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Abstract: The preparation of alloyed bimetallic nanoparticles (BNPs) between immiscible elements
is always a huge challenge due to the lack of thermodynamic driving forces. W–Cu is a typical
immiscible binary system, and it is difficult to alloy them under conventional circumstances. Here,
we used the bond energy model (BEM) to calculate the effect of size on the alloying ability of W–Cu
systems. The prediction results show that reducing the synthesis size (the original size of W and Cu)
to less than 10 nm can obtain alloyed W–Cu BNPs. Moreover, we prepared alloyed W50Cu50 BNPs
with a face-centered-cubic (FCC) crystalline structure via the nano in situ composite method. Energy-
dispersive X-ray spectroscopy (EDS) coupled with scan transmission electron microscopy (STEM)
confirmed that W and Cu are well mixed in a single-phase particle, instead of a phase segregation
into a core-shell or other heterostructures. The present results suggest that the nanoscale size effect
can overcome the immiscibility in immiscible binary systems. In the meantime, this work provided a
high-yield and universal method for preparing alloyed BNPs between immiscible elements.

Keywords: nanoscale size effect; alloying ability; immiscible W–Cu systems; bimetallic nanoparticles;
bond energy model

1. Introduction

For decades, bimetallic nanoparticles (BNPs) have attracted ever-increasing interest
because of their important scientific significance and application prospect [1,2]. Unlike the
monometallic systems, BNPs cause changes in structure and special physicochemical prop-
erties due to the alloying effect. For example, BNPs can form four possible mixing patterns:
core-shell, subcluster segregated, mixed, and three shell [3]. Recently, BNPs have been
used as high-efficiency catalysts to solve the energy problems faced by humankind [4,5].
However, many bimetallic systems are immiscible in the solid or liquid state; that is,
the constituent elements cannot be spontaneously alloyed [6,7]. According to Miedema’s
model, the formation enthalpy (also known as the enthalpy of mixing) is the main param-
eter to characterize the alloying ability of bimetallic systems [8]. That is, if the enthalpy
of formation is negative, it can form alloys spontaneously. Moreover, the lower this value
is, the stronger the alloying ability will be. Given this matter, researchers have found
that particle size plays an important role in enhancing the alloying ability of immiscible
BNPs. Numerous researchers have conducted in-depth researches on the size-dependent
alloying ability in theories and experiments. For instance, Qi et al. proposed a bond
energy model (BEM) to evaluate the size and sharp effect on the thermodynamic properties
of BNPs [9,10]. They found that reducing the synthesis size (the original size of W and
Cu) can alloy the immiscible bimetallic systems in the state of nanoparticles, e.g., Cu–Ag,
Au–Ni, Ag–Pt, and Au–Pt. However, they did not experimentally verify the correctness
of the theoretical predictions, nor did they explore bimetallic systems (although they are
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common) with a heterogeneous crystalline structure. Yang et al. synthesized a variety of
immiscible Cu-based alloyed BNPs with a size below 25 nm by the high-temperature shock
method and found that alloyed Cu-based nanoparticles have excellent catalytic perfor-
mance. Nevertheless, their researches did not involve bimetallic systems with extremely
large positive mixing enthalpies, and the yield of nanoparticles was also greatly limited by
the preparation method.

W–Cu system is a familiar immiscible system with the highest mixing enthalpy
(+35.5 KJ/mol) of almost all bimetallic systems. At the same time, the crystalline structure,
melting point, and electronegativity of W and Cu are quite different. Bulk W–Cu materials
are widely used in aerospace, military, electronic information, and other fields [11–14].
Conventional powder metallurgy methods do not solve the problem of the immiscibility
of W and Cu, which results in the outcome that the overall properties of bulk W–Cu
materials, such as poor ductility, are insufficient to meet industrial needs. As we all know,
the properties of the final sintered bulk materials are determined by the performance of
the powder particles. Therefore, there is an urgent demand to find a high-yield method
for preparing alloyed W–Cu nanoparticles to improve the overall properties of the bulk
W–Cu material. As mentioned above, it may be an effective way to solve the immiscibility
of W and Cu by reducing the synthesis size. Therefore, there must be a critical size that
can make alloying W–Cu BNPs for a given composition possible. It is worth noting that
alloying refers to forming a single-phase solid solution due to the mutual dissolution of
atoms, rather than just forming a core-shell structure or surface alloying. Unfortunately,
there are few reports about the successful preparation of alloyed W–Cu BNPs, and there
are almost no reports on the theoretical prediction of the influence of the synthesis size on
the alloying ability of W–Cu BNPs.

Here, we use the BEM to study the size effect on the alloying ability of the W–Cu
system and deduce the critical size required for alloying of a given composition. At the
same time, with the help of theoretical derivation combined with the nano in situ composite
method proposed in the early stage of our group [15–17], we successfully prepared single-
phase W50Cu50 (at.%) BNPs.

2. Materials and Methods
2.1. Theoretical Calculation Procedures

The BEM is proposed by Qi, who comprehensively considers the influence of three
factors of size, shape, and relaxation on the alloying ability of BNPs [9,18]. The details of
the BEM are as follows:

According to the classical thermodynamic theory, the formation enthalpy can be
used to predict the alloying ability of binary alloy systems [19]. For W–Cu bulk alloys,
the formation enthalpy (HWCu

b ) equals

HWCu
b = EWCu

b − (1 − x)EW
b −xECu

b (1)

where EWCu
b is the cohesive energy (CE) of the bulk W–Cu alloys, EW

b and ECu
b refer to the

CE of W and Cu, respectively, and x is the atomic concentration of Cu. Based on the BEM,
size, shape, and relaxation, dependent CE of BNPs can be written as

Ec = Ec,b

(
1 − 4δαn−1/3

)
, n−1/3= d/D (2)

where Ec,b denotes the CE of bulk, α and δ are the shape and the relaxation factor, respec-
tively. n is the total atom number of a nanoparticle; d and D represent the diameters of
single atoms and particles. This manuscript only considers the effect of size on forma-
tion enthalpy. We estimated that the particle (the original particle of W and Cu) shape is
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spherical and each atom of the particle has 1/4 bond that is dangling, i.e., α = 1, δ = 1/4.
Therefore, Equation (2) can be rewritten as

Ec= Ec,b

(
1 − n−1/3

)
, n−1/3= d/D (3)

Replacing the Equation (3) into Equation (1), the formation enthalpy of the W–Cu
nanoparticles can be written as

HWCu= EWCu
c,b

(
1 − n−1/3

)
− (1 − x)EW

c,b

{
1−[(1 − x)n]−1/3

}
−xECu

c,b

[
1−(xn)−1/3

]
(4)

By Equation (4), the formation enthalpy of W–Cu nanoparticles can be calculated.
The CE of bulk W–Cu alloys can be calculated by the modified analytic embedded-atom
method (MAEAM) [20]. In this method, the CE of bulk W–Cu alloy can be written as

EWCu
c,b =

[
1
2

oW(r)+FW(ρ)+MW(P)
]
(1 − x) +

[
1
2

oCu(r)+FCu(ρ)+MCu(P)
]

x (5)

where ø (r), F (ρ), and M (P) are the pair potential function, the embedding energy, and the
modified term, respectively. ρ and P are second-order items of electron density. The detailed
description of each item can be found in References [21,22]. Therefore, combining Equations
(4) and (5), the formation enthalpy of W–Cu BNPs can be calculated. Meanwhile, when the
formation enthalpy is equal to zero, we can calculate the value of the critical size (Dc).

2.2. Experimental Procedures

To verify our calculation results, we used the nano in situ composite method to
prepare alloyed W50Cu50 BNPs. The preparation process is shown in Figure 1. Firstly,
(NH4)6(H2W12O40)·nH2O (AMT) and Cu(NO3)2·3H2O were dissolved into deionized wa-
ter according to the desired components (W50Cu50) and were stirred evenly at the same
time. Then, the mixed solution was dried in a spray dryer at 200 ◦C for 1 h. Subse-
quently, these powders were calcined at 300 ◦C for 2 h to obtain the oxide mixture. Finally,
the alloyed W50Cu50 BNPs were obtained by a two-step reduction process in a flowing
hydrogen atmosphere; the first step was at 350–400 ◦C for 2 h and the second was at 750 ◦C
for 2.5 h. It is worth noting that the nano in situ composite method is based on the concept
of atomic-level mixing, so the initial synthesis size is in atomic scale.
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Figure 1. Synthesis schematic of W–Cu BNPs via a nano in situ composite method.

TEM, HRTEM, HAADF, and EDS images of W–Cu BNPs were observed by aberration-
corrected scanning transmission electron microscopy (STEM, FEI Titan G2 60–300, Hillsboro,
OH, USA). All TEM were operated at an accelerating voltage of 200 kV.

3. Results and Discussion

Since the W–Cu system has a combination of different crystalline structures, we as-
sume the W–Cu BNPs have two crystalline structures, i.e., face-centered-cubic (FCC) and
body-centered-cubic (BCC). Figure 2 shows the relationship between synthesis size and
formation enthalpy of W–Cu BNPs with different compositions and crystalline structures.
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To verify the accuracy of the BEM model used in this work, we also added curves calculated
by the two other models, (Miedema’s model [8] and ZRF model [23]), represented by pink
and brown dotted lines, respectively. In the absence of considering the influence of size on
formation enthalpy, Miedema’s model and ZRF model can only calculate the formation
enthalpy of bulk materials; that is, just the case of large-size synthesis can be calculated.
In Figure 2, the results calculated by using the BEM model and the results calculated by
Miedema’s model and ZRF model are basically consistent in the case of large-size synthesis.
Naturally, the results of our calculation are credible.
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b = −336 kJ mol−1, ECu
b = −824 kJ mol−1, dW = 0.278 nm, dCu = 0.2556 nm;

all the data are taken from Reference [24].

As shown in Figure 2, the formation enthalpy of W–Cu system decreases rapidly as
the particle size decreases. When the particle size is 10 µm, the value of formation enthalpy
closes to bulk materials. When the particle size is less than 10 nm, the formation enthalpy
changes from positive to negative. For example, as the particle size is 5 nm, the formation
enthalpy within the full concentration region of Cu (0 < x < 1) is negative, which shows
that the alloying of W and Cu nanoparticles becomes easy. From the thermodynamic views,
the alloyed W–Cu BNPs within this size range have better stability. Thus, there should
be a critical size (Dc) between 5 and 10 nm to determine the alloying for W–Cu system.
For W50Cu50 nanoparticles with different crystalline structures, the formation enthalpy
as the function of different particle sizes is shown in Figure 3. When the particle size
of W50Cu50 nanoparticles with BCC crystalline structure is below 8 nm, the formation
enthalpy of this system turns from positive to negative and drops down rapidly. Thus,
the Dc is 8 nm and 6 nm for BCC and FCC crystalline structures, respectively. Naturally,
if the synthesis size is kept below the critical size, the stable and alloyed W–Cu BNPs can
be obtained, even though they are immiscible in a bulk state.
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Based on the above prediction results, the synthesis size is reduced to below the critical
value and alloyed W–Cu BNPs can be synthesized. Meanwhile, with the aid of the nano in
situ composite method, we successfully synthesized alloyed W50Cu50 BNPs. Figure 4a
shows the TEM image of W50Cu50 BNPs. The shape is nearly spherical, and the average
particle size is less than 50 nm (Figure 4b). Figure 4c is the high-resolution transmission
electron microscope (HRTEM) image of W50Cu50 BNPs. Inset is the corresponding fast
Fourier transform (FFT) pattern of Figure 4c taken from along the [110] zone axis, which
shows that the crystalline structure of W50Cu50 BNPs is face-centered cubic (FCC). In order
to more intuitively identify the chemical composition, the STEM-EDS technology was
adopted. Figure 4d is the partially enlarged high-angle annular dark-field (HAADF) image
of Figure 4a. Figure 4e,f are the corresponding element maps of Figure 4d; they show that
W and Cu are relatively uniformly mixed into a single structure of alloyed BNPs instead
of a phase-separated structure. Therefore, the experimental results adequately verify our
theoretical prediction that reducing the size to 10 nm can obtain alloyed W–Cu BNPs.
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Figure 4. Characterization of microstructure and chemical composition of alloyed W50Cu50 BNPs.
(a) TEM image of W50Cu50 BNPs, (b) size-distribution diagram of alloyed BNPs. (c) HRTEM image
of W50Cu50 single-particle; inset is corresponding FFT pattern. (d) HAADF image of W50Cu50
BNPs. (e,f) EDS image of W and Cu element, respectively.

4. Discussion

The key to achieve alloying between immiscible elements lies in the competition
between surface energy and formation enthalpy [25,26]. In the case of bulk synthesis,
because the formation enthalpy is much greater than the surface energy, it is often only
possible to form a mechanical mixture; there is also a case where the interface alloying may
also occur with the help of dynamics under extreme conditions, and this phenomenon has
been observed many times in experiments [7,27,28]. When the synthesis size is very small,
especially when it is reduced to less than 10 nm, the surface energy is greatly increased, and
the formation enthalpy is also reduced to a negative value. Driven by this dual effect, the
alloying ability between immiscible elements is greatly improved. Specifically, due to the
high surface-to-volume ratio and surface free energy, nanoparticles have a strong tendency
to merge even at temperatures much lower than their melting points [29,30]. This is because
gathering together can reduce the surface free energy, which is driven by the spontaneity
of thermodynamics. This feature enables the W–Cu system with a large miscibility gap
to be spontaneously alloying during the synthesis process with a nanoscale size. On the
other hand, the synthesis of W–Cu BNPs by the nano in situ composite method is based on
an atomic-scale mixing, and the original synthesis size is much smaller than 10 nm, so a
single-phase solid solution W–Cu BNP can be obtained.
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5. Conclusions

Based on the BEM model, we calculated the size effect on alloying ability of the
immiscible W–Cu system. The results reveal that reducing the synthesis size can greatly
enhance the alloying ability of the W–Cu system. For W50Cu50 BNPs, the critical sizes of
alloying are 6 and 8 nm for FCC and BCC crystalline structures, respectively. At the same
time, the atomic-scale alloyed W50Cu50 BNPs with an average size of less than 50 nm were
successfully prepared according to the nano in situ composite method. The experiment
results have well confirmed the theoretical prediction. As a consequence, we believe the
nano in situ composite method is useful for the preparation of alloyed BNPs between
immiscible elements.
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