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Abstract

Measuring semantic similarity between sentences is a significant task in the fields of Natural

Language Processing (NLP), Information Retrieval (IR), and biomedical text mining. For this

reason, the proposal of sentence similarity methods for the biomedical domain has attracted

a lot of attention in recent years. However, most sentence similarity methods and experi-

mental results reported in the biomedical domain cannot be reproduced for multiple reasons

as follows: the copying of previous results without confirmation, the lack of source code and

data to replicate both methods and experiments, and the lack of a detailed definition of the

experimental setup, among others. As a consequence of this reproducibility gap, the state of

the problem can be neither elucidated nor new lines of research be soundly set. On the

other hand, there are other significant gaps in the literature on biomedical sentence similarity

as follows: (1) the evaluation of several unexplored sentence similarity methods which

deserve to be studied; (2) the evaluation of an unexplored benchmark on biomedical sen-

tence similarity, called Corpus-Transcriptional-Regulation (CTR); (3) a study on the impact

of the pre-processing stage and Named Entity Recognition (NER) tools on the performance

of the sentence similarity methods; and finally, (4) the lack of software and data resources

for the reproducibility of methods and experiments in this line of research. Identified these

open problems, this registered report introduces a detailed experimental setup, together

with a categorization of the literature, to develop the largest, updated, and for the first time,

reproducible experimental survey on biomedical sentence similarity. Our aforementioned

experimental survey will be based on our own software replication and the evaluation of all

methods being studied on the same software platform, which will be specially developed for

this work, and it will become the first publicly available software library for biomedical sen-

tence similarity. Finally, we will provide a very detailed reproducibility protocol and dataset

as supplementary material to allow the exact replication of all our experiments and results.

Introduction

Measuring semantic similarity between sentences is an important task in the fields of Natural

Language Processing (NLP), Information Retrieval (IR), and biomedical text mining, among
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others. For instance, the estimation of the degree of semantic similarity between sentences is

used in text classification [1–3], question answering [4, 5], evidence sentence retrieval to

extract biological expression language statements [6, 7], biomedical document labeling [8],

biomedical event extraction [9], named entity recognition [10], evidence-based medicine [11,

12], biomedical document clustering [13], prediction of adverse drug reactions [14], entity

linking [15], document summarization [16, 17] and sentence-driven search of biomedical liter-

ature [18], among other applications. In the question answering task, Sarrouti and El Alaomi

[4] build a ranking of plausible answers by computing the similarity scores between each bio-

medical question and the candidate sentences extracted from a knowledge corpus. Allot et al.

[18] introduce a system to retrieve the most similar sentences in the BioC biomedical corpus

[19] called Litsense [18], which is based on the comparison of the user query with all sentences

in the aforementioned corpus. Likewise, the relevance of the research in this area is endorsed

by recent works based on sentence similarity measures, such as the work of Aliguliyev [16] in

automatic document summarization, which shows that the performance of these applications

depends significantly on the sentence similarity measures used.

The aim of any semantic similarity measure is to estimate the degree of similarity between

two textual semantic units as perceived by a human being, such as words, phrases, sentences,

short texts, or documents. Unlike sentences from the language in general use whose vocabu-

lary and syntax is limited both in extension and complexity, most sentences in the biomedical

domain are comprised of a huge specialized vocabulary made up of all sort of biological and

clinical terms, in addition to an uncountable list of acronyms, which are combined in complex

lexical and syntactic forms.

Most methods on biomedical sentence similarity are adaptations from methods for the gen-

eral language domain, which are mainly based on the use of biomedical ontologies, as well as

word and sentence embedding models trained on biomedical text corpora. For instance,

Socioanglu et al. [20] introduce a set of sentence similarity measures for the biomedical

domain, which are based on adaptations from the Li et al. [21] measure. Zhang et al. [22] intro-

duce a set of pre-trained word embedding model called BioWordVec, which is based on a Fas-

tText [23] model trained on the titles and abstracts from PubMed articles and term sequences

from the Medical Subject Headings (MeSH) thesaurus [24], whilst Chen et al. [25] introduce a

set of pre-trained sentence embedding models called BioSentVec, which is based on a Sent2vec

[26] model trained on the full text of PubMed articles and Medical Information Mart for

Intensive Care (MIMIC-III) clinical notes [27], and Blagec et al. [28] introduce a set of word

and sentence embedding models based on the training of FastText [23], Sent2Vec [26], Para-

graph vector [29], and Skip-thoughts vectors [30] models on the full-text PubMed Central

(PMC) Open Access dataset. Likewise, several contextualized word representation models,

also known as language models, have also been adapted to the biomedical domain. For

instance, Lee et al. [31] and Peng et al. [32] introduce two language models based on the Bidi-

rectional Encoder Representations from Transformers (BERT) architecture [33], which are

called BERT for Biomedical text mining (BioBERT) and Biomedical Language Understanding

Evaluation of BERT (BlueBERT), respectively.

Nowadays, there are several works in the literature that experimentally evaluate multiple

methods on biomedical sentence similarity. However, they are either theoretical or have a lim-

ited scope and cannot be reproduced. For instance, Kalyan et al. [34], Khattak et al. [35], and

Alsentzer et al. [36] introduce theoretical surveys on biomedical embeddings with a limited

scope. On the other hand, the experimental surveys introduced by Sogancioglu et al. [20], Bla-

gec et al. [28], Peng et al. [32], and Chen et al. [25] among other authors, cannot be reproduced

because of the lack of source code and data to replicate both methods and experiments, or the

lack of a detailed definition of their experimental setups. Likewise, there are other recent
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works whose results need to be confirmed. For instance, Tawfik and Spruit [37] experimentally

evaluate a set of pre-trained language models, whilst Chen et al. [38] propose a system to study

the impact of a set of similarity measures on a Deep Learning ensembled model, which is

based on a Random Forest model [39].

The main aim of this registered report is the introduction of a very detailed experimental

setup for the development of the largest and reproducible experimental survey of methods on

biomedical sentence similarity with the aim of elucidating the state of the problem, such as will

be detailed in the motivation section. Our experiments will be based on our implementation

and evaluation of all methods analyzed herein into a common and new software platform

based on an extension of the Half-Edge Semantic Measures Library (HESML, http://hesml.lsi.

uned.es) [40], called HESML for Semantic Textual Similarity (HESML-STS), as well as their

subsequent recording with the Reprozip long-term reproducibility tool [41]. This work is

based on our previous experience developing reproducible research in a series of publications

in the area, such as the experimental surveys on word similarity introduced in [42–45], whose

reproducibility protocols and datasets [46, 47] are detailed and independently confirmed in

two reproducible papers [40, 48]. The experiments in this new software platform will evaluate

most of the sentence similarity methods for the biomedical domain reported in the literature,

as well as a set of unexplored methods which are based on adaptations from the general lan-

guage domain.

Main motivations and research questions

Our main motivation is the lack of a reproducible experimental survey on biomedical sentence

similarity, which allows the state of the problem to be elucidated in a sound and reproducible

way by answering the following research questions:

RQ1. Which methods get the best results on biomedical sentence similarity?

RQ2. Is there a statistically significant difference between the best performing methods and

the remaining ones?

RQ3. What is the impact of the biomedical Named Entity Recognition (NER) tools on the

performance of the methods on biomedical sentence similarity?

RQ4. What is the impact of the pre-processing stage on the performance of the methods on

biomedical sentence similarity?

RQ5. What are the main drawbacks and limitations of current methods on biomedical sen-

tence similarity?

Most experimental results reported in this line of research cannot be reproduced for

numerous reasons. For instance, Sogancioglu et al. [20] provide neither the pre-trained models

used in their experiments nor a detailed guide for replicating them and their software artifacts

do not reproduce all of their results. Blagec et al. [28] provide neither a detailed definition of

their experimental setup nor their source code and pre-processed data, as well as the pre-

trained models used in their experiments. Chen et al. [25] set the state of the art on biomedical

sentence similarity by copying results from Blagec et al. [28]; thus, their work allows neither

previous results to be confirmed nor are they directly compared with other works. In several

cases, biomedical language models based on BERT, such as BioBERT [31] and NCBI-Blue-

BERT [32], can be reproduced neither in an unsupervised context nor in any other supervised

way, because of the high computational requirements and the non-deterministic nature of the

methods used for their training, respectively.
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A second motivation is the implementation of a set of unexplored methods which are

based on adaptations from other methods proposed for the general language domain. A third

motivation is the evaluation in the same software platform of the benchmarks on biomedical

sentence similarity reported in the literature as follows: Biomedical Semantic Similarity Esti-

mation System (BIOSSES) [20] and Medical Semantic Textual Similarity (MedSTS) [49] data-

sets, as well as the evaluation for the first time of the Microbial Transcriptional Regulation

(CTR) [50] dataset in a sentence similarity task, despite it having been previously evaluated in

other related tasks, such as the curation of gene expressions from scientific publications [51].

A fourth motivation is a study on the impact of the pre-processing stage and NER tools on the

performance of the sentence similarity methods, such as that done by Gerlach et al. [52] for

stop-words in topic modeling task. And finally, our fifth motivation is the lack of reproducibil-

ity software and data resources on this task, which allow an easy replication and confirmation

of previous methods, experiments, and results in this line of research, as well as encouraging

the development and evaluation of new sentence similarity methods.

Definition of the problem and contributions

The main research problem tackled in this work is the design and implementation of a large

and reproducible experimental survey on sentence similarity measures for the biomedical

domain. Our main contributions are as follows: (1) the largest, and for the first time, reproduc-

ible experimental survey on biomedical sentence similarity; (2) the first collection of self-con-

tained and reproducible benchmarks on biomedical sentence similarity; (3) the evaluation of

a set of previously unexplored methods, as well as the evaluation of a new word embedding

model based on FastText and trained on the full-text of articles in the PMC-BioC corpus [19];

(4) the integration for the first time of most sentence similarity methods for the biomedical

domain in the same software library called HESML-STS; and finally, (5) a detailed reproduc-

ibility protocol together with a collection of software tools and datasets, which will be provided

as supplementary material to allow the exact replication of all our experiments and results.

The rest of the paper is structured as follows. First, we introduce a comprehensive and

updated categorization of the literature on sentence semantic similarity measures for the gen-

eral and biomedical language domains. Next, we describe a detailed experimental setup for

our experiments on biomedical sentence similarity. Finally, we introduce our conclusions and

future work.

Methods on sentence semantic similarity

This section introduces a comprehensive categorization of the methods on sentence semantic

similarity for the general and biomedical language domains, which includes most of the meth-

ods reported in the literature. The categorization, shown in Fig 1, is organized into two classes

as follows: (a) the methods proposed for the general domain; and (b) the methods proposed

for the biomedical domain. For a more detailed presentation of the methods categorized

herein, we refer the reader to several surveys on ontology-based semantic similarity measures

[43, 45], word embeddings [35, 45], sentence embeddings [34, 53], and neural language mod-

els [34, 54].

Literature review methodology

We conducted our literature review following the next steps: (1) formulation of our research

questions; (2) search of relevant publications on biomedical sentence similarity, especially all

methods and works whose experimental evaluation is based on the sentence similarity bench-

marks considered in our experimental setup; (3) definition of inclusion and exclusion criteria
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Fig 1. Categorization of the main sentence similarity methods reported in the literature. Citations with an asterisk

(�) point out adaptations for the biomedical domain, whilst the citations in blue highlight those methods that will be

reproduced and evaluated in our experiments (see Table 8). [12, 20–23, 25, 26, 28, 29, 32–38, 55–93].

https://doi.org/10.1371/journal.pone.0248663.g001
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of the methods; (4) definition of the study limitations and risks; and (5) definition of the evalu-

ation metrics. Publications on our research topic were mainly searched in the Web Of Science

(WOS) and Google Scholar databases, and the SemEval [94–99] and BioCreative/OHNLP

[100] conference series. In order to build a first set of relevant works on the topic, we selected a

seed set of highlighted publications and datasets on biomedical sentence similarity [20, 21, 25,

28, 31, 49] from the aforementioned information sources. Then, we reviewed all the papers

related to sentence similarity which cited any seed publication or dataset. Finally, starting from

seed publications and datasets, we extracted those methods that could be implemented and

evaluated in our experiments, and we downloaded and checked all the available pre-trained

models. Our main goal was trying an independent replication or evaluation of all methods

previously evaluated on the biomedical sentence similarity benchmarks considered in our

experiments.

Methods proposed for the general language domain

There is a large corpus of literature on sentence similarity methods for the general language

domain as the result of a significant research effort during the last decade. However, the litera-

ture for the biomedical domain is much more limited. Research for the general language

domain has mainly been boosted by the SemEval Short Text Similarity (STS) evaluation series

since 2012 [94–99], which has generated a large number of contributions in the area [84, 85,

92, 101, 102], as well as an STS benchmark dataset [99]. On the other hand, the development

of sentence similarity benchmarks for the biomedical domain is much more recent. Currently,

there are only three datasets for the evaluation of methods on biomedical sentence similarity,

called BIOSSES [20], MedSTS [49], and CTR [50]. BIOSSES was introduced in 2017 and it is

limited to 100 sentence pairs with their corresponding similarity scores, whilst MedSTSfull is

made up by 1,068 scored sentence pairs of the MedSTS dataset [100], which contains 174,629

sentence pairs gathered from a clinical corpus on biomedical sentence similarity. Finally, the

CTR dataset includes 171 sentence pairs, but it has not been evaluated yet because of its recent

publication in 2019.

Fig 1 shows our categorization of the current sentence semantic similarity measures into

six subfamilies as follows. First, string-based measures, whose main feature is the use of the

explicit information contained at the character or word level in the sentences to estimate

their similarity. Second, ontology-based measures, such as those introduced by Sogancioglu

et al. [20], whose main feature is the computation of the similarity between sentences by

combining the pairwise similarity scores of their constituent words and concepts [45] based

on the Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) [103] and

WordNet [104] ontologies, and the MeSH thesaurus [24]. Third, corpus-based methods

based on the distributional hypothesis [105], such as the work of Pyysalo et al. [73], which

states that words sharing semantic relationships tend to occur in similar contexts. The cor-

pus-based methods can be divided into three subcategories as follows: (a) methods based on

word embeddings, (b) sentence embeddings, and (c) language models. Methods based on

word embeddings combine the word vectors corresponding to the words contained in a sen-

tence to build a sentence vector, such as the averaging Simple Word EMbeddings (SWEM)

models introduced by Shen et al. [106], whilst methods based on sentence embeddings

directly compute a vector representation for each sentence. Then, the similarity between sen-

tence pairs is calculated using any vector-based similarity metric, such as the cosine function.

On the other hand, language models, which explore the concept of Transfer Learning by cre-

ating a pre-trained model on a large raw text corpus and fine-tuning those models in down-

stream tasks, such as sentence semantic similarity, with the pioneering work of Peng et al.
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[32]. Fourth, syntax-based methods, which rely on the use of explicit syntax information, as

well as the structure of the words that compound the sentences, such as the pioneering work

of Oliva et al. [82]. Fifth, feature-based approaches, such as the work of Chen et al. [86],

whose main idea is to compute the similarity of two sentences by measuring at different lan-

guage perspectives the properties that they have in common or not, such as lexical patterns,

word semantics and named entities. Finally, aggregated methods, whose main feature is the

combination of other sentence similarity methods.

Methods proposed for the biomedical domain

Like that mentioned in the introduction, most methods on biomedical sentence similarity are

adaptations from the general domain, such as the methods which will be evaluated in this

work (see Table 8). Sogancioglu et al. [20] proposed a set of ontology-based measures called

WordNet-based Similarity Measure (WBSM) and UMLS-based Similarity Measure (UBSM),

which are based on the Li et al. [21] measure. All word and sentence embedding models for

the biomedical domain in the literature are based on well-known models from the general

domain. Pyysalo et al. [73] train a Skip-gram [72] model on document titles and abstracts

from the PubMed XML dataset, and all text content of the PMC Open Access dataset. New-

man-Griffis et al. [70] and Chen et al. [71] train GloVe [69], Skip-gram, and Continuous Bag

of Words (CBOW) [72] models using PubMed information, whilst Zhang et al. [22] and Chen

et al. [71] train FastText [23] models using PubMed and MeSH. Blagec et al. [28] introduce a

set of neural embedding models based on the training of FastText [23], Sent2Vec [26], Para-

graph vector [29], and Skip-thoughts vectors [30] models on the PMC dataset. Chen et al. [25]

also introduce a sentence embedding model called BioSentVec, which is based on Sent2vec

[26]. Likewise, we also find adaptations from several contextualized word representation mod-

els, also known as language models, for the biomedical domain. Tawfik and Spruit [37] evalu-

ate a Flair-based [77] model trained on PubMed abstracts. Ranashinghe et al. [78], Peng et al.

[32], Beltagy et al. [79], Alsentzer et al. [36], Gu et al. [80] and Wada et al. [32, 81] introduce

BERT-based models [33] trained on biomedical information. However, these later models do

not perform well in an unsupervised context because they are trained for downstream tasks

using a supervised approach, which has encouraged Ranashinghe et al. [78] to explore a set of

unsupervised approximations for evaluating BioBERT [76] and Embeddings for Language

Models (ELMo) [76] models in the biomedical domain.

The reproducible experiments on biomedical sentence similarity

This section introduces a very detailed experimental setup describing our plan to evaluate and

compare most of the sentence similarity methods for the biomedical domain. In order to set

the state of the art of the problem in a sound and reproducible way, the goals of our experi-

ments are as follows: (1) the evaluation of most of methods on biomedical sentence similarity

onto the same software platform; (2) the evaluation of a set of new sentence similarity methods

adapted from their definitions for the general-language domain; (3) the setting of the state of

the art of the problem in a sound and reproducible way; (4) the replication and independent

confirmation of previously reported methods and results; (5) a study on the impact of different

pre-processing configurations on the performance of the sentence similarity methods; (6) a

study on the impact of different Name Entity Recognition (NER) tools, such as MetaMap

[107] and clinic Text Analysis and Knowledge Extraction System (cTAKES) [108], onto the

performance of the sentence similarity methods; and finally, (7) a detailed statistical signifi-

cance analysis of the results.
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Selection of methods

The methodology for the selection of the sentence similarity methods was as follows: (a) identi-

fication of all the methods in the biomedical domain that were evaluated in BIOSSES [20] and

MedSTS [49] datasets; (b) identification of those methods reported for the general domain not

evaluated in the biomedical domain yet; and (c) definition of the criteria for the selection and

exclusion of methods.

Our selection criteria for the sentence similarity methods to be reproduced and evaluated

herein have been significantly conditioned by the availability of multiple sources of informa-

tion, as follows: (1) pre-trained models; (2) source code; (3) reproducibility data; (4) detailed

descriptions of the methods and experiments; (5) reproducibility guidelines; and finally, (6)

the computational requirements for training several models. This work reproduces and evalu-

ates most of the sentence similarity methods for the biomedical domain reported in the litera-

ture, as well as other methods that have not been explored in this domain yet. Some of these

later unexplored methods are either variants or adaptations of methods previously proposed

for the general or biomedical domain, which are evaluated for the first time in this work, such

as the WBSM-cosJ&C [20, 43, 109], WBSM-coswJ&C [20, 43, 109], WBSM-Cai [20, 100],

UBSM-cosJ&C [20, 43, 109], UBSM-coswJ&C [20, 43, 109], and UBSM-Cai [20, 100] methods

detailed in Tables 2 and 3.

Biomedical methods not evaluated. We discard the evaluation of the pre-trained Para-

graph vector model introduced by Sogancioglu et al. [20] because it is not provided by the

authors, despite this model having achieved the best results in their work. Likewise, we also

discard the evaluation of the pre-trained Paragraph vector, sent2vec, and fastText models

introduced by Blagec et al. [28], because the authors provide neither their pre-trained models

nor their source code and the detailed post-processing configuration used in their experi-

ments. Thus, not all of the aforementioned models can be reproduced.

Tables 1 and 2 detail the configuration of the string-based measures and ontology-based

measures that will be evaluated in this work, respectively. Both WBSM and UBSM methods

will be evaluated in combination with the following word or concept similarity measures:

Rada et al. [111], Jiang&Conrath [112], and three state-of-the-art unexplored measures, called

cosJ&C [43], coswJ&C [43], and Cai et al. [110]. The word similarity measure which reports

the best results will be used to evaluate the COM method [20]. Table 3 details the sentence

similarity methods based on the evaluation of pre-trained character, word, and sentence

Table 1. Detailed setup for the string-based sentence similarity measures which will be evaluated in this work. All

the string-based measures will follow the implementation of Sogancioglu et al. [20], who use the Simmetrics library

[113].

ID Method Detailed setup of each method

M1 Qgram [58] simða; bÞ ¼ 2�jq� gramsðaÞ[q� gramsðbÞj
jq� gramsðaÞjþjq� gramsðbÞj , being a and b sets of q words, and with q = 3.

M2 Jaccard [55, 56] simða; bÞ ¼ ja[bj
ja\bj, being a and b sets of words of the first and second sentence

respectively.

M3 Block distance [59]
simða; bÞ ¼ 1 �

Pn¼jajþjbj

n¼1
ðvan � vbnÞ

jajþjbj , being a and b sets of words of the first and second

sentence respectively; and va and vb the frequency vectors of a and b.

M4 Levenshtein distance

[57]

Measures the minimal cost number of insertions, deletions and replacements needed

for transforming the first into the second sentence. Insert, delete and substitution cost

set to 1.

M5 Overlap coefficient

[60]
simða; bÞ ¼ ja\bj

jMinðjaj;jbjÞj, being a and b sets of words of the first and second sentence

respectively.

https://doi.org/10.1371/journal.pone.0248663.t001
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embedding models that will be evaluated in this work. We will also evaluate for the first time a

sentence similarity method, named FastText-SkGr-BioC and detailed in Table 3), which is

based on a FastText [23] word embedding model trained on the full text of the PMC-BioC [19]

articles. Finally, Table 4 details the pre-trained language models that will be evaluated in our

experiments.

Table 2. Detailed setup for the ontology-based sentence similarity measures which will be evaluated in this work.

ID Sentence similarity method Detailed setup of each method

M6 WBSM-Rada [20, 111] WBSM [20] combined with Rada [111] measure

M7 WBSM-J&C [20, 112] WBSM [20] combined with J&C [112] measure

M8 WBSM-cosJ&C [20, 43] (this

work)

WBSM [20] with cosJ&C [43] measure and Sanchez et al. [109] IC model

M9 WBSM-coswJ&C [20, 43] (this

work)

WBSM [20] with coswJ&C [43] measure and Sanchez et al. [109] IC

model

M10 WBSM-Cai [20, 110] (this work) WBSM [20] combined with Cai et al. [110] measure and Cai et al. [110]

IC model

M11 UBSM-Rada [20, 111] UBSM [20] with Rada et al. [111] measure

M12 UBSM-J&C [20, 112] UBSM [20] combined with J&C [112] measure

M13 UBSM-cosJ&C [20, 43] (this

work)

UBSM [20] with cosJ&C [43] measure and Sanchez et al. [109] IC model

M14 UBSM-coswJ&C [20, 43] (this

work)

UBSM [20] with coswJ&C [43] measure and Sanchez et al. [109] IC

model

M15 UBSM-Cai [20, 110] (this work) UBSM [20] combined with Cai et al. [110] measure and Cai et al. [110]

IC model

M16 COM [20] λ�WBSM + (1 − λ) � UBSM [20] with λ = 0.5 and the best word similarity

measure

https://doi.org/10.1371/journal.pone.0248663.t002

Table 3. Detailed setup for the sentence similarity methods based on pre-trained character, Word Embedding

(WE), and Sentence Embedding (SE) models which will be evaluated in this work.

ID Sentence similarity method Detailed setup of each method

M17 Flair [77] Contextual string embeddings trained on PubMed

M18 Pyysalo et al. [73] Skip-gram trained on PubMed + PMC

M19 BioConceptVec [71] Skip-gram WE model trained on PubMed using word2vec program

M20 BioConceptVec [71] CBOW WE model trained on PubMed using word2vec program

M21 Newman-Griffis et al. [70] Skip-gram WE model trained on PubMed using word2vec program

M22 Newman-Griffis et al. [70] CBOW WE model trained on PubMed using word2vec program

M23 Newman-Griffis et al. [70] GloVe WE model trained on PubMed

M24 BioConceptVecGloVe [71] GloVe We model trained on PubMed

M25 BioWordVecint [22] FastText [23] WE model trained on PubMed + MeSH

M26 BioWordVecext [22] FastText [23] trained on PubMed + MeSH

M27 BioNLP2016win2 [114] FastText [23] WE model based on skip-gram and trained on PubMed

with training setup detailed in [114, table 18]

M28 BioNLP2016win30 [114] FastText [23] WE model based on skip-gram and trained on PubMed

with training setup detailed in [114, table 18]

M29 BioConceptVecfastText [71] FastText [23] WE model trained on PubMed

M30 Universal Sentence Encoder

(USE) [115]

USE SE pre-trained model of Cer et al. [115]

M31 BioSentVec [25] sent2vec [26] SE model trained on PubMed + MIMIC-III

M32 FastText-Skipgram-BioC (this

work)

FastText [23] WE model based on Skip-gram and trained on PMC-BioC

corpus (05,09,2019) with the following setup: vector dim. = 200, learning

rate = 0.05, sampling thres. = 1e-4, and negative examples = 10

https://doi.org/10.1371/journal.pone.0248663.t003
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Selection of language pre-processing methods and tools

The pre-processing stage aims to ensure a fair comparison of the methods that will be evalu-

ated in a single end-to-end pipeline. To achieve this later goal, the pre-processing stage nor-

malizes and decomposes the sentences into a series of components that evaluate the same

sequence of words applied to all the methods simultaneously. The selection criteria of the

pre-processing components have been conditioned by the following constraints: (a) the pre-

processing methods and tools used by state-of-the-art methods; and (b) the availability of

resources and software tools.

Most methods receive as input a sequence of words making up the sentence to be evaluated.

The process of splitting sentences into words can be carried out by tokenizers for all the meth-

ods to be evaluated in this work, such as the well-known general domain Stanford CoreNLP

tokenizer [117], which is used by Blagec et al. [28], or the biomedical domain BioCNLPToke-

nizer [118]. On the other hand, the use of lexicons instead of tokenizers for sentence splitting

would be inefficient because of the vast general and biomedical vocabulary. Besides, there

would not be possible to provide a fair comparison of the methods because the pre-trained lan-

guage models have no identical vocabularies.

The tokenized words that conform the sentence, named tokens, are usually pre-processed

by removing special characters and lower-casing, and removing the stop words. To analyze all

the possible combinations of token pre-processing configurations from the literature, for each

method we will replicate the methods used by other authors, such as Blagec et al. [28] and

Sogancioglu et al. [20], and we will also evaluate all the pre-processing configurations that

have not been evaluated yet. We will also study the impact of pre-processing configurations by

not removing special characters nor lower casing and not removing the stop words from the

tokens.

Table 4. Detailed setup for the sentence similarity methods based on pre-trained language models which will be

evaluated in this work.

ID Sentence similarity method Detailed setup of each method

M33 BioBERT Base 1.0 [31] (+ PubMed) BERT [33] trained on English Wikipedia + BooksCorpus + PubMed

abstracts

M34 BioBERT Base 1.0 [31] (+ PMC) BERT [33] trained on English Wikipedia + BooksCorpus + PMC

full-text articles

M35 BioBERT Base 1.0 [31] (+ PubMed

+ PMC)

BERT [33] trained on English Wikipedia + BooksCorpus + PubMed

abstracts + PMC full-text articles

M36 BioBERT Base 1.1 [31] (+ PubMed) BERT [33] trained on English Wikipedia + BooksCorpus + PubMed

abstracts

M37 BioBERT Large 1.1 [31] (+ PubMed) BERT [33] trained on English Wikipedia + BooksCorpus + PubMed

abstracts

M38 NCBI-BlueBERT Base [32] PubMed BERT [33] trained on PubMed abstracts

M39 NCBI-BlueBERT Large [32] PubMed BERT [33] trained on PubMed abstracts

M40 NCBI-BlueBERT Base [32] PubMed

+ MIMIC-III

BERT [33] trained on PubMed abstracts + MIMIC-III

M41 NCBI-BlueBERT Large [32] PubMed

+ MIMIC-III

BERT [33] trained on PubMed abstracts + MIMIC-III

M42 SciBERT [79] BERT [33] trained on PubMed abstracts

M43 ClinicalBERT [116] BERT [33] trained on PubMed abstracts

M44 PubMedBERT [80] (abstracts) BERT [33] trained on PubMed abstracts

M45 PubMedBERT [80] (abstracts + full

text)

BERT [33] trained on PubMed abstracts + full text

M46 ouBioBERT-Base [81] (Uncased) BERT [33] trained on PubMed abstracts

https://doi.org/10.1371/journal.pone.0248663.t004
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Ontology-based sentence similarity methods estimate the similarity of a sentence by

exploiting the ‘is-a’ relations between the concepts in an ontology. Therefore, the evaluation of

any ontology-based method in this work will receive a set of concept-annotated pairs of sen-

tences. The aim of the biomedical Named Entity Recognizers (NER) is to identify entities in

pieces of raw text, such as diseases or drugs. In this work, we propose to evaluate the impact of

three significant biomedical NER tools on the sentence similarity task, as follows: (a) MetaMap

[107], (b) cTAKES [108], and (c) MetaMap Lite [119]. MetaMap tool [107] is used by UBSM

and COM methods [20] for recognizing Unified Medical Language System (UMLS) [120] con-

cepts in the sentences, which is the standard compendium of biomedical vocabularies. In this

work, we will use the default configuration of MetaMap, using all the available semantic types,

the MedPost Part-of-speech tagger [121] and with the MetaMap Word-Sense Disambiguation

(WSD) module, but restricting UMLS sources to SNOMED-CT and MeSH, which are cur-

rently implemented by HESML V1R5 [122]. We will also evaluate cTAKES [108], which has

demonstrated to be a robust and reliable tool to recognize biomedical entities [123]. Encour-

aged by the high computational cost of MetaMap in evaluating large text corpus, Demner-

Fushman et al. [119] introduce a lighter MetaMap version, called Metamap Lite, which pro-

vides a real-time implementation of the basic MetaMap annotation capabilities without a large

degradation of its performance.

Software integration and contingency plan

To mitigate the impact of potential development risks or unexpected barriers, we have elabo-

rated a contingency plan based on identifying potential risk sources, as well as the testing and

integration prototyping of all third-party software components shown in Fig 2. Next, we detail

the main risk sources identified in our contingency analysis and the actions carried out to miti-

gate their impact on our study.

1. Integration of the biomedical ontologies and thesaurus. Recently published HESML V1R5

software library [122] integrates the real-time evaluation of ontology-based similarity mea-

sures based on MeSH [24] and SNOMED-CT [67], as well as any other biomedical ontology

based on the OBO file format [124]. Thus, this risk has been completely mitigated.

2. External NER tools. We have confirmed the feasibility of integrating all biomedical NER

tools considered in our experiments, such as MetaMap [107] or cTAKES [108], by proto-

typing the main functions for annotating testing sentences.

3. Availability of the pre-trained models. We have already gathered all the pre-trained embed-

dings [22, 25, 70, 71, 73, 77, 114, 115] and BERT-based language models [31, 32, 79–81,

116] required for our experiments. We have also checked the validity of all pre-trained

model files by testing the evaluation of the models using the third-party libraries as detailed

below.

4. Evaluation of the pre-trained models. The software replication required to evaluate sentence

embeddings and language models is extremely complex and out of the scope of this work.

For this reason, these models must be evaluated by using the software artifacts used to gen-

erate the aforementioned models. Our strategy is to implement Python wrappers for evalu-

ating the available models by using the provided software artifacts as follows: (1) Sent2vec-

based models [25] will be evaluated using the Sent2vec library [26]; (2) Flair models [77]

will be evaluated using the flairNLP framework [77]; and USE models [115] will be evalu-

ated using the open source platform TensorFlow [125]. All BERT-based pre-trained

models will be evaluated using the open-source bert-as-a-service library [126]. On the
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other hand, we will develop a parser for efficiently loading and evaluating FastText-based

[23] and other word embedding models [22, 70, 71, 73, 114] in the HESML-STS library that

will be specially developed for this work. Finally, we have developed all the necessary proto-

types to confirm the feasibility of evaluating all the pre-trained models considered in our

experiments.

5. Licensing restrictions. The licensing restrictions of third-party software components and

resources, such as SNOMED-CT [103], MeSH [24] and MetaMap [107], require users to

obtain previously a license from the National Library of Medicine (NLM) of the United

States to use the UMLS Metathesaurus databases, as well as SNOMED-CT and MeSH.

Users will be able to reproduce the experiments of this work by following two alternatives:

(1) downloading the third-party software components and integrating them in the

Fig 2. Concept map detailing the external software components that will be integrated in HESML-STS. Input data files are shown in green, whilst external software

libraries are shown in orange, and software components that will be developed are shown in blue. All experiments will be specified into a single experiment file, which is

executed by the HESMLSTSclient program.

https://doi.org/10.1371/journal.pone.0248663.g002
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HESML-STS framework as will be detailed in our reproducibility protocol; or (2) by down-

loading a Docker image file which will contain a pre-installed version of all the necessary

software for reproducing our experiments. In the first case, we will publish all the necessary

source code, binaries, data, and documentation in Github and Dataverse repositories, to

allow the user to integrate restricted third-party software components into the HESML-STS

framework. In the second case, users must send a copy of their NLM license to “eciencia@-

consorciomadrono.es” to obtain the password to decrypt the Docker file provided as sup-

plementary material.

Detailed workflow of our experiments

Fig 3 shows the workflow for running the experiments that will be carried out for this work.

Given an input dataset, such as BIOSSES [20], MedSTS [49], or CTR [50], the first step is to

pre-process all of the sentences, as shown in Fig 4. For each sentence in the dataset (named S1

and S2), the preprocessing phase will be divided into four stages as follows: (1.a) named entity

recognition of UMLS [120] concepts, using different state-of-the-art NER tools, such as Meta-

Map [107] or cTAKES [108]; (1.b) tokenize the sentence, using well-known tokenizers, such as

the Stanford CoreNLP tokenizer [117], BioCNLPTokenizer [118], or WordPieceTokenizer

[33] for BERT-based methods; (1.c) lower-case normalization; (1.d) character filtering, which

Fig 3. Detailed experimentation workflow which will be implemented by our experiments to preprocess, calculate

the raw similarity scores, and post-process the results contained in the evaluation of the biomedical datasets. The

workflow detailed below produces a collection of raw and processed data files.

https://doi.org/10.1371/journal.pone.0248663.g003

Fig 4. Detailed sentence preprocessing workflow that will be implemented in our experiments. The preprocessing

stage takes an input sentence and produces a preprocessed sentence as output. (�) The named entity recognizer will be

only evaluated in ontology-based methods.

https://doi.org/10.1371/journal.pone.0248663.g004
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allows the removal of punctuation marks or special characters; and finally, (1.e) the removal of

stop-words, following different approximations evaluated by other authors like Blagec et al.

[28] or Sogancioglu et al. [20]. Once the dataset is pre-processed in step 1 detailed in Fig 3),

the aim of step 2 is to calculate the similarity between each pair of sentences in the dataset to

produce a raw output file containing all raw similarity scores, one score per sentence pair.

Finally, a R-language script will be used in step 3 to process the raw similarity files and produce

the final human-readable tables reporting the Pearson and Spearman correlation values

detailed in Table 8, as well as the statistical significance of the results and any other supplemen-

tary data table required by our study on the impact of the pre-processing and NER tools.

Finally, we will also evaluate all the pre-processing combinations for each family of methods

to study the impact of pre-processing methods on the performance of the sentence similarity

methods results, with the only exception of the BERT-based methods. The pre-processing con-

figurations of the BERT-based methods will only be evaluated in combination with the Word-

Piece Tokenizer [33] because it is required by the current BERT implementations.

Evaluation metrics

The evaluation metrics used in this work are the Pearson correlation factor, denoted by r in Eq

(1), and the Spearman rank correlation factor, denoted by ρ in Eq (2). The Pearson correlation

is invariant regarding any scaling of the data, and it evaluates the linear relationship between

two random samples, whilst the Spearman rank correlation is rank-invariant and evaluates the

monotonic relationship between two random samples.

r ¼

Pn
i¼1
ðXi � XÞðYi � Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðXi � XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðYi � Y Þ2

q ð1Þ

r ¼ 1 �
6
Pn

i¼1
d2
i

nðn2 � 1Þ
; di ¼ xi � yið Þ ð2Þ

The use of the Pearson correlation to evaluate the task on sentence similarity can be traced

back to the pioneering work of Dustin and Alfonsin [127]. On the other hand, both Pearson

and Spearman correlation scores have been extensively used to compare the performance of

the state-of-the-art methods on biomedical sentence similarity in most works in this line of

research [20, 22, 28, 35]. Both aforementioned correlation metrics are also the standard metric

for evaluating the task on word similarity [45]. For this reason, we use both aforementioned

metrics to evaluate and compare the performance of the methods evaluated herein. However,

Spearman’s rank correlation has demonstrated to be more reliable in the evaluation of seman-

tic similarity measures of sentences or words in different applications, because it is rank-

invariant, and thus, it “provides an evaluation metric that is independent of such data-depen-

dent transformations” [128].

We will use the well-known t-Student test to carry-out a statistical significance analysis of

the results in the BIOSSES [20], MedSTSfull [49], and CTR [50] datasets. In order to compare

the performance of the semantic measures that will be evaluated in our experiments, we use

the overall average values of the two aforementioned metrics in all datasets. The statistical sig-

nificance of the results will be evaluated using the p-values resulting from the t-student test for

the mean difference between the values reported by each pair of semantic measures in all data-

sets, or a subset of them relevant in the context of the discussion. The t-student test is used

herein because it is a standard and widely-used hypothesis testing for small and independent

data samples with the normal distribution. The p-values are computed using a one-sided t-
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student distribution on two paired random sample sets. Our null hypothesis, denoted by H0, is

that the difference in the average performance between each pair of compared sentence simi-

larity methods is 0, whilst the alternative hypothesis, denoted by H1, is that their average per-

formance is different. For a 5% level of significance, it means that if the p-value is greater or

equal than 0.05, we must accept the null hypothesis. Otherwise, we can reject H0 with an error

probability of less than the p-value. In this latter case, we will say that a first sentence similarity

method obtains a statistically significantly higher value than the second one in a specific metric

or that the former one significantly outperforms the second one.

Software implementation and development plan

Fig 5 shows a concept map detailing the planned experimental setup to run all experiments

planned in this work, as detailed in Table 8. Our experiments will be based on our implemen-

tation and evaluation of all methods detailed in Tables 1–4 into a common and new Java soft-

ware library called HESML-STS, which will be specifically developed for this work. HESML-

STS will be based on an extension of the recent HESML V1R5 [122] semantic measures library

for the biomedical domain.

All our experiments will be generated by running the HESMLSTSclient program shown in

Fig 5 with a reproducible XML-based benchmark file, which will generate a raw output file in

comma-separated file format (�.csv) for each dataset detailed in Table 5. The raw output files

will contain the raw similarity values returned by each sentence similarity method in the evalu-

ation of the degree of similarity between each sentence pair. The final results for the Pearson

and Spearman correlation values planned in Table 8 will be automatically generated by run-

ning a R-language script file on the collection of raw similarity files using either R or RStudio

statistical programs.

Table 6 shows the development plan schedule proposed for this work. We have decom-

posed the work into seven task groups, called Work Packages (WP), whose deliverables are as

follows: (1) Python-based wrappers for the integration of the third-party software components

(see Fig 2); (2) HESML-STS library beta 1 version integrated on top of HESML V1R5 (https://

github.com/jjlastra/HESML) [122]; (3) HESML-STS beta 1 with an integrated end-to-end

pipeline and the XML-based experiment engine; (4) collection of raw output data files gener-

ated by running the XML-based reproducible experiments; (5) detailed analysis of the results,

including the identification of the main drawbacks and limitations of current methods; (6)

reproducible protocol and dataset published in the Spanish Dataverse repository; and finally,

(7) submission of the manuscript introducing the study that implements the protocol detailed

herein, together with a companion data article introducing our reproducibility protocol and

dataset.

Reproducing our benchmarks

For the sake of reproducibility, we will co-submit a companion data paper with the next work

reporting the results of this study, which will introduce a publicly available reproducibility

dataset, together with a detailed reproducibility protocol to allow the exact replication of all

our experiments and results. Table 7 details the reproducibility software and data that will be

published with our next work implementing this registered report. Our benchmarks will be

implemented using Java and R languages and could be reproduced in any Java-complaint or

Docker-complaint platforms, such as Windows, MacOS, or any Linux-based system. The

available software and data will be published on the Spanish Dataverse Network.
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Fig 5. Concept map detailing the software architecture for our experimental setup. Input data files are shown in green, whilst output raw and processed data files are

shown in yellow, external available software libraries in orange, and software components that will be developed are shown in blue. All experiments will be specified into a

single experiment file, which is executed by the HESMLSTSclient program.

https://doi.org/10.1371/journal.pone.0248663.g005

Table 5. Benchmarks on biomedical sentence similarity evaluated in this work.

Dataset #pairs Corresponding file (�.tsv) in future HESML-STS distribution

BIOSSES [20] 100 BIOSSESNormalized.tsv

MedSTS [49] 1,068 CTRNormalized_averagedScore.tsv

CTR [50] 170 MedStsFullNormalized.tsv

https://doi.org/10.1371/journal.pone.0248663.t005
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Detailed results planned

Table 8 shows the methods and datasets that will be evaluated in this work, together with the

detailed results which will be generated by our experiments. Finally, any further experimental

results resulting from our study on the impact of the pre-processing and NER tools on the per-

formance of the sentence similarity methods will also be reported in our next work, and they

could also be reproduced using our aforementioned reproducibility resources.

Answering our research questions

Next, we explain how our experimental results will allow answering every of our research

questions:

Table 6. Development plan proposed for this work.

Definition of the workpackages and tasks to be developed Workload

(weeks)

WP1—Implementation of Python wrappers for third-party components

Task 1.1 Implementation of the BERT Python wrapper 1

Task 1.2 Implementation of the Sent2vec, Tensorflow, and Flair wrappers 1

WP2—Software implementation of methods

Task 2.1 Implementation of all pre-processing methods shown in Fig 6 2

Task 2.2 Implementation of string-based methods detailed in Table 1 1

Task 2.3 Implementation of ontology-based methods detailed in Table 2 1

Task 2.4 Implementation of WE and SE methods detailed in Table 3 1

Task 2.5 Implementation of BERT-based methods detailed in Table 4 1

WP3—Implementation of the automatic reproducible experiments

Task 3.1 Implementation of the benckmark objects and file parsers 1

Task 3.2 Preparation of the experiment files to evaluate the impact of the pre-processing

configurations

1

Task 3.3 Preparation of the experiment files to evaluate the performance of the methods in the

three biomedical sentence similarity datasets

1

WP4—Evaluation of the entire set of reproducible experiments

Task 4.1 Execution of the pre-processing experiments to generate of all raw output data 4

Task 4.2 Execution of the method experiments and generation of all raw output data 2

WP5—Data analysis and results interpretation

Task 5.1 Design and development of the post-processing scripts for the generation of tables

and figures

2

Task 5.2 Data analysis and discussion 2

Task 5.3 Identification and analysis of the main drawbacks and limitations of current methods 3

WP6—Design and publication of the reproduciblity protocol and dataset

Task 6.1 Design and validation of the reproducibility dataset 1

Task 6.2 Design of the reproducibility protocol 1

Task 6.3 Private publication and validation of the reproducibility dataset 1

Task 6.4 Software release of the first HESML-STS version 1

Task 6.5 Creation and validation of the Docker file 1

Task 6.6 Writing and testing of the reproducibility protocol 2

Task 6.7 Writing of the companion data article introducing our reproducibility protocol and

dataset

2

WP8—Publishing the results

Task 8.1 Writing and submission of the research article reporting the results of this study and

co-submission of the companion data article

6

Overall estimated workload (weeks) 39

https://doi.org/10.1371/journal.pone.0248663.t006
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RQ1. Table 8 will report the Pearson and the Spearman rank correlation factors in the evalua-

tion of the three datasets. Therefore, we will draw up our conclusions by comparing the

performance of both metrics. However, we will set the best overall performing methods

using the Spearman correlation results because of its better predictive nature in most

extrinsic tasks, as pointed out in section “Evaluation Metrics”.

RQ2. We will use a t-Student test between the Spearman correlation values obtained by each

pair of methods in the evaluation of the three proposed datasets as a means to set the

statistical significance of the results. Thus, we will say that a method significantly out-

performs another one resulting p-values are less or equal than 0.05. The t-Student test

will be based on the Spearman rank correlation value for the same reasons detailed

above.

RQ3. Table 9 details the methods and biomedical NER tools that will be evaluated in this

work. We will consider only ontology-based methods since word and sentence pre-

trained models have been trained on raw texts and do not contain UMLS concepts. To

make a fair comparison of the methods, we will evaluate them using the best pre-pro-

cessing configuration defined by a selection of the tokenizer, lower-case normalization,

char filtering, and stop words list. Our analysis and discussion of the results will be

based on comparing the Pearson and Spearman correlation values reported for each

method. However, we will set the best overall performing NER tool using the Spearman

rank correlation results like the remaining research questions.

RQ4. Fig 6 details all the possible combinations of pre-processing configurations that will be

evaluated in this work. String, word and sentence embedding, and ontology-based

methods, will be evaluated using all the available configurations except the WordPiece-

Tokenizer [33], which is specific to BERT-based methods. Thus, BERT-based methods

will be evaluated using different char filtering, lower casing normalization, and stop

words removal configurations. We will use the Pearson and Spearman’s correlation

values to determine the impact of the different pre-processing configurations on the

evaluation results. However, we will set the best overall performing pre-processing

configuration using the Spearman rank correlation results like the remaining research

questions.

RQ5. Our methodology for identifying the main drawbacks and limitations is based on the

following steps: (1) analyzing evaluated methods and tools; (2) identifying which meth-

ods do not perform well in the datasets; (3) searching and analyzing the sentence pairs

Table 7. Detailed planning of the supplementary reproducibility software and data that will be published with our

future work implementing this registered report.

Material Description

Reproducibility dataset Contains all raw input and output data files, pre-trained model files, and a long-term

reproducibility image based on ReproZip or Docker, which will be publicly available in

the Spanish Dataverse Network.

Companion data article Data and methods article introducing our reproducibility protocol and dataset to allow

the independent replication of our experiments and results.

HESML-STS software

library

Release of the new HESML-STS library. This library will be integrated into a

forthcoming HESML version published both in Github and the Spanish Dataverse

Network under CC By-NC-SA-4.0 license.

HESML-STS software

paper

Software article introducing our sentence similarity library, called HESML-STS, which

will be especially developed for this work.

https://doi.org/10.1371/journal.pone.0248663.t007
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Table 8. Pearson (r) and Spearman (ρ) correlation values (0.xxx) which will be obtained in our experiments from

the evaluation of all sentence similarity methods detailed below in the BIOSSES [20], MedSTSfull [49], and CTR

[50] datasets.

ID Sentence similarity methods BIOSSES MedSTSfull CTR

r ρ r ρ r ρ
M1 Qgram .xxx .xxx .xxx .xxx .xxx .xxx

M2 Jaccard .xxx .xxx .xxx .xxx .xxx .xxx

M3 Block distance .xxx .xxx .xxx .xxx .xxx .xxx

M4 Levenshtein distance [57] .xxx .xxx .xxx .xxx .xxx .xxx

M5 Overlap coefficient [60] .xxx .xxx .xxx .xxx .xxx .xxx

M6 WBSM-Rada [20, 111] .xxx .xxx .xxx .xxx .xxx .xxx

M7 WBSM-J&C [20, 112] .xxx .xxx .xxx .xxx .xxx .xxx

M8 WBSM-cosJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx

M9 WBSM-coswJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx

M10 WBSM-Cai [20, 110] .xxx .xxx .xxx .xxx .xxx .xxx

M11 UBSM-Rada [20, 111] .xxx .xxx .xxx .xxx .xxx .xxx

M12 UBSM-J&C [20, 112] .xxx .xxx .xxx .xxx .xxx .xxx

M13 UBSM-cosJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx

M14 UBSM-coswJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx

M15 UBSM-Cai [20, 110] .xxx .xxx .xxx .xxx .xxx .xxx

M16 COM [20] .xxx .xxx .xxx .xxx .xxx .xxx

M17 Flair [37, 77] .xxx .xxx .xxx .xxx .xxx .xxx

M18 Pyysalo et al. [73] .xxx .xxx .xxx .xxx .xxx .xxx

M19 BioConceptVecword2vec_sg .xxx .xxx .xxx .xxx .xxx .xxx

M20 BioConceptVecword2vec_cbow .xxx .xxx .xxx .xxx .xxx .xxx

M21 Newman-Griffisword2vec_sg [70] .xxx .xxx .xxx .xxx .xxx .xxx

M22 Newman-Griffisword2vec_cbow [70] .xxx .xxx .xxx .xxx .xxx .xxx

M23 Newman-Griffisglove .xxx .xxx .xxx .xxx .xxx .xxx

M24 BioConceptVecglove [71] .xxx .xxx .xxx .xxx .xxx .xxx

M25 BioWordVecint [22] .xxx .xxx .xxx .xxx .xxx .xxx

M26 BioWordVecext [22] .xxx .xxx .xxx .xxx .xxx .xxx

M27 BioNLP2016win2 [114] .xxx .xxx .xxx .xxx .xxx .xxx

M28 BioNLP2016win30 [114] .xxx .xxx .xxx .xxx .xxx .xxx

M29 BioConceptVecfastText .xxx .xxx .xxx .xxx .xxx .xxx

M30 USE [115] .xxx .xxx .xxx .xxx .xxx .xxx

M31 BioSentVec (PubMed+MIMIC-III) .xxx .xxx .xxx .xxx .xxx .xxx

M32 FastText-SkGr-BioC (this work) .xxx .xxx .xxx .xxx .xxx .xxx

M33 BioBERT Base 1.0 (+ PubMed) .xxx .xxx .xxx .xxx .xxx .xxx

M34 BioBERT Base 1.0 (+ PMC) .xxx .xxx .xxx .xxx .xxx .xxx

M35 BioBERT Base 1.0 (+ PubMed + PMC) .xxx .xxx .xxx .xxx .xxx .xxx

M36 BioBERT Base 1.1 (+ PubMed) .xxx .xxx .xxx .xxx .xxx .xxx

M37 BioBERT Large 1.1 (+ PubMed) .xxx .xxx .xxx .xxx .xxx .xxx

M38 NCBI-BlueBERT Base PubMed .xxx .xxx .xxx .xxx .xxx .xxx

M39 NCBI-BlueBERT Large PubMed .xxx .xxx .xxx .xxx .xxx .xxx

M40 NCBI-BlueBERT Base PubMed + MIMIC-III .xxx .xxx .xxx .xxx .xxx .xxx

M41 NCBI-BlueBERT Large PubMed + MIMIC-III .xxx .xxx .xxx .xxx .xxx .xxx

M42 SciBERT .xxx .xxx .xxx .xxx .xxx .xxx

M43 ClinicalBERT .xxx .xxx .xxx .xxx .xxx .xxx

M44 PubMedBERT (abstracts) .xxx .xxx .xxx .xxx .xxx .xxx

M45 PubMedBERT (abstracts + full text) .xxx .xxx .xxx .xxx .xxx .xxx

M46 ouBioBERT-Base, Uncased .xxx .xxx .xxx .xxx .xxx .xxx

https://doi.org/10.1371/journal.pone.0248663.t008
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in which the methods report the largest differences from the gold standard; and finally,

(4) analyzing and hypothesizing why the methods fail. We have already identified some

of the drawbacks of several methods during our literature review and prototyping stage

as follows. First, most methods reported in the literature neither consider the structure

of the sentences nor the intrinsic relations between the parts that conform them. Sec-

ond, BERT-based methods are trained for downstream tasks, using a supervised

approach, and do not perform well in an unsupervised context. Finally, we expect to

find drawbacks and limitations by analyzing and studying the results.

Conclusions and future work

We have introduced a detailed experimental setup to reproduce, evaluate, and compare the

most extensive set of methods on biomedical sentence similarity reported in the literature,

Table 9. Pearson (r) and Spearman (ρ) correlation values (0.xxx) which will be obtained in our experiments from

the evaluation of ontology similarity methods detailed below in the MedSTSfull [49] dataset for each NER tool.

ID Methods MetaMap MetaMap Lite cTAKES

r ρ r ρ r ρ
M11 UBSM-Rada [20, 111] .xxx .xxx .xxx .xxx .xxx .xxx

M12 UBSM-J&C [20, 112] .xxx .xxx .xxx .xxx .xxx .xxx

M13 UBSM-cosJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx

M14 UBSM-coswJ&C [20, 43, 109] .xxx .xxx .xxx .xxx .xxx .xxx

M15 UBSM-Cai [20, 110] .xxx .xxx .xxx .xxx .xxx .xxx

M16 COM [20] .xxx .xxx .xxx .xxx .xxx .xxx

https://doi.org/10.1371/journal.pone.0248663.t009

Fig 6. Details of the pre-processing configurations that will be evaluated in this work. (�) WordPieceTokenizer [33]

will be used only for BERT-based methods. [20, 28, 33, 107, 108, 117–119, 129].

https://doi.org/10.1371/journal.pone.0248663.g006
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with the following aims: (1) elucidating the state of the art on the problem, (2) studying the

impact of different pre-processing configurations; (3) studying the impact of the NER tools;

and (4) identifying the main drawbacks and limitations of the current methods to set new lines

of research. Our work also introduces the first collection of self-contained and reproducible

benchmarks on biomedical sentence similarity based on the same software platform. In addi-

tion, we have proposed the evaluation of a new word embedding model based on FastText and

trained on the full text of the articles in the PMC-BioC corpus [19], and the evaluation for the

first time of the CTR [50] dataset.

All experiments introduced herein will be implemented into the same software library,

called HESML-STS, which will be developed especially for this work. We will provide a

detailed reproducibility protocol, together with a collection of software tools and a reproduc-

ibility dataset, to allow the exact replication of all our experiments, methods, and results.

Thus, our reproducible experiments could be independently reproduced and extended by the

research community, with the hope of becoming a de facto experimentation platform for this

research line.

As forthcoming activities, we plan to evaluate the sentence similarity methods in an extrin-

sic task, such as semantic medical indexing [130] or summarization [131]. We also consider

the evaluation of further pre-processing configurations, such as biomedical NER systems

based on recent Deep Learning techniques [10], or extending our experiments and research to

the multilingual scenario by integrating multilingual biomedical NER systems like Cimind

[132]. Finally, we plan to evaluate some recent biomedical concept embeddings based on

MeSH [133], which has not been evaluated in the sentence similarity task yet.
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