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Absence of cyclin-dependent kinase
inhibitor p27 or p18 increases efficiency of
iPSC generation without induction of iPSC
genomic instability
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Haizhong Feng2, Tao Cheng5,6,7 and Yanxin Li1

Abstract
Mechanisms underlying the generation of induced pluripotent stem cells (iPSC) and keeping iPSC stability remain to
be further defined. Accumulated evidences showed that iPSC reprogramming may be controlled by the cell-division-
rate-dependent model. Here we reported effects of absence of mouse p27 or p18 on iPSC generation efficiency and
genomic stability. Expression levels of cyclin-dependent kinases inhibitors (CDKIs), p21, p27, and p18 decreased during
iPSC reprogramming. Like p21 loss, p27 or p18 deficiency significantly promoted efficiency of iPSC generation, whereas
ectopic expression of p27, p18, or treatment with CDK2 or CDK4 inhibitors repressed the reprogramming rate,
suggesting that CDKIs-regulated iPSC reprogramming is directly related with their functions as CDK inhibitors.
However, unlike p21 deletion, absence of p27 or p18 did not increase DNA damage or chromosomal aberrations
during iPSC reprogramming and at iPSC stage. Our data not only support that cell cycle regulation is critical for iPSC
reprogramming, but also reveal the distinction of CDKIs in somatic cell reprogramming.

Introduction
The reprogramming of somatic cells into induced

pluripotent stem cells (iPSC) by introduction of the four
defined transcription factors (Oct4, Sox2, Klf4, and
c-Myc) is an intensively investigated area in stem cell
research for its enormous potential in regenerative med-
icine since 20061. The efficiency of iPSC generation

however remains low, and the iPSC genomic stability is
still concerned.
Accumulated evidences demonstrated that iPSC repro-

gramming is mainly controlled by the cell-division-rate-
dependent model2–7. p21, p27, and p18 are three important
cell cycle regulators and cyclin-dependent kinase inhibitors
(CDKIs)8–12. Limited studies showed that p21, p27, and
p18 are important for iPSC reprogramming2,13–16. We
and others demonstrated previously that loss of p21
could promote somatic reprogramming, however, caused
markedly genomic instability2,13,14. Deletion of p27 enhan-
ces somatic reprogramming in the absence of ectopic
Sox215. p18 reduces iPSC reprogramming by targeting
CDK4/6-mediated cell cycle regulation16. However, their
roles in controlling iPSC quality and genomic stability are
still unclear.
Here we examined iPSC generation from murine cells

that are deficient in p27 or p18 in comparison with
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p21 loss. We found that although loss of different CDKIs
can improve iPSC colony formation efficiency, but iPSC
quality with loss of p21, p27, or p18 was significantly
different. In comparison to loss of p21, iPSC with absence
of p27 or p18 were associated with fewer chromosomal
aberrations. Our results demonstrated that deletion of
p27 or p18 may be a better choice to enhance iPSC
generation efficiency with a guaranteed quality.

Methods
Mice
Wild type, p21−/−, p18−/−, p27−/−, and NOD/SCID/

Gamma (NSG) mice were purchased from The Jackson
Laboratory. All the mice strains had been crossed to
generate a pure C57BL/6J background and maintained in
the pathogen free animal facility, Institute of Hematology
and Blood Diseases Hospital. All procedures and animal
experiments were approved by the Institutional Animal
Care and Use Committee at Institute of Hematology and
Blood Diseases Hospital, CAMS/PUMC.

Cells culture conditions
Primary MEFs were obtained from 13.5-day embryos of

the indicated genotypes based on the protocol from Wicell
and cultured in standard DMEM medium containing
10% FBS (Millipore) in our lab. Murine ES cell was
purchased from Wicell and iPS cells were reprogramming
from MEF cells with four factors (Oct4, Sox2, Klf4, and
c-Myc). Murine ES and iPSC cells were cultured in ‘ES
culture medium’ composed of Knock-Out DMEM (Invi-
trogen) supplemented with ES cell qualified FBS (20%,
Millipore), mouse LIF (1000 U/ml), non-essential amino
acids, L-Glutamine, and β-mercaptoethanol. Bone marrow
c-kit+ cells were harvested from femurs of mice, enriched
by CD177-streptavidin kit (Miltenyi), and cultured in
standard BIT9500 (Stemcell Technologies) containing 10%
FBS supplemented with murine SCF, Flt-3, and TPO before
transduction.

Plasmids
Retroviral constructs pMXs-Klf4 (#13370)1, pMXs-Sox2

(#13367)1, pMXs-Oct4 (#13366)1, pMXs-c-Myc (#13375)1,
were obtained from Addgene. The cDNA of mouse p27
and p18 were also purchased from Addgene. They were
both cloned into pMXs-GFP retroviral vectors.

Generation of mouse iPS cells
Reprogramming of primary (passage 2) MEFs was

performed as previously described1. In brief, primary
MEFs of indicated genotypes were seeded in 100-mm-
diameter dish (5 × 105 cells per dish) pre-coated with
0.1% gelatin (Sigma). They were transduced twice in the
next two days at 24-h interval by virus supernatant
collected from Plat-E cells transfected with the

previously mentioned retroviral plasmids. At the end
of transduction, medium was changed to ES culture
medium. After cultured for 10–12 days, colonies with
ES-cell-like morphology became visible. They were
then either scored after SSEA1 staining or picked for
further expansion on feeder fibroblasts using standard
ES culture methods.

Reprogramming efficiency analysis
For quantification of iPSC generation efficiency, retro-

viral transduction was measured in parallel infections
containing all the retroviruses used for reprogramming
plus a GFP retrovirus (pMXs-GFP) (equal volumes
of each retrovirus were used during the transduction).
The efficiency of transduction was measured by FACS
analysis the next day after medium was changed to
ES culture medium. Total numbers of iPSC colonies
were counted after staining plates for SSEA1 antibody
(R&D). Briefly, 5 × 105 cells per 100-mm dish were seeded
after retroviral transduction and measured GFP positive
rates in different genotypes. The numbers of SSEA1+

colonies were counted on Day 12. The percentage
of SSEA1+ colonies over all the transduced MEFs
was determined. The efficiency of reprogramming was
also calculated as the relative change compared to that
of control.

CDK inhibitors and p27 siRNA sequence
CDK4 (CDK4/6) inhibitor Palbociclib (PD-0332991, Cat#:

S1116, Selleck), CDK2 (Cdc2, CDK2, and CDK5) inhibitor
Roscovitine (Seliciclib, CYC202, Cat: S1153, Selleck),
CDK4/6 inhibitor Abemaciclib (Cat: HY-16297, MCE),
CDK7 inhibitor THZ1 (Cat: S7549, Selleck), p18 inhibitor
NSC23005 sodium (Cat: HY-100791, MCE). p27 siRNA
sequence: 5′-GTGGAATTTCGACTTTCAG-3′.

Teratoma formation
Cells (2 × 106) of indicated mouse iPS cell lines were

subcutaneously injected into NOD/SCID mice. Ter-
atomas were recovered and surgically removed after
3 weeks. Tissues were snap-frozen, embedded in tissue-
tek with O.C.T. compound, and stored at −80 °C. The
samples were sectioned at a thickness of 5 mm and
stained with haematoxylin and eosin for pathological
examination.

Western blot analysis
Cell extracts were prepared using RIPA buffer, resolved

on NuPAGE 12% gradient Bis-Tris gels, transferred to
nitrocellulose and hybridized using antibodies against
p27 (1:500), p18 (1:500), p21 (1:500), RAD51 (1:500), and
β-actin (1:500 dilution, Santa Cruz); PARP (1:1000 dilu-
tion, cell signaling technology); γH2AX-S139 (1:1000)
and, 53BP1 (1:1000, abcam).
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Immunofluorescence
Cells of mouse iPS cell lines were cultured in 12-well

plates with feeders for 2–3 days until colonies formed.
The cells were then fixed in 4% paraformaldehyde for
15min, permeabilized with 0.3% Triton X-100 in PBS for
15min and blocked with 5%BSA in PBS for 1 h at room
temperature. After incubation with antibodies against
mouse Oct-4, Sox-2, Nanog (1:100 diluted in PBS con-
taining 4%BSA, Santa Cruz) overnight at 4 °C, cells were
washed with PBS the next day and incubated with sec-
ondary antibodies conjugated with Alexa 488 or Alexa
555 (1:1000 diluted in PBS containing 4% BSA, Molecular
Probes). For staining of SSEA-1(R&D), the permeabiliza-
tion step was emitted.

Detection of double-strand breaks of DNA
Reprogramming of MEFs of indicated genotypes with

the four factors was performed as we previously descri-
bed. Reprogramming cells were digested by trypsin and
resuspended in PBS. SSEA1+ cells were sorted and then
cytospun onto the slides. Or four genotype iPS cell lines
were irradiated with 2 Gy and collected at indicated time
points. The slides were then fixed in 4% paraformaldehyde
for 15min, permeabilized by 0.3% Triton X-100 in PBS,
and blocked by 5% BSA in PBS for 1 h at room tem-
perature. The slides were incubated with mouse mono-
clonal antibodies against γH2AX (1:150 diluted in PBS
containing 2% BSA, Trevigen) overnight at 4 °C and sec-
ondary antibodies conjugated with Alex-555 for 1 h at
room temperature the next day. DAPI was used as nuclear
staining. Images were produced from confocal micro-
scope (Leica) at ×63 magnification and analyzed for foci/
nucleus.

Comet assay
At reprogramming Day 12, the cells were collected

and digested. Then sorted SSEA1+ positive cells
were sorted. Or four genotype iPS cell lines were
irradiated with 2 Gy, collected at different time points.
The cells were then processed for alkaline comet assay
using Comet SCGE Assay kit (Enzo Life Sciences)
according to the manufacturer’s protocol. Each slide
was photographed under a Zeiss Axio Observer Z1
microscope and the percentage of tail intensity was
computed by the Comet Assay IV software (Perceptive
Instruments Ltd.).

Quantitative real-time PCR analysis
For the determination of mRNA levels of p18, p21,

and p27 during reprogramming and in MEF, ESC, and
iPS cells, cells were harvested by treating with trypsin-
EDTA solution and washed with PBS three times,
SSEA1+ cells were sorted at the different time points
during reprogramming. Total RNA was extracted by

using RNeasy kit (Qiagen) according to the manu-
facturer’s instructions. RNA was treated with
RNase–free DNase (Invitrogen) for 15 min at room
temperature before reverse transcription with super-
script II RT (Invitrogen). Real-time PCR was performed
on the chromo 4TM detector (M J Research) with SYBR
Green PCR master mix (Thermo Scientific). PCR con-
ditions consisted of a 10-min hot start at 95 °C followed
by 40 cycles of 95 °C for 15 s, 60 °C for 1 min and
incubation for 3 s at 77 °C with a final extension for
10 min at 72 °C. The average threshold cycle (Ct) for
each gene was determined from triplicate reactions
and the levels of gene expression relative to β-actin
were determined as we previously described17. p18 pri-
mers: 5′-CTCCGGATTTCCAAGTTCA-3′ and 5′-GGG
GGACCTAGAGCAACTTAC-3′. p21 primers: 5′-GTG
GGTCTGACTCCAGCCC-3′ and 5′-CCTTCTCGTGA
GAC GCTTAC-3′. p27 primers: 5′-CGATCGGAATTC
ATGTCAAACGTGCGAGTG-3′ and 5′-CGATCGAGA
TCTTTACGTTTGACGTCTTCTGAGGCC-3′. ACTB
primers: 5′-ATGGAGGGGAATACAGCCC-3′ and 5′-T
TCTTTGCAGCTCCTTCGTT-3′.

Cell cycle and proliferation analysis
Cell cycle and proliferation analysis assays were per-

formed using Click-iT EdU Assay Kits at the indicated
time points during reprogramming as we previously
described13. We selected pacific blue to show the EDU
and 7-AAD to stain the DNA. The flow cytometry data
were analyzed by Syan software.

Karyotyping and G-banding assays
G-banding chromosome analysis of the iPS cell lines

were performed as we previously described13. Data were
interpreted by a certified cytogenetic technologist.

Centrosome number and spindle assays
Cells growing on coverslips were irradiated at the

different time point. The cells were fixed with pre-
chilled methanol for 20 min at −20 °C, washed with
phosphate buffered saline (PBS), and permeabilized
with 1% NP-40 in PBS for 5 min at 25 °C. Cells were
blocked with 10% normal goat serum in PBS for 1 h
and probed with anti-γ-tubulin monoclonal anti-
body (1:400, GTU-88, Sigma) for 1 h at 25 °C. The
antibody–antigen complexes were detected with sec-
ondary antibodies conjugated with Alexa 555 (1:1000
diluted in PBS containing 4% BSA, Molecular Probes)
by incubation for 1 h at 25 °C. The samples were
counterstained with DAPI. These panels show merge of
DNA (blue) and γ-tubulin (red). Scale bars, 10 mm. for
showing the spindle, based on centrosome staining,
added α-Tubulin antibody (1:400, Sigma) conjugated
with FITC to show the spindle fibers (green).
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Statistical analyses
Data are expressed as mean ± SD. All analyses were

two-tailed and considered statistically significant when
P values were less than or equal to 0.05.

Results
Expression levels of p21, p27, and p18 are decreased
during iPSC reprogramming
To determine the roles of CDKIs, p21, p27, and p18 in

iPSC reprogramming, we first tested cell proliferation
in wild type (WT), p21−/−, p27−/−, and p18−/− MEFs. As
shown in Fig. 1a, compared to WT, deletion of CDKIs all

promoted cell proliferation. Then, we assessed the mRNA
expression of p21, p27, and p18 in MEF, iPSC, and ESC
derived from the same mice, and found that all CDKIs
expressions were lower in iPSC and ESC compared to
MEFs (Fig. 1b). We further tested the mRNA expression
of p21, p27, and p18 during iPSC reprogramming, and
found that all CDKIs expression levels were reduced
(Fig. 1c). Moreover, at the early stage (Day 4) and middle
stage (Day 8) after transduction, p21 expression was
relatively higher than p27 and p18 (Fig. 1c). This suggests
that these CDKIs’ expression levels are negatively corre-
lated with cell stemness and pluripotency.
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Fig. 1 Expression levels of p21, p27, and p18 are decreased during reprogramming. a Cell proliferation analysis of MEFs wild type (WT), p21−/−,
p27−/−, or p18−/− mutant. Cell proliferation was determined by counting cell numbers using trypan blue staining. b qRT-PCR analysis of the mRNA
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Zhan et al. Cell Death and Disease          (2019) 10:271 Page 4 of 11

Official journal of the Cell Death Differentiation Association



Next, we examined the effects of deletion of CDKIs on
cell cycle progression during iPSC reprogramming. As
shown in Fig. 1d, e, the percentages of G1-phase cells
of all genotypes were decreased and the cell proliferation
rates were increased. However, at the early stage (Day 4)

and middle stage (Day 8) after transduction, the percen-
tages of G1 stage cells in the group with p21−/−, p27−/−,
and p18−/− genotypes were markedly lower than that
with WT genotype (Fig. 1d), which was correlated with
increased cell proliferation rates measured by EDU
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experiments. Error bars, ±SD. *p < 0.05; **p < 0.01, by two-tailed t test

Zhan et al. Cell Death and Disease          (2019) 10:271 Page 5 of 11

Official journal of the Cell Death Differentiation Association



incorporation (Fig. 1e). We further determine effects of
p21−/−, p27−/−, or p18−/− KO on iPSC proliferation. As
shown in Fig. 1f, p21 KO did not affect iPSC proliferation
and p18 or p27 KO significantly inhibited iPSC pro-
liferation compared to WT. These data show that
expression levels of CDKIs are decreased during iPSC
reprogramming and thereby cell cycle and proliferation of
reprogramming cells with absence of CDKIs are changed.

Deletion of CDKIs increases iPSC reprogramming efficiency
To compare iPSC reprogramming efficiency of MEFs

with p21−/−, p27−/−, and p18−/− genotypes, we measured
the quantities of SSEA1+ iPSC colonies. As shown in
Fig. 2a, like p21 loss, absence of p27 or p18 increased iPSC
reprogramming efficiency compared to WT. SSEA1+

iPSC colonies with p27−/− or p18−/− all expressed plur-
ipotency markers, Oct4, Nanog and Sox2, (Supplementary
Figure 1a) and produced teratomas that could differ-
entiate into all three germ layers (Supplementary Fig-
ure 1b). Moreover, absence of either p27 or p18 increased
iPSC generation to an extent comparable to that of p21
deficiency not only with four factors (Oct4, Sox2, Klf4,
and c-Myc) but also three factors (Oct4, Sox2, and Klf4)
(Fig. 2a and Supplementary Figure 2a). Besides, p27
or p18 deletion mediated increase in iPSC generation
efficiency was dose dependent (Fig. 2b and Supplementary
Figure 2b). Ectopic expression of p27 or p18 in WT,
p27−/−or p18−/− genotype MEFs all reduced iPSC

reprogramming efficiency (Fig. 2c–e). To further validate
these observations, we used p18 small-molecular inhibitor
NSC23005 and p27 siRNA to treat during the repro-
gramming of WT MEFs. As shown in Fig. 2f, g, both
NSC23005 treatment and p27 siRNA knockdown sig-
nificantly promoted iPSC generation. These data showed
that all CDKIs are critical for iPSC reprogramming, and
reprogramming efficiency has no difference among them.

Small-molecule inhibitors of CDKs can reduce iPSC
generation as CDKIs
p21 and p27 are inhibitors of broad cyclin-CDK com-

plexes, and p18 is a specific inhibitor of CDK4/6 kina-
ses8,11,18,19. To test whether roles of p21, p27, and p18 in
iPSC reprogramming are directly related with them as
CDK inhibitors, we used small-molecule CDK2 and
CDK4 inhibitors to treat MEFs with various genotypes
during reprogramming. As shown in Fig. 3a, b, both the
treatment of Small-molecule CDK2 and CDK4 inhibitors
reduced all genotypes iPSC reprogramming efficiency.
We also found that treatment with both CDK4 and
CDK2 inhibitors almost blocked iPS generation in WT
MEFs (supplemental Fig. 3a). To further validate CDK
inhibitors’ function in iPS generation, the small-molecule
CDK4/6 (Abemaciclib) and CDK7 inhibitors (THZ1) were
used to treat WT MEFs with CDK4/6 small-molecule
inhibitor Abemaciclib or CDK7 small-molecule inhibitor
THZ1, respectively. As shown in supplemental Fig. 3b and
c, both Abemaciclib and THZ1 reduced iPSC repro-
gramming efficiency. These results suggest that CDKIs-
regulated iPSC reprogramming is directly related with
their functions as CDK inhibitors.

p27 and p18 are dispensable for genomic stability during
reprogramming
DNA damage frequently occurs during somatic repro-

gramming5,20–24. We and others previously showed that
absence of p53 or p21 could not only improve the
reprogramming efficiency but also increase genomic
instability13,14. p27 and p18 were also shown to be related
with DNA damage25–29. To compare DNA damage status
in various genotype MEFs during reprogramming, we
examined the DNA double-strand breaks using anti-γ-
H2AX staining in the transduced MEFs at Day 0, Day 4
and the iPSC colonies at Day 12 after transduction
(Fig. 4a, b). There was no difference among all genotype
cells at reprogramming Day 0 and Day 4, whereas
γ-H2AX foci formation in p21−/− iPSC colonies at
reprogramming Day 12 significantly increased when
compared with other genotypes (Fig. 4a, b). The results
at reprogramming Day 12 were validated using comet
assays (Fig. 4c, d). These data suggest that unlike p21,
p27, and p18 are dispensable for DNA damage repair
during iPSC reprogramming.
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We further quantified the chromosomal alterations in
three clones, each from three independent iPSCs at pas-
sage 5 derived from three passage 3 MEF cell lines per
genotype. Chromosomal alterations, including chromo-
somal gains, losses, and structural abnormalities were
observed and quantified in the iPSCs of all genotypes and
the corresponding MEFs (Fig. 4e, f, and Supplementary
Tables S1 to S6) as we previously described13. There was
no difference in genomic stability among p18−/−, p27−/−,
and WT genotypes, and only p21−/− caused significantly
more chromosomal alterations in comparison to the
others. These data showed that p27 and p18 were critical
for somatic cell reprogramming efficiency but dispensable
for genomic stability during iPSC reprogramming.

p27 and p18 are dispensable for genomic stability at iPSC
stage
As p27 and p18 do not impair genomic stability during

reprogramming, we further determined whether p27 and
p18 are also dispensable for genomic stability at iPSC
stage. To test this, we selected the best genomic stability
cell lines in each genotype and then tested the centrosome
number and the spindles after irradiation (IR) treatment.
Significantly more abnormal centrosomes and spindles
were found only in p21−/− iPS cell lines compared with
WT, but there was no difference in p27−/−, p18−/−, and
WT genotype iPS cell lines (Fig. 5a, b).
To confirm the observation, we further tested the per-

centage of tail intensity in different genotype iPS cell lines
after IR treatment. As shown in Fig. 5c–e, loss of p21
induced significantly higher percentage of tail intensity,
less cleaved PARP formation, and less late apoptosis
compared to WT, whereas loss of p18 or p27 had no
effects. These data suggested that p27 and p18 are dif-
ferent from p21 and are dispensable for iPSC genomic
stability during reprogramming and at iPSC stage.

Discussion
Overlapping mechanisms between reprogramming and

tumorigenesis which were shown in the p53-p21 pathway
represent a huge challenge for the therapeutic use of iPS
technology2,13,14. The goal of the present study is to gain
a better understanding of the roles of CDKIs in iPSC
reprogramming and iPSC genomic stability to identify a

more suitable molecular target and potentially improve
the technology for iPSC generation. We found that
compared with loss of p21, absence of p27 or p18 can
promote the efficiency of iPSC generation without the
induction of genomic instability.
Successful generation of iPS cells from somatic cells

need reset of the patterns of cell cycle in those repro-
gramming cells, suggesting iPSC reprogramming was
mainly controlled by a cell-division-rate-dependent
model6,30. For example, p53 and its up and downstream
regulators such as p16/p19, p21 limit iPSC generation
mainly by cell cycle arrest and senescence2–4. Here, we
found that like p53-p21, absence of p27 and p18 pro-
moted efficiency of iPSC generation by regulating cell
cycle. Moreover, using small-molecule CDK inhibitor
treatment, we revealed that p21, p27, and p18-mediated
iPSC reprogramming are directly associated with them as
CDKIs.
Although it is known that loss of CDKIs promotes

efficiency of iPSC generation, iPSC quality with absence of
CDKI’s genotypes is still unclear. p21 was reported to be
directly involved in cellular repair processes by binding to
proliferating cell nuclear antigen (PCNA) and inhibiting
DNA replication after DNA damage31,32, and p21 also
played a role in aneuploidy formation33. p21-deficient
mice developed spontaneous tumors at an average age of
16 months, whereas wild-type mice were tumor-free
beyond 2 years of age34. Reduced p27 enhanced chro-
mosomal instability in non-small-cell lung carcinomas
and other cancers, and ectopic expression of p27 induces
a significantly decrease in the accumulation of aneu-
ploidy35,36. The cell cycle inhibitors p21 (Waf1/Cip1)
and p27 (Kip1) were frequently downregulated in many
human cancers, and correlated with a worse prognosis.
Combined deficiency of p21 and p27 proteins in mice was
linked to more aggressive spontaneous tumorigenesis,
and resulted in a decreased lifespan37,38. p18 was also a
known haploinsufficient tumor suppressor39,40, and loss
of p18 resulted in widespread hyperplasia and organo-
megaly after birth of the mice39. We previously showed
that loss of p21 during reprogramming can induce DNA
damage accumulation13. Consistent with this, here we
demonstrated that loss of p21 induces iPSC centrosome
abnormal and reduces DNA repair ability. However,

(see figure on previous page)
Fig. 4 p27 and p18 are dispensable for genomic stability during reprogramming. a Representative images of γ-H2AX staining in various
genotypes cells at reprogramming Day 0, Day 4, and Day 12. Bars: 50 μm. b Percentage of cells with γ-H2AX foci in (a). c Representative images of
comet assay in various genotype cells at reprogramming Day 12. Bars: 200 μm. d Tail intensity of the cells in (c). e The karyotypic alterations in three
clones each from three independent iPSCs at passage 5 derived from three passage 3 MEF cell lines per genotype were quantified. Graphic
illustration of the number of chromosomal alterations (numerical gains, losses, and structural alterations) in the iPSCs. f Karyotypes from 20
metaphase cells from three sets of each three cell lines per type of iPSCs were analyzed under the microscope or after digital imaging and
karyotyping. Images shown were taken with ×100 oil objective. Data are representative of two or three independent experiments. Error bars, ±SD.
**p < 0.01, ***p < 0.001, by two-tailed t test
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Fig. 5 p27 and p18 are dispensable for genomic stability at iPSC stage. a Representative images of spindle abnormal phenotype. Bars: 1.5 μm.
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absence of p27 or p18 kept not only mitosis but also
chromosome well during reprogramming and at iPSC
stage, indicating that p27 and p18 are dispensable for
iPSC genomic stability.
In summary, here we have reported a distinct role of

CDKIs in somatic cell reprogramming. Deletion of
p27 or p18 promotes reprogramming efficiency without
reduction of genomic stability. Therefore, our results
not only support that cell cycle regulation is critical for
iPSC reprogramming, but also offer a strong rationale
for targeting p27 and p18 in regenerative medicine.
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