and common variants, there were 

statistically significant differences for intronic and nonsynonymous variants (Supplementary 

Table 2). Graphing the proportion of common variants over the proportion of rare variants at 

each possible CADD score for these significant regions (Figure 1) revealed that SNVs with 

higher CADD scores were proportionally underrepresented for common intronic variants 

when compared with rare variants (p=5×10−6). Common SNVs with CADD scores below 

six were proportionally overrepresented for nonsynonymous variants when compared with 

rare variants (p=5×10−11). These findings are consistent with the hypothesis that rare 

variants from these regions are more likely to be deleterious than common ones and thus are 

more likely to have high CADD scores.

Evaluation of validity of CADD scores for non-coding variants

If CADD scores are to have clinical validity for the identification of novel pathogenic 

variants in non-coding regions, then the subset of rare variants with the highest CADD 
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scores in genomic regions with significantly different CADD scores between rare and 

common variants should be enriched for pathogenic variants. As the only non-coding region 

that had statistically different CADD scores between rare and common variants were introns, 

we specifically looked at the 10% of rare intronic variants with the highest CADD scores to 

evaluate whether these mutations could possibly cause disease in our patient population. 

Two hundred eighty-six of 690 variants evaluated were in genes not known to cause the type 

of cancer found in the patient or patient's family and were thus excluded. Thirty-eight of the 

404 remaining rare variants were seen in patients with other known pathogenic variants, and 

were thus considered unlikely to cause the phenotype in those patients. Three hundred and 

five of the remaining 366 variants were present as the conserved base in one or more of the 

vertebrate species evaluated by MULTIZ alignment of up to 100 vertebrate species, which 

was used as evidence that there was no functional consequence to the variant. This left 61 

VOI.

There was no significant enrichment of VOI as the CADD score cutoff increased. Forty-two 

of 517 variants with CADD scores between 10.51 and 14.99 (8.1%) were VOI. Sixteen of 

145 variants with CADD scores between 15 and 19.99 (11%) were VOI, and for variants 

with CADD scores ≥20 (28 total), there were 3 VOI (10.7%). We plotted the ROC curve 

(Figure 2a) of VOI over all rare variants in the CADD score range examined to determine 

whether there was an optimal cutoff at which CADD score identified the most VOI (highest 

sensitivity) with the highest specificity. The area under the curve was 0.591 (95% confidence 

interval 0.516-0.667), and there was no CADD cutoff at which sensitivity and specificity 

were optimized. The PPV of CADD score to identify VOI at a score ≥10.51 was 8.8%.

In an effort to identify pathogenic mutations, we used three splice-site prediction algorithms 

(NNSplice, Human Splice Finder 3.0 and NetGene) to evaluate the possibility that splice-site 

changes on the transcribed strand caused by VOI introduced alternative splice sites. There 

were no variants predicted to introduce novel splice sites by all three prediction algorithms 

tested (Supplementary Table 4). NNSplice and HSF3.0 splice predictions were consistent for 

five variants, and three of these showed a 15% or greater increase in splicing score for both 

predictions. However, the frequency of these variants in our overall clinical sample set was 

not significantly higher than the reported variant frequency in the 1KG dataset, and the 

clinical histories of other individuals with these variants evaluated outside this study were 

not consistent with the gene of interest, suggesting that these variants are unlikely to 

substantially alter disease risk.

No definitively pathogenic variants were present in our cohort, and thus we were unable to 

robustly measure the false negative rate (FNR). For this reason, we also computed the ROC 

of non-coding variants using data from Figure 3 of the paper by Kircher et al. (5), a dataset 

that contained well-characterized pathogenic variants (Figure 2b). The AUC of this ROC 

curve was 0.663 (95% CI 0.607-0.720), which was not significantly better than the one from 

our data.

We further evaluated CADD scores for pathogenic intronic variants using 47 deep intronic 

variants reported to be deleterious in the literature (Supplementary Table 5; 25-40). The 

CADD scores for these variants ranged from 0.356-19.05, with a median of 3.498. Only five 
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of the 47 variants (10.6%) had CADD scores >10.51, the cutoff at which we evaluated 

variants for possible pathogenicity. More than 50% of all rare intronic variants in our dataset 

had CADD scores greater than the median for known pathogenic variants (3.498), consistent 

with low AUC. To evaluate the comparative usefulness of CADD scores compared to other 

in silico predictive algorithms for intronic regions, we compared the performance of PhyloP 

scores from 100 vertebrate species to that of CADD scores for the identification of VOI. The 

AUC for the ROC curve of the PhyloP analysis was 0.666 (95% CI 0.593-0.739), which is 

similar to that seen for CADD scores (Figure 2a). However, as our definition of VOI 

included evaluation of the conservation of the base between species, we cannot exclude 

ascertainment bias.

Sensitivity and specificity needed to achieve clinically acceptable identification of possible 
pathogenic variants

For maximal clinical validity, a predictive tool should identify benign variants with 

confidence while minimizing the number of variants that require further work-up. We 

calculated the minimum sensitivity and/or specificity needed for a predictor to achieve a 

positive predictive value of at least 50% and a negative predictive value of at least 95% 

(Table 1). If pathogenic mutations represent 0.5% of all rare mutations (our estimate for the 

prevalence of pathogenic mutations in coding and non-coding regions of genes in panel 

testing), then the required minimum specificity for an in silico tool to identify pathogenic 

mutations at this level of confidence is 99.5%, though the sensitivity of the tool is less 

critical at that mutation prevalence (Table 1). The sensitivity required for an in silico 
prediction tool to meet clinically meaningful negative predictive value requirements 

increases as the prevalence of pathogenic mutations increases, whereas the specificity 

become less critical for overall performance. On the other hand, if the number of genes and 

rare variants tested increases, the specificity required to achieve a clinically meaningful 

positive predictive value increases and the sensitivity becomes less critical for overall 

performance.

Discussion

The comparison of the CADD scores of common and rare variants in different genomic 

areas with the CADD scores of all possible variants in these areas as defined by Kircher et 

al. (5) suggest that CADD scores may have modest predictive power for nonsynonymous 

variants. We found that in a clinical population, common nonsynonymous variants have 

significantly lower CADD scores than those produced by random mutations, whereas the 

distribution of CADD scores for nonsynonymous rare variants is no different than the null 

distribution. This suggests that CADD scores may correlate with functional consequences, 

as common nonsynonymous variants, which are likely to be functionally benign, having 

gone through extensive natural selection, have lower CADD scores.

For both intergenic and upstream variants, common variants with low CADD scores were 

proportionally underrepresented while those with higher CADD scores were proportionately 

overrepresented compared to all possible variants in these regions, which was unexpected. If 

CADD scores are representative of evolutionary selection, this suggests evolutionary 
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pressure supporting promoter diversity. Alternatively, this could represent a statistical 

anomaly due to the fact that our panel does not cover a large proportion of the intergenic and 

upstream regions present in the human genome. For downstream, intronic, intergenic, 

upstream and 5’ UTR regions, the rare variants with higher CADD scores are 

overrepresented compared to those expected by chance, which is the pattern one would 

expect if these variants were more likely to be functionally deleterious, having not 

undergone extensive selection.

Differences in observed distributions between CADD scores for common and rare intronic 

and nonsynonymous variants suggest that CADD scores may be useful for identification of 

pathogenic intronic or nonsynonymous variants in targeted testing situations when used in 

combination with other data. However, our data suggests that CADD scores are unlikely to 

be useful for identifying disease causing mutations in other non-coding regions in cancer 

risk genes. Evaluation of the 10% of rare intronic variants with the highest CADD scores 

revealed 61 variants in genes consistent with patient presentation out of 690 examined. 

Additional investigation suggested that these variants are unlikely to cause substantial 

disease risk (Supplementary Table 3). The absence of any convincing pathogenic or likely 

pathogenic variants in our clinical dataset was a major limitation of our analysis. For this 

reason, we also evaluated the non-coding data from the original paper used to describe 

CADD scoring (5), which had known positive variants as well as a set of 47 previously 

reported pathogenic deep intronic variants. The ROC curve for non-coding variants from the 

original Kircher et al. dataset and the one generated from our dataset are similar, supporting 

our conclusion about the very low positive predictive value of CADD score for non-coding 

variants. This conclusion is further supported by our evaluation of known pathogenic 

intronic variants from the literature.

For an in silico predictive tool to be useful in clinical interpretation of unique variants, 

should have high negative predictive value (NPV) to avoid missing truly pathogenic variants 

and moderate positive predictive value (PPV) to minimize further clinical workup. Our 

analysis of PPV and NPV in different clinical situations suggests that for a single gene test 

in which 50% of the identified rare variants are pathogenic , the required sensitivity of a 

predictor must be very high (94.8%) to achieve an appropriately high NPV, but the required 

specificity is low. Given the reported sensitivity and specificity of CADD in this scenario 

from the work of Kircher et al. (5), it is possible that a CADD score cutoff value for 

nonsynonymous mutations could approach this level of sensitivity. The number of variants in 

non-coding regions is higher, however, and there is a lower density of pathogenic mutations 

in non-exonic regions. In our patient population, for example, there were more than eight 

times as many rare variants in non-coding regions as there were in coding regions and splice 

sites (Supplementary Table 1). Evaluating the ROC curves generated for non-coding variants 

using the data from Kircher et al. (5, Figure 2b) in the context of PPV, it becomes clear that 

there is no cutoff at which CADD score is clinically useful for non-exonic variants. 

Additionally, if more genes are added to a panel (thereby increasing the number of rare 

coding or non-coding variants to evaluate), the gap between the current performance of 

CADD and the performance required for clinical usefulness increases. We thus conclude that 

while CADD scores are “in principle, a genome-wide, data-rich, functionally generic and 

organismally relevant estimate of variant effect” (5), in clinical practice for hereditary cancer 
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panels (or, likely, to any larger genomic test) lack predictive power. There may be situations 

where CADD scores or other in silico scores can be combined with other predictors to 

produce clinically useful predictions; these combined analysis situations will need to be 

evaluated separately to determine how much CADD scores independently improve 

predictions.

Another issue in interpreting CADD scores (or other predictive scores) is the distinction 

between changes that are functionally deleterious and that are clinically pathogenic. The 

underlying data used for CADD scores are evolutionary and functional predictors. There are 

many situations where a deleterious variant does not cause clinical phenotype. This 

separation between functional prediction and clinical consequence reduces the real-world 

predictive value of predictive scores.

Although sensitivity and specificity of CADD have been shown to be high in datasets 

balanced for known pathogenic and benign variants, sensitivity and specificity are test values 

that are agnostic to population prevalence. The real-world positive predictive value of 

CADD score and other in silico tests is not high enough to effectively classify individual 

non-exonic variants or reduce the number of potential pathogenic variants to those that could 

be efficiently followed up in the context of a hereditary cancer panel. This finding supports 

the idea that currently available in silico predictive scores should be used at most as 

supporting evidence of pathogenicity, as is currently recommended by the American College 

of Medical Genetics and Genomics and the Association for Molecular Pathology (Richards, 

2015).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ratio of common to rare variants with significant differences by Wilcoxin Rank Sum test. 

The proportion of common variants at any given CADD score was compared to that of rare 

variants at the same CADD score (rounded to the nearest 1). Only genomic regions with 

significant differences by Wilcoxin Rank Sum test were evaluated graphically.
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Figure 2. Receiver-operating characteristics (ROC) curves for non-coding variants
A. ROC curve for CADD score (black) and 100 vertebrate PhyloP score (grey) for variants 

of interest in the top 10% of rare intronic variants. B. ROC curve for CADD score for non-

coding variants from Kircher et al (2014) source data.
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Table 1

Minimum sensitivity and specificity of an in silico predictive tool needed for clinical validity.

Estimated percent of rare 
variants that are pathogenic

Clinical test example Minimum sensitivity Minimum specificity

50% Coding sequence, single gene 0.948 NA

10% Coding and non-coding sequences, single gene 0.526 0.888

5% Coding sequence, 25-50 gene panel NA 0.947

0.5% Coding and non-coding sequences, 25-50 gene panel NA 0.995

0.05% Exome NA 0.9995

0.001% Whole genome NA 0.999999

The minimum sensitivity and/or specificity to achieve a positive predictive value (PPV) of at least 50% and a negative predictive value (NPV) of at 
least 95% was calculated depending on the number of clinically important rare variants as a fraction of the total rare variants (prevalence of 
clinically important rare variants). For each prevalence value, we have listed an example of a clinical test type that might be expected to have 
clinically important variants at that prevalence.
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