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Atrial fibrillation (AF) is associated with exercise intolerance,
stroke, and all-cause mortality. However, whether this can be solely
attributable to the arrhythmia itself or alternative mechanisms re-
mains controversial. Heart failure with preserved ejection (HFpEF)
commonly coexists with AF and may contribute to the poor out-
comes associated with AF. Indeed, several invasive hemodynamic
studies have confirmed that patients with AF are at increased risk
of underlying HFpEF and that the presence of HFpEF may have
important prognostic implications in these patients.

Mechanistically, AF and HFpEF are closely linked. Both condi-
tions are driven by the presence of common cardiovascular risk fac-
tors and are associated with left atrial (LA) myopathy, characterized
by mechanical and electrical dysfunction. Progressive worsening of
this left atrial (LA) myopathy is associated with both increased AF
burden and worsening HFpEF. In addition, there is growing evidence
to suggest that worsening LA myopathy is associated with poorer
outcomes in both conditions and that reversal of the LA myopathy
could improve outcomes. In this review article, we will present the
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epidemiologic and mechanistic evidence underlying the common
coexistence of AF and HFpEF, discuss the importance of a progres-
sive LA myopathy in the pathogenesis of both conditions, and re-
view the evidence from important invasive hemodynamic studies.
Finally, we will review the prognostic implications of HFpEF in pa-
tients with AF and discuss the relative merits of AF burden reduction
vs HFpEF reduction in improving outcomes of patients with AF and
HFpEF.
KEYWORDS Atrial fibrillation; Atrial myopathy; Cardiovascular risk
factors; Heart failure with preserved ejection fraction; Left atrial
hemodynamics
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Introduction
Atrial fibrillation (AF) and heart failure with preserved ejec-
tion fraction (HFpEF) are 2 highly prevalent chronic cardio-
vascular conditions that commonly coexist (AF-HFpEF). AF
is the most common cardiac arrhythmia, while HFpEF is a
myocardial functional disorder associated with abnormal
intracardiac hemodynamics. Mechanistically, however,
both conditions are associated with a progressive left atrial
(LA) myopathy driven by the presence of common cardio-
vascular risk factors.1 Historically, HFpEF has been difficult
to diagnose in patients with AF, but several recently pub-
lished invasive hemodynamic studies of patients with AF
have demonstrated a high prevalence of occult HFpEF.2–4

HFpEF commonly afflicts patients with AF, raising
important questions that challenge current thinking; are the
clinical implications associated with AF due to the rhythm
disturbance of AF or underlying HFpEF? Do evidence-
based AF treatments work through reduction of AF burden
or treatment of underlying HFpEF?

In this article we will review the epidemiologic evidence for
the close association between AF and HFpEF as well as
describe the mechanisms that drive the development of both
HFpEF and AF, focusing on the importance of underlying car-
diovascular risk factors. Specifically, we will highlight the role
of LAmyopathy in both conditions and discuss the contribution
of invasive hemodynamic studies that have progressed our un-
derstanding of the symbiotic relationship between AF and
HFpEF. We will then discuss the growing controversy
regarding the relative contributions of cardiac rhythm distur-
bance and HFpEF in predicting the poor outcomes associated
withAF. Finally,wewill review established treatment strategies
forAF, discussing theirmechanismsof efficacy in the context of
cardiac rhythm control vs HFpEF reduction and discuss how
further development of our understanding of HFpEF in AF
may allow for improved treatments and outcomes.
hythm Society.
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KEY FINDINGS

- Atrial fibrillation (AF) and heart failure with preserved
ejection fraction (HFpEF) commonly coexist. Large-
scale epidemiological studies estimate a high preva-
lence of AF in patients with HFpEF and vice versa. Inva-
sive hemodynamic studies suggest the coexistence of
AF and HFpEF may be even more common than epidemi-
ological studies suggest and is likely underappreciated
in clinical practice.

- AF and HFpEF are both underpinned by several common
cardiovascular risk factors, including obesity, hyper-
tension, diabetes, obstructive sleep apnea, alcohol
consumption, and smoking. The mechanisms by which
these risk factors lead to AF and HFpEF include systemic
inflammation, hemodynamic alterations, coronary
microvascular dysfunction, and atrial fibrosis.

- AF and HFpEF are both associated with a progressive
and comprehensive left atrial (LA) myopathy, encom-
passing structural, mechanical, and electrical dysfunc-
tion.

- Progressive worsening of the LAmyopathy is associated
with poorer outcomes in AF and HFpEF, including
increased risk of all-cause mortality and systemic
thromboembolism.

- Several evidence-based treatments for AF focus on
reducing AF burden. However, outcomes may be further
improved by reversing LA myopathy and reducing
HFpEF. Renewed focus on reversing LA myopathy and
reducing HFpEF may provide prognostic benefit in pa-
tients with AF.

772 Heart Rhythm O2, Vol 2, No 6PB, December 2021
Epidemiology
AF and HFpEF
AF and HFpEF represent growing worldwide epidemics.
Current estimates suggest that 37.5 million people (0.51%
of the worldwide population) suffer with AF globally, with
ever-rising prevalence and incidence.5 An even larger pro-
portion of people suffer with heart failure, with an estimated
64.3 million people (0.9% of worldwide population)
affected.6 HFpEF is thought to account for at least half of
these cases,7,8 meaning the overall prevalence of HFpEF is
likely to be very similar to that of AF. Future projections sug-
gest that the global burden of both AF and HFpEF will
continue to rise in the coming years, with significant implica-
tions for healthcare such as an exponential rise in hospitaliza-
tions and healthcare costs.5,9
AF-HFpEF
In addition to being highly prevalent conditions, epidemio-
logic studies also show that AF and HFpEF frequently
coexist. Figure 1 shows the epidemiologic relationship
between both conditions. In large heart failure registries
recruiting both inpatients and outpatients, the overall preva-
lence of AF is estimated to be around 51%.10–15 Similarly,
in AF cohorts, the average prevalence of HFpEF is around
21%.11,16–18 Both values are likely to represent
underestimates; the diagnosis of AF in patients with
HFpEF is often limited by its paroxysmal nature and the
absence of continuous rhythm monitoring, while the
diagnosis of HFpEF in patients with AF is challenged by
the overlapping symptomatology and clinical presentation.
As a result, the nature of the close relationship between the
2 conditions may be significantly underappreciated
epidemiologically.

Community cohort studies examining the temporal rela-
tionship between AF and HFpEF provide unique insight
into the bidirectional relationship between the 2 conditions.
The Framingham Heart Study, which followed individuals
with new-onset AF or heart failure for up to 7.5 years,
showed that patients with AF had more than double the
risk of developing HFpEF compared to those without AF.11

Similarly, patients with HFpEF were more than 3 times more
likely to develop AF. The PREVEND study, which invited
the entire population of the city of Groningen, the
Netherlands, to participate showed that AF increased the
risk of HFpEF development by almost 7 times compared to
those without AF over the course of a longer follow-up
period (almost 10 years).13 These studies highlight the sym-
biotic nature of the relationship between AF and HFpEF and
the impact that each condition has on the development of the
other.
Risk factors
Epidemiologic studies have also been important in high-
lighting the common risk factors underlying both conditions
(Table 1). Age, hypertension, body mass index, diabetes, and
obstructive sleep apnea have all been identified as frequent
comorbidities associated with both conditions. Furthermore,
the coexistence of AF and HFpEF also appears to be under-
pinned by the presence of the same risk factors.14,19
Mechanisms
The shared risk factors described above lead to the develop-
ment of both AF and HFpEF via a variety of mechanisms, all
of which appear to be inextricably linked (Figure 2). Sys-
temic inflammation, hemodynamic alterations, microvas-
cular dysfunction, epicardial adiposity, and myocardial
fibrosis are all important consequences of cardiovascular
risk factors and play key roles in the development of the atrial
and ventricular myopathies underlying both AF and HFpEF.
However, these mechanisms are not independent of each
other but rather represent a complex network of interacting
processes. In addition to these mechanisms, development
of AF and HFpEF potentiate the development and progres-
sion of each other, resulting in the creation of a vicious cycle
that, left untreated, results in the rapid, unabated progression
of both AF and HFpEF. The final common pathway of all
these mechanisms appears to be the development and



Figure 1 Epidemiology of coexisting atrial fibrillation and heart failure with preserved ejection fraction (AF-HFpEF); HFpEF is associated with increased
prevalence of AF and vice versa. The presence of HFpEF increases the risk of incident AF by 6.8 times.13 Similarly, the presence of AF increases the risk of
HFpEF by 2.34 times.11 These increased risks are driven by several underlying risk factors.13,14 AF 5 atrial fibrillation; CVRN 5 Cardiovascular Research
Network; ESC 5 European Society of Cardiology; FHS 5 Framingham Heart Study; HFpEF 5 heart failure with preserved ejection fraction; HullLife 5
Hull LifeLab; ORBIT-AF 5 Outcomes Registry for Better Informed Treatment of Atrial Fibrillation; SwedeHF 5 Swedish Heart Failure Registry.
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progression of LA disease, which is increasingly recognized
as the most important linking factor between AF and HFpEF.

Systemic inflammation
Systemic inflammation plays a central role in the pathophys-
iology of both AF and HFpEF. The risk factors associated
with AF and HFpEF are associated with high circulating
levels of proinflammatory mediators.20–22 For example, the
activation of the renin-angiotensin-aldosterone system
(RAAS) in hypertension has been shown to mediate the pro-
duction of a vast number of proinflammatory cytokines and
Table 1 Hazard ratios for incident atrial fibrillation and heart
failure with preserved ejection fraction associated with the presence
of individual cardiovascular risk factors, taken from observational
studies or meta-analyses

Cardiovascular
risk factor

Risk of incident HFpEF,
HR (95% CI)130

Risk of incident AF, HR
(95% CI)

Aging 2.3 (1.6–3.3) per decade 2.1 (1.8–2.5) in males,
2.2 (1.9–2.6) in
females per
decade131

BMI 1.38 (1.18–1.61) per 1
SD increase132

1.19 (1.13–1.26) per 5
U increase133

Hypertension 3.5 (1.4–8.8) 1.4 (1.2–1.8)134

Diabetes 3.1 (1.9–5.0) 1.4 (1.3–1.5)135

Obstructive
sleep apnea

2.4 (1.3–4.6) 2.1 (1.8–2.4)136

Smoking 1.1 (0.7–1.8) 1.3 (1.1–1.6)137

Alcohol
consumption

0.7 (0.4–1.3) 1.4 (1.2–1.6)138

AF5 atrial fibrillation; BMI – body mass index; CI5 confidence interval;
HFpEF 5 heart failure with preserved ejection fraction; HR 5 hazard ratio.
activation of immune cells.23 Similarly, diabetes, obesity,
the metabolic syndrome, renal disease, and smoking have
all been shown to drive systemic inflammation.20,24

The importance of systemic inflammation in both AF and
HFpEF is highlighted by longitudinal observational studies
in which systemic inflammatory mediators at baseline were
used to predict the onset of the 2 conditions. In large
population-based cohorts, elevated plasma levels of proin-
flammatory TNFa, E-selectin, ICAM-1, and VCAM were
all found to be associated with increased risk of incident
HFpEF during long-term follow-up.25–27 Similarly,
elevated levels of numerous inflammatory biomarkers,
including TNFa, CRP, and IL-6, as well as increased white
blood cell count, have been shown to be associated with
increased risk of incident AF.28,29 In addition, they were
shown to be associated with increased AF recurrence after
ablation or electrical cardioversion.28 Furthermore, patients
with systemic inflammatory disorders such as rheumatoid
arthritis and systemic sclerosis have been shown to be at
significantly increased risk of both incident AF and
HFpEF.30,31 These studies highlight the significance of sys-
temic inflammatory processes in patients with AF and
HFpEF.

The mechanisms by which systemic inflammation leads to
AF and HFpEF remain incompletely understood. However,
cardiac fibrosis, coronary microvascular dysfunction
(CMD), cardiomyocyte hypertrophy, decreased cardiomyo-
cyte distensibility owing to titin alterations, and increased
myocardial accumulation of degraded proteins have all
been implicated.21 Interestingly, statins have been shown to
reduce the incidence of AF in patients with HFpEF, possibly
via anti-inflammatory effects.14,22 While strong data



Figure 2 Mechanisms underlying coexisting atrial fibrillation and heart failure with preserved ejection fraction (AF-HFpEF); both AF and HFpEF are under-
pinned by the presence of multiple cardiovascular risk factors. These risk factors drive several processes leading to atrial and ventricular myopathies and resultant
AF and HFpEF. AF and HFpEF interact with each other in a vicious cycle through reduced left atrial function. AF 5 atrial fibrillation; CKD 5 chronic kidney
disease; HFpEF 5 heart failure with preserved ejection fraction; LA 5 left atrium; OSA 5 obstructive sleep apnea.
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regarding anti-inflammatory agents for the treatment of AF or
HFpEF remain lacking, there is some evidence to suggest that
steroids may reduce postablation and postsurgical AF32,33

and studies investigating the use of anti-inflammatory agents
in HFpEF are underway.21
Hemodynamic alterations
Several cardiovascular risk factors are associated with signif-
icant intracardiac hemodynamic changes that promote the
development of both AF and HFpEF. Chronic hypertension
is associated with increased afterload and left ventricular
(LV) hypertrophy, impaired LV filling, and the raised LV
diastolic pressures diagnostic of HFpEF.34,35 Moreover,
these mechanisms further lead to increased LA stretch, dila-
tation, and increased risk of AF.36 In spontaneously hyper-
tensive rats, similar LV and LA structural changes were
identified and these were associated with lower atrial effec-
tive refractory period, increased atrial interstitial fibrosis,
and increased inducibility of AF.37 In addition to the direct
effects of pressure changes on cardiac structure, these hemo-
dynamic alterations are also associated with neurohormonal
activation of the RAAS, which has been shown in animal
models to cause atrial and ventricular myocardial remodel-
ing.23

Similarly, obesity is also associated with significant he-
modynamic alterations leading to AF and HFpEF.38 Chroni-
cally obese sheep exhibited raised LA pressures and
significant electroanatomical mapping abnormalities, con-
sisting of reduced conduction velocities and increased con-
duction heterogeneity, resulting in more frequent and
prolonged episodes of AF.39 Furthermore, obese patients
with AF have been shown to exhibit raised LA pressures
and shorter effective refractory periods compared to nonob-
ese patients with AF.38 These studies highlight the important
influence of obesity on LA hemodynamics and the develop-
ment in AF. Obesity is also closely associated with diastolic
function and HFpEF; obesity has been shown to be associ-
ated with concentric LV remodeling, reduced LV diastolic
function, and raised LV end-diastolic pressures.40–42

Furthermore, recent data suggest that hemodynamic effects
of obesity represent a specific phenotype of HFpEF
patients within the heterogeneous HFpEF clinical
syndrome.43 Patients with obesity-related HFpEF exhibited
markedly different hemodynamics compared with nonobese
HFpEF, including greater plasma volume expansion, worse
right ventricular dysfunction, higher intracardiac pressures
at rest and during exercise, and increased exertion-induced
pericardial restraint.43 These findings highlight the marked
effects of obesity on intracardiac hemodynamics, which
contribute to the development of both AF and HFpEF.
Coronary microvascular dysfunction
Myocardial ischemia in the absence of macrovascular epicar-
dial coronary artery disease is defined as CMD.44 CMD has
been shown to be highly prevalent in patients with both
HFpEF and AF and has been shown to be associated with
systemic and local inflammatory processes resulting from
the presence of cardiovascular risk factors.45 CMD causes
abnormalities in LV systolic function despite the presence
of normal ejection fraction. These abnormalities in systolic
function are subtle and include reduced LV longitudinal
strain,46 midwall fractional shortening,47 and mitral annular
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systolic excursion.48 In addition, CMD likely accounts for
the exercise-induced myocardial ischemia and subendocar-
dial systolic dysfunction often seen with HFpEF.49 These
subtle deficits result in the impaired systolic reserve charac-
teristic of patients with HFpEF and AF.

CMD has been shown to be closely associated with
elevated LV filling pressures at rest and during exercise
and reduced cardiorespiratory fitness.50 The most extensive
clinical investigation of CMD in HFpEF, showed that up to
75% of patients with HFpEF had underlying CMD.51 Of
note, 58% of these patients had coexisting AF while the prev-
alence of AF in those without CMD was only 25%. Further-
more, atrial microvascular dysfunction has been identified in
patients with AF but without HFpEF.52 These findings sug-
gest that CMDmay play a significant role in the pathogenesis
of both AF and HFpEF and could also be potential targets for
treatment.

Of note, occult but clinically significant macrovascular
coronary artery disease has been identified in half of patients
with confirmed HFpEF undergoing coronary angiography,
further emphasizing the relevance of myocardial ischemia
in the pathogenesis of HFpEF. These patients with obstruc-
tive coronary artery disease had higher rates of adverse clin-
ical outcomes, suggesting a possible role for
revascularization in selected HFpEF patients.53
Epicardial adiposity
Adipose tissue has important proinflammatory, neurohor-
monal, and hemodynamic effects on the cardiovascular sys-
tem, all of which increase the risk of both AF and HFpEF
(as discussed in previous sections). However, deposition of
adipose tissue around the heart (epicardial adipose tissue
[EAT]) is particularly relevant to both. When compared
with overall body mass index, EAT confers a 2-fold
increased risk of AF,54 while patients with HFpEF have
almost 40% more epicardial fat compared to non-HFpEF pa-
tients with matched body mass index.55

EAT has several characteristics that render it detrimental
to cardiac structure and function and increasing the risk of
both AF and HFpEF. Anatomically, there is no fascial plane
separating the adipose tissue from the myocardium, meaning
adipocytes can communicate directly with cardiac myocytes.
As a result, EAT can directly infiltrate the myocardium,
causing reduced voltages and conduction heterogeneity and
thereby creating the electrophysiological milieu for the
development of AF.56,57 Additionally, EAT and the myocar-
dium share the same microcirculation, leaving the myocar-
dium vulnerable to paracrine effects from the adipose
tissue. EAT is a particularly active secretory tissue (more
than visceral adipose tissue), expressing high levels of proin-
flammatory cytokines and atherogenic molecules, which lead
to local inflammation, tissue fibrosis, and cardiomyocyte
dysfunction.58,59 Finally, the presence of EAT can directly
affect cardiac mechanics, its encasing of the myocardium
causing pericardial restraint and increased left-sided pres-
sures at rest and during exercise.60
Fibrosis
Cardiac fibrosis is the histologic hallmark of the structural re-
modeling associated with both AF and HFpEF and is closely
linked with the presence of cardiovascular risk factors.
Fibrotic change is driven by neurohormonal and inflamma-
tory mediators released in response to cardiovascular risk fac-
tors.61 Animal models of hypertension, diabetes, obesity, and
sleep apnea have all demonstrated increased levels of atrial
fibrosis on histology.62 Furthermore, clinical electroanatom-
ical mapping studies show increased low-voltage areas and
complex fractionated atrial electrograms associated with
chronic hypertension,63 obesity,64 and obstructive sleep ap-
nea,65 suggestive of increased atrial fibrosis. These changes
in the cardiac architecture lead to aniostropic conduction,
facilitating the stabilization of electrical reentry and the
development of AF.66

Patients with AF exhibit both atrial and ventricular myocar-
dial fibrosis, suggesting a ubiquitous rather than localized phe-
nomenon, possibly in response to systemic disease. HFpEF is
also characterized by global myocardial fibrosis. An autopsy
study comparing ventricular histology between HFpEF pa-
tients and age-matched controls demonstrated significantly
increased ventricular fibrosis in HFpEF.67 Ventricular fibrosis
has been linked with LV stiffening,68 which is a characteristic
feature of the HFpEF syndrome.47 Moreover, both clinical
studies and experimental models of HFpEF have identified
significant atrial fibrosis,69–71 which likely contributes to
the increased LA stiffness seen in patients with HFpEF.
Global myocardial fibrosis is therefore a common
pathophysiological mechanism in both AF and HFpEF,
causing both mechanical and electrical dysfunction and
likely contributing to the epidemiologic overlap between the
2 conditions. Fibrosis likely represents the final common
pathway of all the pathophysiological mechanisms described
above, but noninvasive methods for quantifying fibrotic
change within the atria remain rudimentary. Given the
association between increasing fibrosis and poorer
outcomes, novel methods to quantify atrial fibrosis have the
potential to provide new possibilities for the investigation
and management of both AF and HFpEF.
Vicious cycle
While shared risk factors and common pathophysiological
mechanisms contribute significantly to the frequent coexis-
tence of AF and HFpEF, additional and important contribu-
tory factors are the direct influences that each condition has
on the other.72 The 2 conditions interact with each other in
a vicious cycle, each potentiating the risk of the other.

The unifying hemodynamic abnormality in HFpEF is
raised LV end-diastolic pressure (LVEDP) and this inevi-
tably increases LA pressures. Increased LA pressures lead
to LA stretch, dilatation, and structural remodeling. LA
stretch activates stretch-sensitive ion channels and promotes
ion channel dysregulation within the LA, altering ionic cur-
rents and resulting in reduced LA voltages, slowed conduc-
tion, and increased susceptibility to AF.73,74 In addition,
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HFpEF results in neurohormonal activation of the RAAS
owing to renal underperfusion. RAAS activation is associ-
ated with fibrotic change within the LA,75 partly mediated
through inflammatory cytokines.76 Hemodynamic, neurohor-
monal, and proinflammatory mechanisms therefore all
contribute to the development and potentiation of AF in pa-
tients with HFpEF.

Similarly, AF can promote the development of HFpEF.
The loss of atrial systole associated with AF results in
a 20% reduction in cardiac output owing to reduced ventric-
ular filling.77 This reduced LV filling results in impaired car-
diac output at normal diastolic filling pressures, leading to
HFpEF.78 Furthermore, AF has been shown to be associated
with increased LV fibrotic change, which is known to cause
LV stiffening and therefore elevated LVEDP.79 Finally, the
fast ventricular rate and irregularity associated with AF can
result in abnormal hemodynamics, structural remodeling,
and neurohormonal activation, all of which can increase the
risk of HFpEF in patients with AF.80
Left atrial myopathy
LA disease is characterized by structural, mechanical, electri-
cal, and thrombogenic dysfunction. While AF is primarily
considered an electrical disease of the left atrium and HFpEF
is increasingly associated with mechanical LA dysfunction,
these abnormalities likely do not occur in isolation, but rather
occur in conjunction with each other. Indeed, AF is associ-
ated with LA dilatation, mechanical dysfunction, and
increased risk of thrombus formation, highlighting a compre-
hensive failure of the left atrium.81 Similarly, HFpEF has
been shown to be associated with LA dilatation82 and
increased risk of AF,1 suggesting a similar comprehensive
LA myopathy may occur.

Importantly, the LA myopathy underlying both AF and
HFpEF is a progressive condition, and this is reflected in
the disease processes of both AF and HFpEF. AF is charac-
terized by the gradual progression from short, intermittent ep-
isodes (paroxysmal AF) to longer-lasting episodes (persistent
AF) and finally to permanent AF. This clinical progression is
associated not only with worsening electrical disease (lower
LA voltages, conduction heterogeneity, increasing fraction-
ation)83 but also with LA dilatation,84 impaired mechanical
function,85 and increased risk of LA thrombus.86 Similarly,
progressive worsening of LV diastolic dysfunction, which
is characteristic of HFpEF, is associated with LA enlarge-
ment and reducing LA function, as determined by echocar-
diographic measures of LA strain.87,88 While clear
evidence of electrical dysfunction and increased thrombus
susceptibility in HFpEF remains lacking, there is still signif-
icant evidence to suggest that a progressive and comprehen-
sive LA myopathy is associated with both AF and HFpEF
progression.
Diagnostic challenges
Despite its clinical importance, the diagnosis of HFpEF in pa-
tients with AF remains a complex clinical challenge. Symp-
toms of AF and HFpEF overlap significantly; in patients with
known AF, symptoms such as shortness of breath or exercise
intolerance will often be attributed to the AF rather than co-
existing HFpEF. Furthermore, routine diagnostic tests nor-
mally used for the diagnosis of HFpEF are often affected
by the presence of AF, meaning their values are less clinically
useful in the context of AF.89 In the real world, diagnosis of
HFpEF relies on noninvasive echocardiographic parameters.
However, echocardiographic parameters used for the diag-
nosis of HFpEF, including mitral valve early inflow veloc-
ities, mitral annular tissue Doppler velocities, and LA
volumes, are all significantly altered by the presence of
AF.89 Similarly, serum N-terminal pro-B-type natriuretic
peptide is significantly elevated in patients with AF
compared to those with sinus rhythm.89 These changes asso-
ciated with AF make the noninvasive diagnosis of HFpEF in
patients with AF particularly challenging. As a result, the
gold-standard criterion for diagnosis of HFpEF remains inva-
sive hemodynamic estimation or measurement of LVEDP at
rest (.15 mm Hg) and during exercise (.25 mm Hg). How-
ever, this testing is largely restricted to specialist, high-
volume centers and is therefore unavailable to the majority
of the population. Historically, therefore, the coexistence of
HFpEF in patients with AF has been difficult to identify.

Recently, 2 novel scoring systems utilizing integrated
diagnostic approaches have been developed to assist in the
diagnosis of HFpEF.90,91 The first scoring system, the
HFA-PEFF algorithm, was developed as part of an expert-
directed consensus guideline for the diagnosis of HFpEF.
This scoring system involves pretest probability assessment
followed by diagnostic work-up involving resting echocardi-
ography and serum natriuretic peptide assessment. Impor-
tantly, this scoring system accounts for alterations caused
by AF by incorporating different cut-off levels for B-type
natriuretic peptide and LA volume according to the presence
or absence of AF. A high score reflects a definitive diagnosis
of HFpEF while a low score represents low likelihood of
HFpEF. However, an intermediate score necessitates further
investigation involving exercise testing with either stress
echocardiography or invasive hemodynamic cardiopulmo-
nary exercise testing. Whereas invasive hemodynamic car-
diopulmonary exercise testing is a proven diagnostic tool in
HFpEF, stress echocardiography currently lacks the
convincing evidence to support its use for this purpose.78

The second diagnostic algorithm for HFpEF is the
H2FPEF scoring system derived by Reddy and colleagues.90

This algorithm was developed using clinical data from
a cohort of 414 consecutive patients with unexplained dys-
pnea undergoing invasive hemodynamic assessment. A total
of 267 of these patients were found to have HFpEF on the ba-
sis of their intracardiac hemodynamics, while the remaining
147 were diagnosed with noncardiac dyspnea. All clinical
variables were then reviewed and multivariate logistic regres-
sion performed to identify those variables that reliably
discriminated between HFpEF and noncardiac dyspnea.
Interestingly, the variables that discriminated best were
largely cardiovascular risk factors, including obesity,
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hypertension, and advancing age. Important components of
the HFA-PEFF scoring system such as LA volume and natri-
uretic peptides were found to be poorly discriminative and
not included in this algorithm. The most important multivar-
iate predictor of HFpEF was found to be AF, providing
further evidence for the close association between AF and
HFpEF. Indeed, the presence of AF scores 3 points in
the H2FPEF system, conferring a minimum intermediate
probability of HFpEF in all patients with AF. As with the
HFA-PEFF algorithm, intermediate scores necessitate further
evaluation with invasive exercise hemodynamics.

A recent retrospective analysis of patients with suspected
HFpEF showed that both scoring systems for HFpEF accu-
rately identified those at highest risk for heart failure hospital-
izations and all-cause mortality.92 Importantly, a significant
proportion of these patients had coexistent AF, raising hopes
that the diagnosis of AF-HFpEF has been made simpler with
the use of these 2 scoring systems. However, a large propor-
tion of the AF cohort had intermediate HFpEF scores accord-
ing to these models. A definitive diagnosis of HFpEF would
therefore require invasive hemodynamic testing in many AF
patients.
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Invasive hemodynamic studies
Several recent investigations have utilized invasive hemody-
namic studies to identify the true proportion of AF patients
with underlying HFpEF. Table 2 provides an overview of
these studies. Two of the studies investigated patients going
for AF ablation and assessed mean LA pressures following
transseptal puncture.3,93 In the remaining 2 studies, patients
with AF underwent invasive right heart catheter for assess-
ment of mean pulmonary capillary wedge catheter
(PCWP).2,4 The response of intracardiac pressures to exer-
cise was also assessed in all studies; studies involving right
heart catheter utilized supine bicycle ergometer, whereas
those involving AF ablation utilized arm exercises done in
the supine position following transseptal puncture.

In all 4 studies, a high proportion of AF patients exhibited
the raised intracardiac pressures diagnostic of HFpEF. The
highest proportion of AF patients meeting HFpEF criteria
was seen in the study by Reddy and colleagues,2 who demon-
strated elevated pressures in 94.1% of AF patients. However,
it is unlikely that this study was representative of the general
AF population; the patients included in this study had signif-
icant dyspnea of uncertain cause and had been investigated
extensively prior to referral for invasive hemodynamic
studies. Sugumar and colleagues4 included a smaller number
(54) of patients awaiting first-time AF ablation and found that
64% met the criteria for HFpEF diagnosis. However, again
this study was limited by a highly selected population of
AF patients (only 20% of patients referred for AF ablation
were ultimately included in the study). Of note, the majority
of those meeting HFpEF criteria in this study were identified
only on exercise, suggesting that these patients had early
rather than established HFpEF, representing perhaps early
LA remodeling. Importantly, all studies showed that AF
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cohorts exhibited a broad spectrum of LA pressures, high-
lighting the fact that despite the diagnosis of HFpEF being
reliant on meeting strict LA pressure cutoffs, the reality is
that the LA myopathy progresses on a more continuous spec-
trum.

The studies measuring transseptal LA pressures rather
than PCWP identified similar proportions of HFPEF patients
at rest but lower proportions of patients meeting criteria with
exercise. There are several possible reasons for these differ-
ences in prevalence: (1) the studies involving LA pressures
involved larger and more representative AF populations;
(2) the methods of exercise used in the transseptal studies
(arm exercises) were less exhaustive than bicycle ergometry
and therefore elevated intracardiac pressures to a lesser
extent; (3) exercise studies undertaken immediately prior to
AF ablation likely involved some level of sedation (although
this was not explicitly stated in either study), which may have
had some impact on exertional levels; and (4) the mean
PCWP values were overestimates of LVEDP; an investiga-
tion into the relationship between mean PCWP and LVEDP
showed that PCWP was consistently higher than LVEDP in
patients in AF, likely owing to the poor operating compliance
of a stiff LA and the uncoupling of LVEDP from PCWP.94

Aside from the prevalence of HFpEF in patients with AF,
these invasive hemodynamic studies provide numerous
additional insights into the association between AF and
HFpEF. Sramko and colleagues3 showed that elevated LA
pressures were independently associated with an increased
risk of AF recurrence following ablation. Sugumar and col-
leagues4 further showed that patients without AF recurrence
had reduced mean PCWP at follow-up, while symptomatic
improvement following ablation was also associated with
significantly reduced mean PCWP. In another invasive he-
modynamic study investigating the impact of progressively
Figure 3 Progressive left atrial disease is central to the development and progre
fraction (HFpEF). Deteriorating left atrial function (mechanical and electrical) is as
LVEDP 5 left ventricular end-diastolic pressure.
increasing AF burden in patients with a known diagnosis of
HFpEF, higher AF burden was associated with progres-
sively increased intracardiac pressures, reduced LA func-
tion, and worse long-term survival.95 Taken together,
these findings not only highlight the close links between
LA myopathy, AF, and HFpEF and the progressive nature
of all 3 conditions, but also suggest that reversal of this pro-
gression is possible and may be related to a reduction in LA
myopathy.
Prognostic implications
Prior data regarding the prognostic implications of AF-
HFpEF have considered the 2 conditions as entirely separate
entities. Numerous studies have shown that patients with
HFpEF fare significantly worse when they have coexistent
AF, and a recently published meta-analysis confirmed a sig-
nificant increased risk of all-cause mortality, cardiovascular
mortality, stroke, and heart failure hospitalizations.96 Mor-
tality is also increased in AF patients who develop incident
HFpEF.11 However, these data are based on the assumption
that HFpEF is a discrete entity that patients with AF either
have or do not have. Increasingly, with the aid of hemody-
namic testing described above, we are understanding that
both HFpEF and AF are progressive conditions; in AF co-
horts, some patients have severe HFpEF, while others
have mild HFpEF, which may only be present during exer-
tion. Importantly, there is growing data to suggest that the
level of HFpEF and LA myopathy progression within the
cohort of patients with AF has direct consequences on car-
diovascular outcomes (including mortality and systemic
thromboembolism), symptoms, and quality of life
(Figure 3).97
ssion of both atrial fibrillation (AF) and heart failure with preserved ejection
sociated with poorer outcomes in both AF and HFpEF. LV 5 left ventricle;
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Mortality
Mortality in AF is linked to AF burden according to the clas-
sical classification scheme of paroxysmal, persistent, and per-
manent AF. Patients with persistent AF, who have been
adequately anticoagulated, demonstrate increased all-cause
mortality compared to those with paroxysmal AF, even after
adjustment for other cardiovascular risk factors.98 However,
whether this increased risk of mortality is truly attributable to
AF burden or, alternatively, to the severity of the underlying
LA myopathy remains unclear. Patients with persistent AF
demonstrate increased LA size, reduced LA function, and
lower LA voltages when compared with patients with persis-
tent and permanent AF, suggesting that LA myopathy is
significantly worse in these patients.99 This raises the possi-
bility that LA myopathy rather than AF burden may underlie
the increased risk of all-cause mortality in patients with
increased burden of AF.
Systemic thomboembolism
As with mortality, systemic thromboembolic risk is associ-
ated with increased AF burden as well as worsening LA
myopathy.100,101 However, in this case the evidence for LA
myopathy as the chief mitigator of systemic thromboembo-
lism is strong. Advancing LA myopathy is associated with
all 3 components of Virchow’s triad: increased stasis of blood
within the LA, increased blood coagulability, and endothelial
injury.102 Furthermore, increasing atrial fibrosis has been
shown to be directly associated with LA appendage thrombus
and prior history of strokes.103,104 In addition, while rhythm
control strategies and reduced AF burden have not been
shown to have a significant effect on subsequent stroke risk
in patients with AF,97,105 mitral regurgitation and its associ-
ated increased blood flow within the LA have been shown to
protect against thrombus formation despite increasing the
risk of higher AF burden.106 Finally, in patients with crypto-
genic stroke and no evidence of AF on prolonged cardiac
rhythm monitoring, stroke was associated with significantly
reduced LA strain.107
Exercise intolerance
Exercise intolerance is a characteristic symptom of AF. More
than 60% of symptomatic AF patients suffer with exertional
dyspnea or exercise intolerance and these symptoms are asso-
ciated with significantly impaired quality of life.16 Exercise
intolerance is closely linked with AF burden, and cardiover-
sion of patients from AF to sinus rhythm significantly im-
proves maximal exercise tolerance.108 However, exercise
intolerance is also a classical feature of HFpEF and has
been shown to be closely associated with LA function in
HFpEF patients without AF.109,110 Furthermore, in a large
cohort of patients with AF, cardiopulmonary exercise testing
showed that diastolic function rather than cardiac rhythm pre-
dicted maximal VO2.

111 These studies suggest that LA
myopathy and HFpEF play critical roles in the development
of exercise intolerance in patients with AF.
Clinical management strategies
Management of AF has traditionally focused on stroke pre-
vention and symptom control via rate or rhythm control.
However, emerging data suggest that a progressive LA
myopathy and HFpEF may underlie many if not all of the
prognostic consequences of AF, suggesting that a re-
evaluation of the treatment strategies for AF may be needed,
with renewed focus on reversal of the progressive LA myop-
athy. However, evidence suggests that many of the estab-
lished treatments for AF may already involve reversal of
the LA myopathy and treatment of the occult underlying
HFpEF. While these treatments have not yet shown any
proven benefit in stroke risk reduction, meaning the need
for anticoagulation continues, a number of proven treatments
may exert their effects through reversal of the HFpEF pro-
cess. These treatments include early rhythm control, catheter
ablation, and risk factor management.
Early rhythm control
Rhythm control has long been established as an important
treatment strategy in AF to improve symptoms and quality
of life.112 Recent data suggest that early rhythm control
may also reduce major cardiovascular events, including car-
diovascular mortality, stroke, and heart failure hospitaliza-
tion.113 The mechanisms for these improvements in
outcomes are purported to be related to a reduction in AF
burden but could also be attributable to reverse remodeling
and treatment of the underlying LA myopathy. It is well
known that duration of time in AF is directly correlated
with structural, contractile, and electrical remodeling of the
LA.114 Indeed, it has been shown that longer time to treat-
ment of AF is associated with increased risk of AF recur-
rence.115 Early rhythm control of AF may therefore halt
progression of adverse LA remodeling, resulting in reduced
likelihood of developing HFpEF and improved outcomes.
Catheter ablation
Catheter ablation for rhythm control has also been consis-
tently associated with improvements in symptoms and qual-
ity of life.112 Historically, the efficacy of catheter ablation for
the treatment of AF has been considered the result of a reduc-
tion in AF burden. The cornerstone of catheter ablation for
the treatment of AF remains pulmonary vein isolation, a tech-
nique aimed at targeting commonly occurring AF triggers
arising in the pulmonary veins. In addition, catheter ablation
may also reduce AF burden through modulation of gangli-
onic plexi, which have also been implicated in the genesis
of AF, or through atrial debulking, whereby extensive cath-
eter ablation results in a reduction of electrically active atrial
tissue capable of sustaining AF.

However, an alternative theory to explain the symptom-
atic benefit derived from catheter ablation is a reduction in
HFpEF. The imaging substudy of the Catheter Ablation
Versus Antiarrhythmic Drug Therapy for Atrial Fibrillation
(CABANA) trial showed that catheter ablation was associ-
ated with significantly reduced LA volumes compared with
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antiarrhythmic drug therapy.116 This suggests that catheter
ablation may be associated with a significant reverse remod-
eling process, perhaps via an atrial debulking process, result-
ing in reduced LA myopathy and therefore improved
outcomes. Evidence regarding LA mechanical function
following ablation is less clear; early studies suggested that
LA function decreased after ablation,117 although a more
recent study suggested that LA strain may improve at 6
months postablation.118 Two meta-analyses investigating
LA function postablation delivered conflicting results.119,120

More data are required to determine the effect of catheter
ablation on overall LA function.

Symptomatic benefits may therefore arise from reduced
LA myopathy in addition to reduced AF burden. In their he-
modynamic assessment of patients with AF pre- and posta-
blation, albeit in a relatively small cohort, Sugumar and
colleagues4 showed that patients remaining arrhythmia-free
postablation showed significant reductions in their mean
PCWP with exercise, reflecting an improvement in their un-
derlying HFpEF. The resultant improvement in their heart
failure symptoms was therefore possibly related to reduced
arrhythmia burden as well as improved LA myopathy. While
there can be little doubt that catheter ablation is an effective
strategy in the treatment of patients with AF, the precise
mechanisms of its efficacy remain unclear.
Risk factor management
Numerous observational and randomized studies have
demonstrated the significant benefits of aggressive risk factor
management (RFM) in patients with AF.121–124 The
symptomatic and quality-of-life benefits seen with RFM
have been consistently associated with reductions in AF
burden. However, RFM has also been associated with reverse
remodeling of the LA. The LEGACY study showed that sub-
stantial weight loss was associated with structural reverse re-
modeling of the LA; weight loss of more than 10% resulted in
significant reductions in LA volumes and improvements in
LV diastolic function.121 In addition, animal studies of AF
have demonstrated significant reversal of the LA myopathy
with weight loss.64 While the symptomatic and quality-of-
life benefits associated with RFM may be due to the signifi-
cant reduction in AF burden, there is evidence to suggest that
LAmyopathy reversal and, therefore, improved HFpEFman-
agement may also underlie the benefits of RFM. There is also
evidence to support aggressive RFM in HFpEF cohorts; a 20-
week supervised exercise program and/or hypocaloric diet re-
gimes were associated with significant improvements in exer-
cise tolerance as measured by cardiopulmonary exercise
testing compared to a control group who did not make any
lifestyle changes.125 The majority of these patients did not
have a history of AF. However, the improvements in exercise
tolerance were not accompanied by significant changes in LA
size. Additional research is therefore required to further
delineate the precise mechanisms underlying the efficacy of
RFM and to establish any long-term mortality or thromboem-
bolic benefits.
Pharmacological therapy
A vast number of randomized clinical trials have been carried
out to investigate the use of various medical therapies in pa-
tients with HFpEF.78 However, the majority have reported
neutral outcomes. The TOPCAT trial investigated the use
of spironolactone in patients with a confirmed diagnosis of
HFpEF.126 The primary composite outcome of cardiovascu-
lar death, aborted sudden death, or heart failure hospitaliza-
tion was not reduced in the treatment arm. However, when
only patients from the Americas were included in the anal-
ysis, the composite primary outcome was significantly
reduced and cardiovascular death and heart failure hospitali-
zations were also independently reduced.127 For these rea-
sons, mineralocorticoid receptor antagonists are now
recommended for patients with HF and preserved ejection
fraction (.45%) according to the ACC guidelines (class
IIb indication). However, substudies of the TOPCAT trial
showed that LA structure was not influenced by spironolac-
tone and AF incidence and recurrences were not reduced
by spironolactone, suggesting that reversal of the LA myop-
athy may not have been the mechanism of effect.128 Given
the lack of pharmacological options for patients with HFpEF,
the results of the EMPEROR-Preserved trial, investigating
the use of the SGLT2-inhibitor empagliflozin in patients
with HFpEF, are highly anticipated.129
Future directions
Establishing the true extent of HFpEF in patients with AF is
critical to improving outcomes. Invasive hemodynamic
studies of large, unselected cohorts of patients with AF are
urgently required to develop a greater understanding of the
true prevalence of HFpEF in AF. In addition, alternative
noninvasive methods to diagnose and quantify LA myopathy
in patients with AF should be sought, with a focus on quan-
tifying LA fibrosis and stiffness. Prospective longitudinal
outcome studies of patients with AF and known LA myop-
athy are required to further understand the prognostic impact
of occult HFpEF on both mortality and systemic thromboem-
bolism. Finally, interventional studies evaluating the effect of
AF treatments on the reversal of the underlying LAmyopathy
and HFpEF are required to determine whether improvements
in mortality, stroke risk, symptoms, and quality of life can be
achieved.
Conclusion
The true nature of the relationship between AF and HFpEF is
likely underappreciated; invasive hemodynamic studies sug-
gest a large number of AF patients have occult HFpEF, asso-
ciated with a progressive LA myopathy. As LA myopathy
worsens, both AF burden and diastolic dysfunction increase
and evidence suggests this may result in increased risk of
mortality, systemic thromboembolism, and exercise intoler-
ance. While many evidence-based treatments for AF are
centered around reduction in AF burden, there is growing ev-
idence to suggest that these treatments are also associated
with reduced LA myopathy and reduced HFpEF. Further
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work is required to establish whether reversal of the LA
myopathy and HFpEF can significantly reduce mortality
and systemic thromboembolism in AF.
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