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Abstract

We quantified the potential impact of different social distancing and self-isolation scenarios
on the coronavirus disease 2019 (COVID-19) pandemic trajectory in Saudi Arabia and com-
pared the modelling results to the confirmed epidemic trajectory. Using the susceptible,
exposed, infected, quarantined and self-isolated, requiring hospitalisation, recovered/immune
individuals, fatalities model, we assessed the impact of a non-pharmacological interventions’
subset. An unmitigated scenario (baseline), mitigation scenarios (25% reduction in social con-
tact/twofold increase in self-isolation) and enhanced mitigation scenarios (50% reduction in
social contact/twofold increase in self-isolation) were assessed and compared to the actual epi-
demic trajectory. For the unmitigated scenario, mitigation scenarios, enhanced mitigation
scenarios and actual observed epidemic, the peak daily incidence rates (per 10 000 population)
were 77.00, 16.00, 9.00 and 1.14 on days 71, 54, 35 and 136, respectively. The peak fatality
rates were 35.00, 13.00, 5.00 and 0.016 on days 150, 125, 60 and 155, respectively. The R0
was 1.15, 1.14, 1.22 and 2.50, respectively. Aggressive implementation of social distancing
and self-isolation contributed to the downward trend of the disease. We recommend using
extensive models that comprehensively consider the natural history of COVID-19, social
and behavioural patterns, age-specific data, actual network topology and population to eluci-
date the epidemic’s magnitude and trajectory.

Introduction

The first case of coronavirus disease 2019 (COVID-19) in Saudi Arabia was announced on 2
March 2020 [1]. By 8 May 2021, Saudi Arabia was the seventh most affected country in the
Eastern Mediterranean region after Iran, Israel, Iraq, Jordan, United Arab Emirates and
Lebanon. At the time, there were more than 424 000 cases but a comparatively low case fatality
rate (7045 deaths, 1.87 deaths/10 000 population) [2]. On 25 February 2020, Saudi Arabia took
early and aggressive preventive action to curb the spread of COVID-19 by prohibiting entry
from and advising against travel to Italy and Japan and continued to progressively initiate add-
itional strict non-pharmacological interventions (NPIs), including a variety of travel bans, cur-
fews, aggressive mobility restrictions and increased testing [3]. Strict restrictions on mass
gatherings were implemented, such as the curtailment of the Umrah (the annual pilgrimage
to Mecca observed by Muslims), limitations on the number of people allowed for the Hajj pil-
grimage and intermittent bans on prayers in mosques (Fig. 1) [4].

Mathematical models are used in infectious disease epidemiology to investigate and quan-
tify the spread of the disease [5]. These models can be used for various reasons, such as when
direct experimental studies investigating the spread of disease among humans may be uneth-
ical [6]. Mathematical models are also used to estimate the resources that will be required by a
country’s health system [7], determine the efficacy of various public health interventions in
reducing the associated morbidity and mortality, and implement a timely and adequate
response [5]. Stochastic models, using surveillance, temporal, clinical and demographic data,
can help investigate transmission patterns of an infectious disease in heterogeneous popula-
tions [8]. During the COVID-19 epidemic, stochastic models were used in India to predict
the impact of COVID-19 on health care [9], in Japan to assess the effectiveness of avoiding
large gatherings or crowded areas [10], and in New York City to predict the impact of lifting
restrictions on movement [11]. Outcome comparisons can be made based on the comparison
of the observed results with the predicted results over time [12].

Giordano et al. used an eight-stage model of infection, termed SIDARTHE: susceptible (S),
infected (I), diagnosed (D), ailing (A), recognised (R), threatened (T), healed (H) and extinct
(E), to differentiate diagnosed from undiagnosed individuals who usually reside in the com-
munity and compared simulation results with real data on the COVID-19 epidemic in Italy.
They found that social distancing delays the epidemic peak, whereas timely diagnosis reduces
the infection peak and helps end the epidemic faster [13]. This study aimed to quantify the
potential impact of NPIs (specifically different social distancing scenarios) on the trajectory
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of the COVID-19 pandemic in the Kingdom of Saudi Arabia and
compare the modelling results to the actual trajectory of the epi-
demic in the country after approximately one year of the pan-
demic (Fig. 1).

Methods

The epidemic model

Mathematical modelling of infectious disease dynamics can be
grouped into three broad categories, i.e. (i) statistical-based meth-
ods for epidemic surveillance (e.g. spatial models); (ii) mathemat-
ical/mechanistic state-space models (e.g. agent-based simulation);
and (iii) empirical/machine learning-based models (e.g. web-
based data mining) [14]. Throughout the COVID-19 pandemic,
various mathematical models have been used for various purposes
[14, 15]. Such models include mass action compartmental models
(commonly referred to as susceptible (S), infective (I) and
removed or recovered (R) [SIR] class of models), structural meta-
population models and agent-based network models [15]. Our
model was an extension of an existing susceptible-infectious-
recovered stochastic individual compartmental model within the
EpiModel library in R (https://www.epimodel.org/), which was
developed by researchers at the Rollins School of Public Health,
Emory University [16].

In brief, Churches [17] developed this model as an extension of
the EpiModel [16] to generate a susceptible-exposed-infectious-
quarantined-hospitalised-recovered-fatal (SEIQHRF) stochastic
individual compartmental model.

In the seven-compartment model, S represents susceptible
populations who could potentially become infected, E represents
exposed infected asymptomatic infectious individuals, I represents
infected and infectious symptomatic individuals, Q represents
quarantined but self-isolated infectious individuals, H represents
individuals requiring hospitalisation including those who are
actually hospitalised and those who would normally be hospita-
lised if the capacity were available, R represents recovered/
immune individuals who are now immune from further infection,
and F represents those who were infected and have died due to
COVID-19 and not due to other causes [17].

The SEIQHRF model simulates the movement of a population
across these seven compartments based on various transition rates
and under different scenarios. Healthy people who are susceptible
(S) may become exposed (E) to the virus and infected. Infectious
asymptomatic individuals (I) and those who are infected and
infectious (I) could move into one of the following four states:

• Clear their infection and return to the susceptible compartment (S)
• Self-isolate (Q)

○ and either clear infection and return to the susceptible com-
partment (S), require hospitalisation (H) or recover (R)

• Require hospitalisation (H)
○ and either recover (R) or die (F)

• Recover (R)

The compartments and assumed transition parameters that
drive the movement of individuals between these compartments
are shown in Figure 2 [17]. Table 1 highlights the parameter sym-
bols in the model flow diagram (Fig. 2) and provides a description
of what they represent.

Model parameters

The model transition parameters were based largely on data from
studies published during the COVID-19 pandemic. Demographic
data for Saudi Arabia were obtained from various sources includ-
ing websites of the official Ministry of Health and World Health
Organization. Among all the parameters, some are a single rate
(e.g. crude death rate), while others are rates drawn from prob-
ability distributions such as binomial or Weibull distributions.
In instances where a parameter was randomly drawn from a prob-
ability distribution, the parameter values corresponding to the
specific distribution are indicated. For example, the rate per day
at which people who are infected but asymptomatic (E compart-
ment) progress to becoming symptomatic (or test-positive) fol-
lows a Weibull distribution with a scale parameter for
progression corresponding to 5.1 and shape parameter corre-
sponding to 1.5. Therefore, the parameter values described in
Table 1 are either used as rates or drawn from specific probability
distributions.

Fig. 1. Non-pharmacological interventions employed by the Saudi Arabian government and their effects on the number of daily confirmed cases.
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The background mortality rate (deaths not due to the severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2)) applies
to all compartments [17]. The R0 was calculated assuming a serial
interval with a mean γ distribution of 4.5 and a standard deviation
of 3.4.

Model assumptions

The model had the following assumptions: (1) exposed, infected,
asymptomatic people are infectious; (2) the H compartment
represents those needing hospitalisation, i.e. if hospitals had the
capacity, they would be admitted; and (3) case fatalities are
assumed to only occur in the H compartment regardless of
whether the patients are hospitalised or not [17].

Comparison of the intervention scenarios

We assessed the impact of a subset of NPIs that were implemen-
ted in Saudi Arabia and compared the following scenarios:

(i) Unmitigated scenario (baseline) – no action is taken except
for self-isolation at a very low rate (1/30). This default rate
reflects low community awareness or compliance with self-
isolation requirements or practices, assuming that indivi-
duals are not mandated to self-isolate.

(ii) Mitigation scenario – a 25% reduction in social contact com-
pared to the baseline value through social distancing and a
twofold increase in self-isolation rates, relative to the baseline
scenario.

(iii) Enhanced mitigation scenario – a 50% reduction in social
contact compared to baseline values through social distan-
cing and a twofold increase in self-isolation rates, relative
to the baseline scenario.

In this model, we assumed that the reduction in social contact
and increase in self-isolation rates were implemented gradually
from day 15 (measured from the start of the epidemic) until

day 45 and maintained at the maximum value thereafter. For
instance, in the enhanced mitigation scenario, the contact rates
were gradually scaled down from an average of eight contacts
per day on day 15 to four contacts per day on day 45 and main-
tained constant thereafter. The impact of these interventions on
the reduction in the numbers of new cases, deaths and individuals
requiring hospitalisation was assessed.

The respective R0 values for the different scenarios were eval-
uated. They were computed for the growth phase of the epidemic,
using the distribution of serial intervals (time between the onset
of a primary case and time of onset in the secondary cases)
based on maximum likelihood estimation.

Model implementation

The SEIQHRF model was implemented using R statistical pro-
gramming (The R Project for Statistical Computing. https://
www.R-project.org/). Twenty simulation runs were undertaken
and estimates from each were averaged to obtain the final esti-
mates. Considering the computational intensity of running the
simulations, parallel processing was employed using four com-
puter processing units, with the model having a runtime of 365
days. We extracted the distributions of the timing of transitions
to various compartments. This was done as a check to confirm
that they were reasonable for the transition parameters that they
represented and by defining a function that extracted the timing
from the simulation results object. Then, we plotted the timing
for visualisation. The modelling results were compared to those
of the actual trajectory of the epidemic in Saudi Arabia.

Results

Compartment duration frequency distributions

The distributions of the simulated durations spent in the key com-
partments of our model under the baseline scenario were found to
be reasonable within the context of the existing literature (Fig. 3).

Comparison of non-pharmacological intervention scenarios

Infected and asymptomatic individuals
Compared to the unmitigated scenario, the mitigation and
enhanced mitigation scenarios were found to reduce the peak
number of infected but asymptomatic individuals by threefold
and eightfold, from 382 to 81 and 382 to 46 per 10 000 popula-
tion, respectively (Table 2; Fig. 4(a)). The infected and infectious
cases peaked on days 73, 56 and 39 for the unmitigated, mitiga-
tion and enhanced mitigation scenarios, respectively.

Infected and infectious individuals
Compared to the unmitigated scenario, the mitigation and
enhanced mitigation scenarios were found to reduce the peak
number of infected and infectious individuals by fivefold and
ninefold, from 472 to 87 and 472 to 52 per 10 000 population,
respectively (Table 2; Fig. 4(b) and (c)). The infected and infec-
tious cases peaked on days 82, 58 and 42 for the unmitigated,
mitigation and enhanced mitigation scenarios, respectively.

Incident cases in modelling scenarios and the actual trajectory
of the epidemic
Compared to the unmitigated scenario, the mitigation and
enhanced mitigation scenarios reduced the daily incident cases

Fig. 2. Flow diagram of the SEIQHRF model compartments and transition parameters
(Appendix A: Table 1 provides additional information on the definitions and sources
of the indicated transition parameters). SEIQHRF, susceptible, exposed, infected,
quarantined and self-isolated, requiring hospitalisation, recovered/immune indivi-
duals, fatalities due to COVID-19.
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Table 1. Model parameters description

Diagram
ref Parameter Parameter value Description and source

x act.rate.i 8 The number of exposure events (acts) between infectious
individuals in the I compartment and susceptible individuals in
the S compartment, per day [18]

x inf.prob.i 0.05 Probability of passing on infection at each exposure event for
interactions between infectious people in the I compartment and
susceptible in S [19]

y act.rate.e 8 The number of exposure events (acts) between infectious
individuals in the E compartment and susceptible individuals in
the S compartment, per day [18]

y inf.prob.e 0.02 Probability of passing on infection at each exposure event for
interactions between infectious people in the E compartment and
susceptible in S. The rate is lower than inf.prob.i, reflecting the
reduced infectivity of infected but asymptomatic people (∼half of
inf.prob.i) [15]

z act.rate.q 2 The number of exposure events (acts) between infectious
individuals in the Q compartment (isolated, self or otherwise) and
susceptible individuals in the S compartment, per day. The rate is
lower than for the I and E compartments, reflecting the much
greater degree of social isolation for someone in (self-isolation)
[15]

z inf.prob.q 0.02 Probability of passing on infection at each exposure event for
interactions between infectious people in the Q compartment
and susceptible in S. The rate is lower than inf.prob.i, reflecting
the greater care that self-isolated individuals will, on average,
take regarding hygiene measures, such as wearing masks, to limit
spread to others (∼half of inf.prob.i) [15]

c quar.rate 1/30 Rate per day at which symptomatic (or tested positive), infected I
compartment people enter self-isolation (Q compartment).
Asymptomatic E compartment people cannot enter self-isolation
because they do not yet know they are infected. Default is a low
rate reflecting low community awareness or compliance with
self-isolation requirements or practices [15]

e,i hosp.rate 1/100 Rate per day at which symptomatic (or tested positive), infected I
compartment people or self-isolated Q compartment people
enter the state of requiring hospital care – that is, become serious
cases. A default rate of 1% per day with an average illness
duration of about 10 days means a bit less than 10% of cases will
require hospitalisation [15]

g disch.rate 1/14 Rate per day at which people needing hospitalisation recover [20]

b prog.rate 1/10 Rate per day at which people who are infected but asymptomatic
(E compartment) progress to becoming symptomatic (or
test-positive), the I compartment [15]

b prog.dist.scale 5.1 Scale parameter for Weibull distribution for progression [21]

b prog.dist.shape 1.5 Shape parameter for Weibull distribution for progression [21]

d rec.rate 1/21 Rate per day at which people who are infected and symptomatic
(I compartment) recover, thus entering the R compartment [22]

d rec.dist.scale 35 Scale parameter for Weibull distribution for recovery [15]

d rec.dist.shape 1.5 Shape parameter for Weibull distribution for recovery [15]

f fat.rate.base 1/50 Baseline mortality rate per day for people needing hospitalisation
(deaths due to the virus) [15]

f hosp.cap 27 Number of available hospital beds per 1000 population in Saudi
Arabia [23]

f fat.rate.overcap 1/25 Mortality rate per day for people needing hospitalisation but who
cannot get into hospital due to the hospitals being full. The
default rate is twice that for those who do get into hospital [15]

f fat.tcoeff 0.5 Time co-efficient for increasing mortality rate as time in the H
compartment increases for each individual in it [15]

(Continued )
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fivefold and ninefold, from 77 to 16 and 77 to 9 per 10 000 popu-
lation, respectively. The predicted peaks of the pandemic for the
unmitigated, mitigation and enhanced mitigation scenarios were
on days 71, 54 and 35, respectively, and the R0 were 1.15, 1.14
and 1.22, respectively. Conversely, the actual observed epidemic
had a delayed peak and a lower incidence rate of 1.14 per 10
000 population on day 136 (Figs 1 and 5; Table 2).

Hospitalisation rate
The peak daily hospitalisation rates for the unmitigated, mitiga-
tion and enhanced mitigation scenarios were 17, 4 and 2 per
10 000 population, respectively, peaking on days 79, 61 and 44,
respectively (Table 2; Figs 4(a) and 6(a)). With an average of 27
hospital beds per 1000 population in Saudi Arabia [27], the num-
ber of individuals requiring hospitalisation did not surpass the

Table 1. (Continued.)

Diagram
ref Parameter Parameter value Description and source

a.rate (18/365)/1000 Background demographic arrival rate – approximately the daily
birth rate for Saudi Arabia [24]

ds.rate, de.rate, de.rate,
dq.rate, dh.rate, dr.rate

ds.rate, de.rate, de.rate, dq.rate,
dh.rate, dr.rate = (3.5/365)/1000,
dh.rate = (22/365)/1000

Background demographic departure (death not due to a virus)
rates. Defaults based on Saudi Arabia crude death rates [25, 26]

Fig. 3. Distributions of the durations that individuals spent in each of the key compartments of the model. (a) Distribution of the incubation period, i.e. the period
between the exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the onset of symptoms; (b) distribution of duration at which symp-
tomatic (or tested positive), infected and infectious people enter self-isolation; (c) distribution of duration at which people who are infected and symptomatic
recover; (d) distribution of duration at which people needing hospitalisation or are hospitalised recover; (e) distribution of duration at which symptomatic (or tested
positive), infected and infectious people or self-isolated people enter the state of requiring hospital care; (f) distribution of survival duration of fatalities.
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available hospital beds in any of the three scenarios (Table 2;
Fig. 6(a)).

Fatality rate in modelling scenarios and the actual trajectory of
the epidemic
Compared with the unmitigated scenario, the mitigation and
enhanced mitigation scenarios reduced the highest fatality rate
by threefold and sevenfold, from 35 to 13 and 35 to 5 per 10
000 population, respectively (Table 2; Figs 4(e) and 6(b)), and
the fatalities peaked on days 150, 125 and 60, respectively
(Table 2; Figs 4(e) and 6(b)). Conversely, the actual observed epi-
demic had a delayed peak and a lower fatality rate of 0.016 per 10
000 population on day 155.

Basic reproductive rate
The basic reproductive rates for the unmitigated, mitigated and
enhanced mitigated scenarios were 1.15, 1.14 and 1.22, respectively.
The R0 for the actual observed epidemic was 2.5 (Table 2). A pos-
sible explanation for the higher R0 in the actual observed trajectory
than that in the enhanced mitigation scenario is that the actual tra-
jectory shortened the pandemic, and thus, would have led to a
higher R0 at the growth phase of the pandemic.

Discussion

We aimed to assess the potential effect of NPI on the COVID-19
trajectory in Saudi Arabia using stochastic modelling and com-
pare the results to the actual trajectory of the epidemic.
Although the mitigation and enhanced mitigation scenarios had
an earlier peak in the epidemic compared to the actual observed
trajectory of the epidemic, both scenarios had considerably lower
peaks. When comparing the incident cases and fatalities in the
mitigation and enhanced mitigation scenarios to those of the
actual observed epidemic, the incident cases and fatalities were
considerably delayed, and their number was lower in the actual
observed trajectory of the epidemic when compared to those in
both mitigation scenarios. Conversely, the basic reproductive
rate during the growth phase of the epidemic in the actual
observed trajectory of the epidemic was higher than that in all
three scenarios.

To the best of our knowledge, this is the first study that has
examined the stochastic modelling of the COVID-19 pandemic
and compared the results to the actual observed trajectory of
the epidemic in the Kingdom of Saudi Arabia. However, there
are some limitations. Stochastic models rely on estimates of pro-
portions [28], and this has an impact on their accuracy and
applicability. As COVID-19 was a new disease, most of the trans-
mission parameters relied on early data available from China,
some of which may not be applicable in Saudi Arabia, such as
the estimated serial interval values. Furthermore, stochastic mod-
els assume that there is a heterogeneous mix of populations and
that the susceptible population maintains a relatively constant
size and structure. Moreover, stochastic models can be applied
only to situations in which the number of infected people
increases exponentially [8]. We also relied on contact rate esti-
mates based on published data, which may have already changed
in value by the start of the epidemic in Saudi Arabia. Additionally,
we assumed that those who recovered from the disease gained
immunity throughout the course of our epidemic projections;
this may not be correct.

Both the mitigation and enhanced mitigation scenarios that
had an earlier peak in the epidemic compared to that in the actual

observed trajectory of the epidemic had considerably lower peaks
when compared to the unmitigated scenario. In New York State
and the USA, a social distancing regimen that reduced the contact
rate by 10% from its baseline value was projected to reduce the
number of daily hospitalisations and isolation of confirmed
cases at the peak of the epidemic by 24% and 21%, respectively.
Reducing the contact rate by 40% from its baseline value was pro-
jected to reduce the number of daily hospitalisations and isolation
of confirmed cases at the peak of the epidemic by 92% and 88%
and the number of deaths by 84% and 64% of the predicted base-
line deaths in New York State and the USA, respectively [29]. In
our model, which focused on social distancing and self-isolation
strategies and assumed a decrease in the contact rates by 25%
and 50% and twofold increase in self-isolation rates, there was a
76% and 88% reduction in the number of hospitalisations and
71% and 94% reduction in the number of fatalities in the mitiga-
tion and enhanced mitigation scenarios, respectively, when com-
pared to those in the unmitigated scenario. In the Wuhan
province of China, the NPIs that were implemented included
strengthening case isolation, close contact tracing, cordoning off

Table 2. Comparison of baseline vs. NPI scenarios

Indicator Scenario
Peak
day

Number of
people during
the peak day

Infected and
asymptomatic
individuals

Unmitigated 73 382 per 10 000

Mitigated 56 81 per 10 000

Enhanced
mitigation

39 46 per 10 000

Infected and
infectious
individuals

Unmitigated 82 472 per 10 000

Mitigated 58 87 per 10 000

Enhanced
mitigation

42 52 per 10 000

Incident cases Unmitigated 71 77 per 10 000

Mitigated 54 16 per 10 000

Enhanced
mitigation

35 9 per 10 000

Observed 136 1.14 per 10
000

Individuals requiring
hospitalisation

Unmitigated 79 17 per 10 000

Mitigated 61 4 per 10 000

Enhanced
mitigation

44 2 per 10 000

Fatality rate Unmitigated 79 17 per 10 000

Mitigated 61 4 per 10 000

Enhanced
mitigation

44 2 per 10 000

Observed 155 0.016 per 10
000

R0 during the
growth phase of the
epidemic

Unmitigated 1.15

Mitigated 1.14

Enhanced mitigation 1.22

Observed 2.5

NPI, non-pharmacological interventions.
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hotspots and traffic control. If no intervention had been taken, the
number of cases would have been 51-fold higher than the actual
number of cases [30]. Early case detection, contact isolation and
inner-city contact reduction reduced the total number of cases
by fivefold and two-and-a-half-fold, respectively. Limiting inter-
city travel had no effect on the number of infections. Moreover,
such measures were only effective when implemented in combin-
ation with early case detection, isolation and contact reduction
[18]. These modelling results from Wuhan are comparable to
that in the mitigation and enhanced mitigation scenarios in our
model that focused on social distancing and an increase in self-
isolation rate strategies and led to an approximately fivefold and
ninefold incidence reduction, respectively, when compared to
the unmitigated case scenario [19].

Conversely, peak incident cases and fatalities in the mitigation
and enhanced mitigation scenarios were considerably earlier and
higher when compared to that in the actual observed trajectory of
the epidemic in Saudi Arabia. In Saudi Arabia, travel and entry
restrictions were implemented on 2 February 2020, delaying the
first reported case by 30 days [20]. Saudi Arabia imposed severe
mobility restrictions and curfews in March and April 2020.
These included the closure of educational institutions, malls,

Fig. 4. Trajectory of rates (cases per 10 000) per compartment for the baseline scenario vs. the two non-pharmaceutical intervention scenarios with variable levels
of reduced social contact. The mitigation scenario assumes a 25% reduction in social contact through social distancing and a twofold increase in self-isolation
rates; the enhanced mitigation scenario assumes a 50% reduction in social contact through social distancing and a twofold increase in self-isolation rates.

Fig. 5. Incidence rates (cases per 10 000) for the baseline (unmitigated) scenario vs.
the two non-pharmaceutical intervention scenarios with variable levels of reduced
social contact. The mitigation scenario assumed a 25% reduction in social contact
through social distancing and a twofold increase in self-isolation rates; the enhanced
mitigation scenario assumed a 50% reduction in social contact through social distan-
cing and a twofold increase in self-isolation rates.
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cafes, restaurants, and government offices and suspension of
sports competitions and communal prayers from 8 March 2020
(Fig. 1) [21]. It is possible that these measures reduced the rate
of social mixing within the population (more than that observed
in the enhanced mitigation scenario [22]), and therefore, reduced
the spread of infection [23] and resulting in the flattening of the
curve and delaying of the peak. Additionally, with a high level of
government trust, compliance with precautionary measures in
Saudi Arabia may have also contributed to this effect [24]. In add-
ition to the NPIs, Saudi Arabia was one of the first countries to
test for SARS-CoV-2 using polymerase chain reaction. The testing
focuses on the early identification of transmission chains, helps
contain the epidemic and supports the institution of preventative
measures to help reduce mortality and protect vulnerable people
[25]. The algorithms put in place prioritised testing for those at
highest risk, including health workers, immunocompromised
individuals, the young and older adults, due to limited availability
of test kits in early 2020. The rate of testing was increased using
24 h ‘Tetamman or “reassurance” Clinics’, followed by testing at
drive-through centres and primary health care centres. By 4
July 2020, up to 53 000 tests were being conducted in the country
daily [26]. By the end of August 2020, more than 5 million
COVID-19 tests had been performed, corresponding to more
than 15% of the Saudi population. At that time, Saudi Arabia
was conducting 134 tests per 1000 people and 46.5 tests per
confirmed case. The World Health Organization suggested that
10–30 tests per confirmed case was a benchmark for adequate

testing and that a positivity rate of <5% was an indicator of the
pandemic being under control. By May 2020, only 8–10% of per-
sons tested for COVID-19 were testing positive in Jeddah, Saudi
Arabia [31]. This implies that investing resources in testing was
worthwhile.

Timely testing in a modelling study had the largest impact on
reducing onward transmission [21]. Similar results have been
observed using modelling in China where there were more than
2 million cases per month in the Hubei province alone before
the lockdown. Following the closure of Wuhan on 23 January
2020, the potential number of cases in Hubei was predicted to
decrease to 1 million per month [32]. The additional closure of
the Hubei Province, 3 days later, was predicted to reduce the
cumulative number of cases to 69 230 (R0 = 3.7). Following the
initiation of mass screening in the Hubei Province on 12
February 2020, the cumulative number of cases was 66 386 (R0
= 3.4). Applying these measures on a longer-term basis would
have led to a further reduction in the spread of the pandemic
[18]. In Italy, Giordano et al. showed that a population-wide
social distancing strategy combined with an effective testing strat-
egy would considerably reduce the effect of the epidemic and help
end it [13].

Conversely, the basic reproductive rate during the growth
phase of the epidemic in the actual observed trajectory of the epi-
demic was higher than that in all three scenarios. The basic repro-
duction number (R0), defined as the average number of new cases
caused by an infected individual in a susceptible population [32],

Fig. 6. (a) Hospitalisation and (b) fatality rates (cases per 10 000) for the baseline (unmitigated) scenario vs. the two non-pharmaceutical intervention scenarios
with variable levels of reduced social contact. The mitigation scenario assumed a 25% reduction in social contact through social distancing and a twofold increase
in self-isolation rates; the enhanced mitigation scenario assumed a 50% reduction in social contact through social distancing and a twofold increase in self-
isolation rates. The red line in (a) corresponds to the number of available hospital beds in the KSA (27 per 10 000).
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is an indicator of viral transmissibility and can be used to estimate
the number of cases in a population. When the R0 is >1, the num-
ber of cases typically increases [33]. In China, expanded testing
and rapid availability of results contributed to early detection of
cases, helping prevent further spread; the R0 reduced from 1.2
to 0.8. This is because there is a possible infectious period of 14
days during which it would be impossible to quarantine all
close contacts [34]. In Italy, modelling showed that a partial lock-
down reduced the R0 to 1.6, whereas a full-lockdown reduced it to
0.99. Widespread testing further reduced the R0 to 0.85. These
results are comparable to those in the unmitigated and mitigation
scenarios in our model wherein the R0 decreased from 1.15 to
1.14 [13]. Further reduction may not have been possible as our
model did not include testing for COVID-19. The lower infection
rates in the actual scenario with a high R0 could also be attributed
to the reduction in social mixing. In Japan, using stochastic mod-
elling, when the time spent in infectious zones was reduced, the
number of infected individuals and spread of infection consider-
ably decreased [10].

Although a higher R0 is associated with a lower probability of
controlling the infection, the initial number of cases, time to iso-
lation, transmission probability before the onset of symptoms,
and proportion of asymptomatic cases lead to different probabil-
ities of reducing an outbreak with R0 values of 1.5, 2.5 and 3.5
[35]. The basic reproductive rate is also affected by model
assumptions and model structures as well as socio-behavioural,
environmental and biological factors that affect pathogen trans-
mission, and therefore, must be interpreted with caution [36].

Conclusion

In conclusion, our modelling and its comparison with the actual
observed trajectory of the COVID-19 epidemic in Saudi Arabia
suggests that the unique and aggressive implementation of social
distancing and self-isolation, marked reduction in social mixing,
and mass testing contributed substantially to the currently
observed downward trend of the disease spread, which otherwise
would have had a far greater trajectory [37]. We recommend the
use of extensive models that consider the natural history of the
disease as well as social and behavioural patterns at the household
and community levels, such as network-based stochastic simula-
tion models, to fully elucidate the magnitude and trajectory of
an epidemic. However, simple models, such as those used in
this study, can be useful for informing the epidemic response
while relying on age-specific data, actual network topology
inferred from daily commute data or contact tracing, and a popu-
lation factor in regions where the population is large or there is a
high proportion of asymptomatic individuals [38]. Future studies
should investigate the impact of different R0 values on the course
of the epidemic with various public health interventions.
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