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Physiologic hypertrophy of the heart preserves or enhances systolic function without
interstitial fibrosis or cell death. As a unique form of physiological stress, regular exercise
training can trigger the adaptation of cardiac muscle to cause physiological hypertrophy,
partly due to its ability to improve cardiac metabolism. In heart failure (HF), cardiac
dysfunction is closely associated with early initiation of maladaptive metabolic remodeling.
A large amount of clinical and experimental evidence shows that metabolic homeostasis
plays an important role in exercise training, which is conducive to the treatment and
recovery of cardiovascular diseases. Potential mechanistic targets for modulation of
cardiac metabolism have become a hot topic at present. Thus, exploring the energy
metabolism mechanism in exercise-induced physiologic cardiac hypertrophy may
produce new therapeutic targets, which will be helpful to design novel effective
strategies. In this review, we summarize the changes of myocardial metabolism (fatty
acid metabolism, carbohydrate metabolism, and mitochondrial adaptation), metabolically-
related signaling molecules, and probable regulatory mechanism of energy metabolism
during exercise-induced physiological cardiac hypertrophy.
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INTRODUCTION

The health benefits of exercise are indisputable. Exercise not only reduces cardiac risk factors and
improves cardiac function, but also reduces mortality and morbidity from various cardiovascular
diseases (Lavie et al., 2015; Tao et al., 2015; Ostman et al., 2017; Acosta-Manzano et al., 2020;
Bersaoui et al., 2020). Some researchers have demonstrated the cardiac protective effect of regular
exercise on patients with cardiovascular disease (Ellison et al., 2012), and endurance training can
Abbreviations: ATGL, adipose triglyceride lipase; GPCRs, G-protein-coupled receptors; FAT/CD36, fatty acid translocases;
FATP, fatty acid transporters; FA-CoA, acetyl CoA; ACC, Acetyl coenzyme A carboxylase; PPARa/b, peroxisome
proliferators-activated receptor a/b; PGC-1a/b, Peroxisome proliferator-activated receptor-g coactivator-1a/b; OXPHOS,
oxidative phosphorylation; ETC, electron transfer chain; FAO, fatty acid oxidation; ERR, estrogen-related receptors; NRF-1,
nuclear receptor factor 1; eNOS, endothelial nitric oxide synthase; LCFA, long-chain fatty acids; PI3K, phosphatidylinositol 3
kinase; IRS, insulin receptor substrate; IGF-1R, insulin-like growth factor-1 receptor; PKC-a, protein kinase C-a; O-
GlcNAcylization, O-junction of monosaccharide b-N-acetyl-glucosamine; HDAC, histone deacetylase; MCU,
mitochondrial calcium uniporter; VEGFs, vascular endothelial growth factors; CST, chronic swimming training; PAAC,
partial aortic constriction; AMPK, Adenosine 5’-monophosphate (AMP)-activated protein kinase.
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improve cardiac performance by transforming pathological
cardiac hypertrophy into a physiological state (Garciarena
et al., 2009). However, the exact mechanism of this cardiac
adaptation is not fully understood.

Notably, exercise can induce physiological cardiac
hypertrophy (Ellison et al., 2012; Xiao et al., 2014; Xiao et al.,
2016). In this state, myocardial hypertrophy has normal or
enhanced contractile function, considered adaptive, and is not
a risk factor for heart failure (Shimizu and Minamino, 2016).
Physiological cardiac hypertrophy is characterized by mild heart
growth, its mass is usually 10%‑20% higher than that of
normalized heart (Maillet et al., 2013). The physiological
hypertrophy of myocardium induced by exercise training is
different from pathological hypertrophy at the stimulation mode,
structure, and molecular level (McMullen and Jennings, 2007). In a
study of myocardial gene expression profile in rats, it was shown
that during exercise-induced physiological myocardial hypertrophy,
the glucose signal of cardiomyocytes was significantly different,
while there was no significant change in pathological hypertrophy
(Kong et al., 2005). A large number of studies have proved that the
metabolic coordination is an essential condition for myocardial
adaptive growth (Turpeinen et al., 1996; Peterzan et al., 2017;
Fulghum and Hill, 2018; Gibb and Hill, 2018; Heallen et al.,
2020), but it is not clear whether the regulation of myocardial
energymetabolism can reverse myocardial remodeling and improve
myocardial function. Therefore, the study of energy metabolism in
exercise-induced physiological cardiac hypertrophy is beneficial to
the exploration of exercise-induced cardiac adaptation andmight be
a unique research perspective for interventions in heart failure and
other cardiovascular diseases. This review describes the variation of
energy metabolism in exercise-induced physiological myocardial
hypertrophy from three aspects: fatty acid metabolism,
carbohydrate metabolism, and mitochondrial adaptation, and
summarizes the related signal molecules (Figure 1) and possible
regulatory pathways of this energy metabolism (Figure 2).
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CHANGES OF MYOCARDIAL
METABOLISM IN EXERCISE-INDUCED
PHYSIOLOGIC CARDIAC HYPERTROPHY

The heart has to keep contracting to provide the body with the
oxygen and nutrients it needs. Under normal physiological
conditions, due to the small storage of high energy phosphate
in cardiac myocytes, normal heart function depends on the tight
coupling of intracellular ATP production and myocardial
contraction (Kolwicz et al., 2013), and ATP is mainly derived
from the catabolism of glucose and fatty acids. Glucose oxidation
is a key source of myocardial ATP. In healthy adults, the heart
obtains about 50%‑70% of myocardial acetyl CoA derived ATP
from fatty acids (Lopaschuk et al., 1994). When endogenous fatty
acid supply is reduced, intracellular triacylglycerol hydrolyzes the
fatty acid back through specific lipases including adipose
triglyceride lipase (ATGL) (Haemmerle et al., 2011; Kienesberger
et al., 2012) for fatty acid oxidation and subsequent ATP
generation. The efficient absorption and recycling of fatty acids
by the heart is the key to ensuring ATP supply and systolic function
(Kim and Dyck, 2016), and glycolysis produces less than 10% of
total ATP in healthy hearts (Lygate et al., 2013). The main pathway
for ATP resynthesis is mitochondrial oxidative phosphorylation
(>98%), which is driven by the reduction equivalent NADH and
FADH2 produced by fatty acid oxidation, pyruvate oxidation, and
Krebs cycle. In a healthy heart, the hydrolysis rate of ATP matches
the rate of ATP resynthesis, and the tissue content of ATP is very
constant, even though the conversion rate of ATP is greatly raised
(Stanley and Chandler, 2002). The elevated acute load during
exercise has a strong effect on myocardial metabolism (Gibala
et al., 1998). In the heart, exercise boosts contractility and oxygen
consumption, which is 10 times higher than the resting rate (Olver
et al., 2015). Although the heart can take advantage of substrates
including carbohydrates, lipids, amino acids, and ketone bodies, to
provide energy, while its substrate preference vary under both
FIGURE 1 | A schematic of the major signaling molecules of metabolism in exercise-induced physiological myocardial hypertrophy, showing integration and cross-
talk of various pathways.
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physiological and pathological stress (Ritterhoff and Tian, 2017).
The changes of substrate utilization and mitochondrial adaptation
induced by exercise in physiological cardiomyocytes are effective
guarantees to maintain the normal myocardial cells function.

Fatty Acid Metabolism
Exercise heightens fat catabolism in adipose tissue and increases
triglycerides and free fatty acids in plasma, thus promoting the
utilization of fatty acids. It was found that the myocardial
hypertrophy of female mice after exercise was significantly
enhanced compared with that of male mice, which may be
related to the heightened level of free fatty acid in plasma
caused by exercise (Foryst-Ludwig et al., 2011). During
exercise, hormone-mediated lipid interpretation of fatty acid
metabolites in adipose tissue during exercise potentially
promotes cardiac physiological growth by activating G-protein-
coupled receptors (GPCRs), Akt, or nuclear receptors (Foryst-
Ludwig et al., 2015). Not only did free fatty acids increase rapidly
with exercise (Frandsen et al., 2019), but they also seemed to
remain elevated during exercise adaptation, and the elevated
levels of free fatty acids in plasma were considered sufficient to
promote cardiac fat catabolism (Pels et al., 1985; Monleon et al.,
2014). The uptake of free fatty acids by cardiomyocytes was
achieved through plasma membrane transporters, fatty acid
translocases (FAT/CD36), fatty acid transporters (FATP), and to
a lesser extent, transmembrane diffusion. CD36 deficiency will
result in defective fatty acid uptake (Tanaka et al., 1997; Abumrad
and Goldberg, 2016). In exercise-induced physiological
myocardial hypertrophy, fatty acid and glucose oxidation are
enhanced, accompanied by increasing gene expression of
encoding fatty acid transporters, fatty acid binding proteins, and
lipid metabolic pathways (Strøm et al., 2005; Dobrzyn et al., 2013;
Nakamura and Sadoshima, 2018). After fatty acid uptake and
conjugation with acetyl CoA (FA-CoA), FA-CoA enters the
mitochondria, via the carnitine acyl transferase shuttle (CPT-1
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and CPT-2) (Abel and Doenst, 2011). CPT-I and CPT-II are
responsible for the input of mitochondrial fatty acids and control
the rate-limiting steps of the mitochondrial fatty acid oxidation
pathway (Lehman et al., 2000). The up-regulated expressions of
CPT-I and CPT-II were found in a mice model of exercise training
and CPT-II mRNA expression was significantly heightened in
exercise-induced physiologic myocardial hypertrophy (Iemitsu
et al., 2003). Acetyl coenzyme A carboxylase (ACC) is a key
enzyme in fatty acid synthesis. An increase in ACC phosphorylation
was observed in cardiomyocytes during moderate exercise training,
including the phosphorylation of ACC-1 (265 kDa) and ACC-2 (280
kDa) (Coven et al., 2003). It is possible that ACC phosphorylation
reduces the generation of malonyl coenzyme A, thereby indirectly
lightening its inhibition of CPT-I activity, increasing the level of free
fatty acids in plasma (Awan and Saggerson, 1993; Abu-Elheiga et al.,
2001), and playing an important role in regulating fatty acid
oxidation (Lopaschuk et al., 1994).

Carbohydrate Metabolism
Glucose uptake in the heart was found to be transversely
distributed, and the subendocardial layer is about 30% higher
than the epicardial layer. The altered transmural distribution of
glucose uptake after exercise probably reflects the metabolic
adaptation of different myocardial layers to the physiologic
growth of cardiomyocytes induced by exercise (Takala et al.,
1983; Kainulainen et al., 1985; Kainulainen et al., 1989). It was
found that exercise training elevated GLUT4 mRNA levels of left
ventricle in rats (Vettor et al., 2014). The myocardial glucose
uptake was significantly higher in the exercise group than that in
the rest group (Gertz et al., 1988; Kemppainen et al., 2002). In
addition, experimental studies have demonstrated that the
elevation of catecholamine and intracellular calcium concentration
can raise GLUT4 translocation in the heart (Rattigan et al., 1991),
while exercise can activate the sympathetic nerve, elevate
catecholamine levels in the body, strengthen calcium concentration
FIGURE 2 | A schematic overview of probable regulatory mechanism of energy metabolism during exercise-induced heart growth, such as autophagy, post-
translational modification, microRNAs, angiogenesis, and inflammation.
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and myocardial contractility in cardiomyocytes. These mechanisms
may all play a role in promoting glucose uptake during exercise. At
the same time, studies have indicated that the glucose utilization rate
of cardiomyocytes in the exercise group is significantly lower than
that in the control group (Monleon et al., 2014). At present, only
pyruvate kinase activity has been found to be elevated in exercise-
adapted rat hearts (York et al., 1975; Stuewe et al., 2000), but little is
known about the effect of exercise on rate-limiting enzymes in
glycolysis pathway. Glycolysis, aerobic oxidation of glucose and
glycogen synthesis, were all enhanced in vitro perfusion hearts of
exercise-adapted mice (Riehle et al., 2014). However, in exercise-
adapted rats, basal myocardial glycolysis was reduced despite
increased myocardial glucose and palmitate oxidation (Burelle
et al., 2004). Differences between the two studies may be due to
differences in animal models (such as rodent species, exercise type)
or differences in cardiac perfusion regiments (matrix levels, hormone
addition). It was found that the glycogen accumulation in the
perfused heart of exercise training adapted mice (Riehle et al.,
2014) may be due to the increased glucose uptake stimulated by
insulin (Jensen and Richter, 2012). The cardiac glycogen is a
potential source of myocardial energy (Aguiar et al., 2017), and
glycogen resynthesis after exercise contributes to glucose
homeostasis. Recent studies have manifested that cardiac-specific
expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase transgene lowered glycolytic rate and regulated
the expression of genes known to promote cardiac growth (Boström
et al., 2010; Bezzerides et al., 2016; Gibb et al., 2017). These researches
further illustrated that depressed glycolytic activity appeared to be
important in exercise-induced physiological cardiac hypertrophy.
These experimental results showed that although glucose uptake,
aerobic oxidation, and glycogen synthesis are all prolonged in
exercise-induced hypertrophic myocardium, cardiomyocytes still
give priority to fatty acid oxidation to provide energy. Metabolic
adaptation maintains the balance between glucose and fatty acid
catabolism on the premise of improving the efficiency of cardiac
energy production.

Mitochondrial Adaptation
The role of mitochondria in physiological myocardial
hypertrophy cannot be ignored. Exercise training promoted
mitochondrial biosynthesis in the heart (Vettor et al., 2014),
which was related to exercise-induced cardiac hypertrophy
(White et al., 1987; Rimbaud et al., 2009a; Abel and Doenst,
2011). A recent study showed that a single exhausting exercise in
untrained or trained rats resulted in increasing levels of
cytochrome C, Caspase3, and mitochondrial DNA deletion
(Huang et al., 2009), suggesting that mitochondrial damage
may be an indirect signal to activate mitochondrial biogenesis.
It was found that mitochondrial DNA synthesis, electron
transport chain related enzyme activity and citrate synthase
activity all increased in the hearts of swimming training mice
(Riehle et al., 2014). The energy consumption of the heart during
exercise is several times higher than that of the resting state,
which is related to the increasing of oxygen consumption and
mitochondrial ATP production rate. Meanwhile, the myocardial
mitochondrial ATP production rate must be highly matched
with the ATP decomposition rate. Swimming training induced
Frontiers in Pharmacology | www.frontiersin.org 4
the enhancement of mitochondrial respiration and ATP
production in physiological myocardial hypertrophy of mice
(Ascensão et al., 2011), and some experiments proved that the
mitochondrial respiration of isolated myocardium of mice also
increased after exercise training, which was consistent with the
change of gene expression of fatty acid utilization (O’Neill et al.,
2007). In addition, exercise training promotes myocardial
physiological hypertrophy while carrying out adaptive
remodeling of mitochondria (Bo et al., 2010). Eight weeks of
exercise conditioned training increased the number of
myocardial mitochondria, especially the smaller ones
(Dworatzek et al., 2014). In mice, exercise strongly promotes
the division of myocardial mitochondria, thereby enhancing the
function of mitochondria; these mitochondrial changes occur in
a manner dependent on adrenergic signals (Coronado et al.,
2018). In cardiomyocytes, mitochondria are considered to be the
main source of reactive oxygen species. Under normal/basic
conditions, ROS is produced as a by-product of mitochondrial
electron transfer activity and is buffered by antioxidant systems.
Exercise-induced reactive oxygen species may have beneficial
effects on heart growth (Sadoshima, 2006; Alleman et al., 2014;
Schieber and Chandel, 2014), probably because ROS, a second
messenger to change redox sensitive enzymes, contributes to
exercise-induced mitochondrial adaptive signal transduction.

The above studies showed that the adjustment of myocardial
energy metabolism contributes to exercise-induced physiological
myocardial hypertrophy. Although fatty acids seem to favor
energy production, the heart has the ability to respond quickly
to variation in matrix availability, ensuring that ATP production
continues to meet its energy needs (Taegtmeyer et al., 2004; Hue
and Taegtmeyer, 2009; Smith et al., 2018). Therefore, exercise
training is related to the regulation of fatty acid, glucose
metabolism and mitochondrial adaptation, which may further
promote the coordination of myocardial metabolic flexibility and
myocyte physiological hypertrophy. However, the specific
mechanism is still not well understood and needs further study.
THE SIGNALING MOLECULES OF
METABOLISM IN EXERCISE-INDUCED
PHYSIOLOGICAL MYOCARDIAL
HYPERTROPHY

PGC-1a
Peroxisome proliferator-activated receptor-g coactivator-1a
(PGC-1a) is a transcriptional coactivator initially identified as
a cold-inducing factor involved in the mitochondrial biogenesis
of brown adipocytes (Puigserver et al., 1998). PGC-1a is
required for the normal reserve of fatty acid oxidation (FAO)
(Lehman et al., 2008; Peterzan et al., 2017), and PGC-1b for the
normal expression of OXPHOS gene (Vianna et al., 2006).
PGC-1a/b promotes coordination of gene transcription,
mitochondrial biosynthesis, and growth signal at various
levels of oxidative metabolism (Rowe et al., 2010). The
expression of PGC-1a increases in exercise-induced
myocardial hypertrophy, which promotes the production of
July 2020 | Volume 11 | Article 1133
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mitochondria and the ability of fatty acid oxidation (FAO)
(O’Neill et al., 2007; Watson et al., 2007; Riehle et al., 2014). The
cardiac function of adult PGC-1a/b-deficient mice does not
show obvious abnormalities, but the expression of genes related
to the mitochondrial energy transmission pathway (including
FAO, tricarboxylic acid cycle, ETC/OXPHOS) in the gene
expression profile is significantly and widely down-regulated
(Martin et al., 2014). It is probably that PGC-1a/b is not
necessary to maintain mitochondrial density and cardiac
function in the basal state (Vega et al., 2015), but in the
process of exercise-induced physiological myocardial growth,
it is necessary to maintain the high volume respiratory function
of hypertrophic myocardial mitochondria by driving the
expression of genes related to mitochondrial energy
conduction and ATP synthesis pathway. PGC-1a also
promotes a broader mitochondrial biological response
through interaction with estrogen-related receptors (ERR) and
nuclear receptor factor 1 (NRF-1) (Scarpulla et al., 2012).
Studies have demonstrated that, ERR directly activates
mitochondrial energy metabolism involving TCA cycle,
electron transfer, and oxidative phosphorylation in
cardiomyocytes (Dufour et al., 2007). In the exercise training
experiment, endothelial nitric oxide synthase (eNOS) in left
ventricular murine tissue (Kojda et al., 2001; Zhang et al., 2007)
elevates the gene expression of PGC-1a (Vettor et al., 2014). In
addition, it is also found that PGC-1a plays an important role
in protecting cardiomyocytes from ROS-mediated injury. In the
hearts of PGC-1a knockout mice, the basic mRNA expression
levels of ROS detoxifying enzymes such as cytoplasmic copper/
zinc-SOD1, mitochondrial Mn-SOD, and peroxisome catalase
were significantly reduced (St-Pierre et al., 2006). However,
whether ERR, eNOS and ROS play a role in cardiac exercise
adaptation by affecting the expression of PGC-1a needs
further study.

PPARa
The content of PPARa and PPARb in cardiomyocytes are the
highest, while the expression level of PPARg is low (Vega et al.,
2015). Although both PPARa and PPARb were initially
considered to be regulators of peroxisome b-oxidation
(Issemann and Green, 1990), it was later found that only the
activation of PPARa in cardiomyocytes regulated the uptake,
oxidation and storage of fatty acids in the heart (Gulick et al.,
1994; Brandt et al., 1998; Mascaró et al., 1998). Research finds
that Cn works by activating PPARa to promote mitochondrial
energy production and myocardial growth (White et al., 1987;
Turpeinen et al., 1996). Initially, the increasing expression of
myocardial peroxisome proliferator-activated receptor (PPARa)
was detected during treadmill training in mice (Dobrzyn et al.,
2013). Later, it was found that the level of PPARa also increased
in exercise-induced physiologic hypertrophic cardiomyocytes
(Youtz et al., 2014). In addition, some experiments found that
gene expression of PPARa was reduced in pathological cardiac
hypertrophy, suggesting that upregulation of PPAR-a expression
may limit pathological cardiac hypertrophy (Barger et al., 2000).
However, another study explained that the elevating levels of
Frontiers in Pharmacology | www.frontiersin.org 5
PPARa may be the result of physiological hypertrophy
(Rimbaud et al., 2009b). These results further illustrated that
PPARa may play an important role in inhibiting the
transformation from physiological growth to pathological
hypertrophy of cardiomyocytes.

AMPK
In skeletal muscle, AMPK is activated during exercise to
increase metabolism (Winder and Hardie, 1996; Winder
et al., 1997). AMPK also acts as an important energy sensor
and metabolic regulator in the heart (Bairwa et al., 2016).
When activated by increasing energy demand, its role is to
boost the intake and catabolism of fatty acids (Hardie, 2004).
The increase in myocardial stromal metabolism during exercise
can be explained by the activation of AMPK (Coven et al.,
2003). The activation of AMPK can enhance the uptake of
long-chain fatty acids (LCFA) in wild-type cardiomyocytes
(Habets et al., 2007) but not the uptake in CD36 knockout
cardiomyocytes (Samovski et al., 2015), promote the transport
of CD36 to the plasma membrane (Luiken et al., 2003; Kim and
Dyck, 2016), indicating that AMPK promotes the CD36
expression and transport to raise fatty acid supply. In
addition, AMPK plays a role in myocardial metabolism by
phosphorylating ACC, a key enzyme that activate fatty acid
metabolism (Nagendran et al., 2013; Hardie et al., 2016). It was
found that CD36 expression and ACC phosphorylation are up-
regulated in physiologically hypertrophic myocardium induced
by exercise training (Strøm et al., 2005; Dolinsky and Dyck,
2006). Thus, AMPK may strengthen the energy supply of
exercise-induced myocardial hypertrophy through interaction
with CD36 and ACC.

PI3K
Mitochondrial-associated factor phosphatidylinositol 3 kinase
(PI3K) signaling and its downstream effectors Akt and GSK-3b
promote myocardial physiological hypertrophy growth and
maintain normal cardiac function (McMullen et al., 2003).
Although PI3K inhibition can reduce the size of the heart and
prevent the adaptation of mitochondria to physiological
hypertrophy (Shioi et al., 2000). However, the downregulation
of the effector Akt by PI3K is not necessary for mitochondria to
adapt to cardiac hypertrophy, suggesting that there is an
independent PI3K signaling pathway in the induction of
physiological hypertrophy and may be related to the regulation
of mitochondrial metabolism (O’Neill et al., 2007). It was found
that the repolarization of K+ current amplitude of ventricular
myocytes in PI3K cultured group and swimming training
induced physiological cardiac hypertrophy group are both
higher than that of the wild type, while the expression of
transcripts encoding K+, Ca2+, and other ion channel subunits
is elevated, which is parallel to the increased cardiomyocyte size
and total cellular RNA expression. It is suggested that the steady-
state regulation of physiological myocardial hypertrophy and
excitability induced by exercise may be related to myocardial
PI3Ka signal (Yang et al., 2010), and the normal maintenance of
myocardial electrical function is inseparable from energy.
July 2020 | Volume 11 | Article 1133
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Therefore, PI3K may be related to the energy regulation of
maintaining electrical excitation homeostasis in exercise-
induced physiological myocardial hypertrophy.

IGF-1R and IR
Insulin-like growth factor-1 receptor (IGF-1R) has been proved
to be an important condition for inducing myocardial
physiological growth in mice (McMullen et al., 2004; Kim
et al., 2008). In heart-specific IR knockout mice, the expression
of PPARa decreased, the level of PGC-1a did not change.
Meanwhile, the mitochondrial respiration and ATP synthesis
rate were impaired (Boudina et al., 2009). The deletion of insulin
receptor substrate (IRS), which is necessary for IGF-1R and IR
signal transduction, preventing the activation of PGC-1a, but
increasing the capacity of mitochondria after exercise (Riehle
et al., 2014). These results provide evidence that the coordination
of growth procedures and metabolic reprogramming may occur
in insulin-like growth factor-1 and insulin triggered
signaling pathways.

PKC-a
Experiments with swimming-trained mice have shown that
activation of PKC-a suppresses apoptosis, promotes the growth
of physiological cardiomyocytes and improves cardiac function
(Naskar et al., 2014). Excessive activation of PKC-a in the
liver affects glucose and fatty acid metabolism. In myocardium,
PKC-a activation protects myocardium by improving cardiac
mitochondrial function (Nowak and Bakajsova, 2013). These
related researches of PKC-a indicated that the role of PKC-a in
exercise-induced physiological hypertrophy may be associated
with the regulation of metabolism.
THE PROBABLE REGULATORY
MECHANISM OF ENERGY METABOLISM
DURING EXERCISE-INDUCED HEART
GROWTH

Autophagy
The recycling of cell components by autophagy has become an
important process of adaptive response to exercise (Halling and
Pilegaard, 2017). Many beneficial effects of exercise may be
related to autophagy, especially physiological myocardial
hypertrophy caused by exercise. It was found that the activity
of autophagy increased significantly in the heart of exercise-
induced physiologically hypertrophic rats (Qi et al., 2020). Some
previous studies have shown that autophagy/mitophagy plays an
important role in the adaptation of skeletal muscle to endurance
exercise and interacts with mitochondrial organisms (He et al.,
2012; Vainshtein et al., 2015; Ju et al., 2016). A team found that
mitochondrial autophagy-related proteins Beclin1, LC3, and
Bnip3 are significantly up-regulated during acute exercise (Li
et al., 2016a). Therefore, there may be a certain interaction
between autophagy and metabolism in exercise-induced
physiological hypertrophic cardiomyocytes.
Frontiers in Pharmacology | www.frontiersin.org 6
Post-Translational Modification
Post-translational modification refers to the process of covalent
processing of the translated proteins. There are more than 20
post-translational modification processes in eukaryotic cells,
such as acetylation, phosphorylation, ubiquitination, and
methylation. The mitochondrial proteome consists of
approximately 1100 to 1500 proteins, most of which are
encoded by nuclear DNA and transferred to mitochondria
after post-translational modification (Zhou et al., 2013).
Studies have found that metabolic adjustment of myocardium
during exercise may be related to ACC phosphorylation in fatty
acid metabolism (Coven et al., 2003). By activating PKC-d and
simultaneously inhibiting PKC-a phosphorylation, the PKC
subtype is reversed, resulting in impaired cardiac function
during physiological hypertrophy (Naskar et al., 2014). In
addition, a research shows that the protein O-GlcNAcylization
in physiologically growing cardiomyocytes in swimming trained
mice is reduced as a whole compared to sedentary mice (Belke,
2011). The O-junction of monosaccharide b-N-acetyl-
glucosamine (O-GlcNAcylization) is a post-translational
modification on serine and threonine residues, which is an
important mechanism for regulating various cellular processes
(Mailleux et al., 2016). Another study compared the low and high
running ability of rats. The author mentioned the difference in
the level of cardiac O-GlcNAcylization of several mitochondrial
proteins, among which the O-GlcNAc levels of complex I and
complex IV proteins in the low-volume group are higher than
high capacity group (Johnsen et al., 2013). Therefore, O-
GlcNAcylization may play a role in mitochondrial adaptation
to exercise-induced cardiac hypertrophy. Meanwhile, in the
physiological cardiac hypertrophy induced by aerobic exercise,
PPARb and histone deacetylase (HDAC) I and II were found to
be elevated, accompanied by the interaction between metabolism
and epigenetic genes (Soci et al., 2016). Deacetylase (HDAC)
affects the acetylation of histones, and exercise training can
accelerate the up-regulation of HDAC gene expression and
increase the acetylation of histones in cardiomyocytes
(Medford et al., 2013; Konhilas et al., 2015; Bernardo et al.,
2018). In addition, myocardium-specific histone deacetylase
HDAC3 (a member of HDAC I) plays a unique role in
maintaining cardiac function and modulating fatty acid
metabolism by regulating histone acetylation in the promoter
region of myocardial energy gene (Montgomery et al., 2008).
These studies indicated that posttranslational modification may
play a complementary role in regulating cardiac growth and
myocardial energy metabolism.

MicroRNAs
MicroRNAs are small non-coding RNA molecules with a length
of about 22 nucleotides, which activate the post-transcriptional
gene expression by binding to target messenger RNA to promote
its degradation. Some animal and human studies have shown
that the levels of microRNAs in exercise-induced cardiac
hypertrophy have been altered (Table 1). Among them, the
expressions of miR-17-3p, miR-30, miR-21, miR-27a/b, miR-
144, miR-145 (Wang et al., 2018), miR-29 (Soci et al., 2011),
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miR-19b, miR-208b, and miR-133b (Ramasamy et al., 2015)
were up-regulated. MiR-1, miR-133, miR-124, miR-143 (Wang
et al., 2018), miR-341 (Martinelli et al., 2014), miR-100, miR-22,
miR-99b, miR-181a, miR-191a (Ramasamy et al., 2015), miR-
214 (Melo et al., 2015), miR-199, miR-222 (Schüttler et al.,
2019), miR-26b-5p, miR-204-5p, and miR-497-3p (Qi et al.,
2020) were down-regulated. MicroRNAs regulate gene
expression in hypertrophic myocardium induced by exercise
training, in which miR-17-3p and miR-222 may induce
cardiomyocyte metabolism and mitochondrial adaptation
(Schüttler et al., 2019). Furthermore, inhibition of endogenous
miR-199 inducing physiological myocardial hypertrophy may
be related to up-regulation of PGC-1a mRNA expression (Li
et al., 2016b). MiR-1 suppresses the translation of MCU (a kind
of mitochondrial calcium transporter), reduces the uptake of
mitochondrial Ca2+ in cardiomyocyte, and increases the
production of metabolic energy (Zaglia et al., 2017). Inhibition
of miR-208b increases the expression of epigenetic target
proteins, which may stimulate the interaction between
metabolism and cell growth (Soci et al., 2016). In addition, in
a study on the relationship between miRNAs and exercise-
induced physiological cardiac hypertrophy, KEGG pathway
analysis showed that 12 up-regulated miRNAs are associated
with fatty acid degradation, fatty acid metabolism, and fatty acid
elongation (Xu et al., 2017). These researches indicated that
microRNAs may have a certain effect on metabolism in
maintaining exercise-induced physiological myocardial
hypertrophy. However, the roles of lncRNAs and circRNAs in
physiological cardiac hypertrophy have not been reported
(Wang et al., 2020).
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Angiogenesis
VEGFs are main regulators of myocardial angiogenesis. Some
studies have found that inhibition of VEGFs signal transduction
leads to capillary thinning and early heart failure (Izumiya et al.,
2006; Sano et al., 2007), indicating that cardiomyocytes may
produce angiogenic factors to maintain capillary density, oxygen
supply, and function. The number of myocardial capillaries
increased significantly in physiological myocardial hypertrophy
(Anversa et al., 1983; Oka et al., 2014), while the capillary density
was attenuated in pathological myocardial hypertrophy (Anversa
and Capasso, 1991; Beltrami et al., 1994), suggesting that the
number of myocardial capillaries is controlled by the
myocardium, and the decrease in capillary density may cause
hypoxia or even contraction dysfunction. Therefore, the growth
of physiologically hypertrophic cardiomyocytes induced by
exercise may be related to angiogenesis providing a good
oxygen supply for myocardial metabolism.

Inflammation
There are total 59 genetic variation in the study of physiological
cardiac hypertrophy in swimming mice or treadmill rats, only
two genes (Cd74 and Col3a1) are changed in both mice and rat
models. The immune-function related gene Col3a1 was down-
regulated in response to exercise in mice (1.6, 3.1-fold) and rats
(1.8-fold) but up-regulated in most pathological cardiac
hypertrophy models (Galindo et al., 2009). In the study of
cardiac cell RNA sequencing, it was found that one of the
most significant difference in the physiologically hypertrophic
myocardium induced by swimming training was the severe
downregulation of the autoimmunity pathway, accompanied
TABLE 1 | Overview of microRNA levels altered in exercise-induced physiologic cardiac hypertrophy and their cellular targets.

MicroRNA Cellular Target Animal Model and Exercise Modality References

miR-17-3p TIMP3, PTEN Mice, swimming exercise (Wang et al., 2018)
miR-30 P53, Drp-1 Mice, treadmill running (Wang et al., 2018)
miR-21 PDCD4 Mice, treadmill running (Wang et al., 2018)
miR-27a/b ACE Rats, swimming exercise (Wang et al., 2018)
miR-144 PTEN Rats, swimming exercise (Wang et al., 2018)
miR-145 TSC2 Rats, swimming exercise (Wang et al., 2018)
miR-29 collagen Rats, swimming exercise (Soci et al., 2011)
miR-19b PTEN, MuRF, Bcl2, Atrogin-1, aCryB Rats, swimming exercise (Ramasamy et al., 2015)
miR-208b THRAP1, Myostatin Rats, swimming exercise (Ramasamy et al., 2015; Soci et al., 2016)
miR-133b CyclinD, NelfA, RhoA, Ccd42 Rats, swimming exercise (Ramasamy et al., 2015)
miR-100 IGF1R, Akt, mTOR Rats, swimming exercise (Ramasamy et al., 2015)
miR-22 CDK6, Sir1, Sp1 Rats, swimming exercise (Ramasamy et al., 2015)
miR-99b IGF1R, Akt, mTOR Rats, swimming exercise (Ramasamy et al., 2015)
miR-181a MAPK1, TNFa, GATA4 Rats, swimming exercise (Ramasamy et al., 2015)
miR-191a Egr1, Cd4, Casp4, SOCS4, p53 Rats, swimming exercise (Ramasamy et al., 2015)
miR-1 Bcl-2 Mice, treadmill running (Zaglia et al., 2017; Wang et al., 2018).
miR-133 Calcineurin, PI3K/Akt signaling Rats, swimming exercise (Wang et al., 2018)
miR-124 PI3K Rats, swimming exercise (Wang et al., 2018)
miR-143 ACE2 Rats, swimming exercise (Wang et al., 2018)
miR-341 c-Myb Mice, treadmill running (Martinelli et al., 2014)
miR-199 PGC1a Mice, treadmill running (Li et al., 2016b; Schüttler et al., 2019)
miR-222 P27, Hipk1, Hmbox1 Mice, swimming exercise (Schüttler et al., 2019)
miR-214 SERCA2a Rats, leg flexing exercise (Melo et al., 2015)
miR-26b-5p LC3B, Beclin1, SQSTM1 Rats, swimming exercise (Qi et al., 2020)
miR204-5p LC3B, Beclin1, SQSTM1 Rats, swimming exercise (Qi et al., 2020)
miR-497-3p LC3B, Beclin1, SQSTM1 Rats, swimming exercise (Qi et al., 2020)
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by the obvious selective splice of exon variants (AS) (Song et al.,
2012). In addition, in a study using high-density oligonucleotide
microarray to detect myocardial gene expression profiles in
physiologically and pathologically hypertrophic rats,
inflammation-related genes (such as pancreatitis-associated
proteins and arachidonic acid 12 lipoxygenase) increased in
the pathological process, but not in physiological hypertrophy
(Kong et al., 2005). At the molecular level, the up-regulated
expression of Rho kinase promoted inflammation. Fasudil is an
inhibitor of Rho kinase. It was found that fasudil could
significantly reduce the left ventricular dysfunction of
pathological myocardial hypertrophy caused by partial aortic
constriction (PAAC), but has no significant regulatory effect on
left ventricular hypertrophy induced by chronic swimming
training (CST). These results suggest that Rho kinase is
involved in PAAC-induced pathological myocardial
hypertrophy (Balakumar and Singh, 2006). However, it is not
ruled out that the regulatory effect of Rho kinase on physiological
hypertrophy is not obvious due to the down-regulation of
immune pathway in physiological cardiac hypertrophy induced
by CST. It remains further explored whether the down-
regulation of this immune pathway affects the energy
metabolism of the myocardium.
CONCLUSIONS

Metabolic remodeling is closely related to the occurrence and
development of cardiac hypertrophy and other heart diseases.
Exploring the energy metabolism mechanism of cardiomyocytes
may lead to new therapeutic targets, which will be helpful to design
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new effective methods and strategies for the treatment of heart
failure (Bøgh et al., 2020;Makrecka-Kuka et al., 2020; Zuurbier et al.,
2020). As we all know, physical exercise has a protective effect on
the heart, and can even partially compensate for heart damage and
improve heart function. Combined with the metabolic adaptation
pathway observed in the studies of myocardial physiological
hypertrophy induced by exercise, we can further explore how
exercise-induced metabolic adaptation coordinate cell signals and
gene expression, which may be helpful to guide exercise training
scientifically, maximize the benefits of exercise, improve heart
health, and develop new treatment strategies for the treatment of
heart failure caused by various complex reasons and aging in
the future.
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Mailleux, F., Gélinas, R., Beauloye, C., Horman, S., and Bertrand, L. (2016). O-
GlcNAcylation, enemy or ally during cardiac hypertrophy development?
Biochim. Biophys. Acta 1862 (12), 2232–2243. doi: 10.1016/j.bbadis.
2016.08.012

Makrecka-Kuka, M., Korzh, S., Videja, M., Vilks, K., Cirule, H., Kuka, J., et al.
(2020). Empagliflozin Protects Cardiac Mitochondrial Fatty Acid Metabolism
in a Mouse Model of Diet-Induced Lipid Overload. Cardiovasc. Drugs Ther.
[Epub ahead of print]. doi: 10.1007/s10557-020-06989-9

Martin, O. J., Lai, L., Soundarapandian, M. M., Leone, T. C., Zorzano, A., Keller,
M. P., et al. (2014). A role for peroxisome proliferator-activated receptor g
coactivator-1 in the control of mitochondrial dynamics during postnatal
cardiac growth. Circ. Res. 114 (4), 626–636. doi: 10.1161/circresaha.114.302562

Martinelli, N. C., Cohen, C. R., Santos, K. G., Castro, M. A., Biolo, A., Frick, L.,
et al. (2014). An analysis of the global expression of microRNAs in an
experimental model of physiological left ventricular hypertrophy. PloS One 9
(4), e93271. doi: 10.1371/journal.pone.0093271
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