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Abstract: Field laboratories interested in using the MinION often need the internet to perform sample
analysis. Thus, the lack of internet connectivity in resource-limited or remote locations renders
downstream analysis problematic, resulting in a lack of sample identification in the field. Due to
this dependency, field samples are generally transported back to the lab for analysis where internet
availability for downstream analysis is available. These logistics problems and the time lost in
sample characterization and identification, pose a significant problem for field scientists. To address
this limitation, we have developed a stand-alone data analysis packet using open source tools
developed by the Nanopore community that does not depend on internet availability. Like Oxford
Nanopore Technologies’ (ONT) cloud-based What’s In My Pot (WIMP) software, we developed the
offline MinION Detection Software (MINDS) based on the Centrifuge classification engine for rapid
species identification. Several online bioinformatics applications have been developed surrounding
ONT’s framework for analysis of long reads. We have developed and evaluated an offline real time
classification application pipeline using open source tools developed by the Nanopore community
that does not depend on internet availability. Our application has been tested on ATCC’s 20 strain
even mix whole cell (ATCC MSA-2002) sample. Using the Rapid Sequencing Kit (SQK-RAD004),
we were able to identify all 20 organisms at species level. The analysis was performed in 15 min
using a Dell Precision 7720 laptop. Our offline downstream bioinformatics application provides
a cost-effective option as well as quick turn-around time when analyzing samples in the field,
thus enabling researchers to fully utilize ONT’s MinION portability, ease-of-use, and identification
capability in remote locations.

Keywords: phylogenetic classification; visualization; third generation sequencing; offline
analysis pipeline

1. Introduction

Field-deployable instruments are quickly demonstrating the transition in rapid point-of-care
diagnostics and bio-surveillance allowing for reliable detection and accurate therapeutic
countermeasures [1–3]. Several companies have developed deployable technologies for molecular
diagnostics and biodefense that perform fast sample-to-answer analysis in the field [4–6]. Use of this
equipment in emergency response situations, such as an outbreak exposure to endemic infectious
diseases or the intentional use of bioweapons, allows for rapid turnaround time and definitive results,
which are critical to the health and security of the people within the community. Unfortunately, most of
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these technologies are restricted to pre-set assay panels that could miss pathogens outside their target
reach and do not generally identify organisms with antimicrobial resistance and enhanced virulence.
While these instruments are proven and reliable, the user is confined to the targeted panels, primers,
probes or antibodies that can be carried in the field with them. The data output is also limited to either
a small PCR amplicon or protein target, providing a very narrow sliver of the whole genomic picture.

Metagenomics and whole genome sequencing are increasingly being used for diagnostic and
clinical laboratories for the detection of pathogenic organisms [7–9]. These features enable the lab to
conduct genomic characterization and phylogenic analysis, which is critical towards understanding
evolutionary change, virulence and transmission during an outbreak. Oxford Nanopore Technologies
(ONT) has recently developed sequencing technology that allows the user to sequence virtually
anywhere in the world and low Earth orbit [10–12]. This small, portable device also enables affordable
bio-surveillance on a global scale [13,14]. The MinION device has been field tested with successful
sequencing of arbovirus, Ebola virus and Zika virus [6,15–19]. For example, in 2018, Nigeria experienced
a record upsurge in cases of Lassa fever. A multinational team under the auspices of the World Health
Organization (WHO) partnering with the Nigeria Center for Disease Control used metagenomic data
generated by the MinION to determine the outbreak was due to independent zoonotic transmission
events and not a viral strain with an increased transmission rate. The research group was able to
rapidly deploy field labs and obtain epidemiological information critical to understanding the spread
of the epidemic [20].

However, one of the biggest challenges still facing MinION sequencing in the field is offline
software needed to analyze the raw data. Ideally, this offline software will have a simple to use
graphical user interface (GUI) that allows users without a strong understanding of command line code
and computer science experience to perform analysis and determine actionable results. Unfortunately,
current ONT downstream bioinformatics and characterization often requires an internet connection
and/or coding experience, which generates a bottleneck in real-time analysis to most individuals.
Even with connectivity to an institutional laboratory, delay can mean death in critical situations.

One solution to this problem for next generation sequencing was the development of the
Empowering the Development of Genomics Expertise (EDGE) including The Pan-Genomics for
Infectious Agents (PanGIA) bioinformatics platform [21]. Sponsored by the Defense Threat Reduction
Agency (DTRA), these platforms were designed to analyze Illumina short reads and were somewhat
adapted for MinION long reads. In this paper, we demonstrate an offline downstream characterization
pipeline specifically designed for MinION long reads. MINDS (MinION Detection Software) uses
the open source read software Centrifuge for taxonomic classification purposes [22]. This real-time
data streaming allows immediate analysis of the data, enabling rapid identification of bacteria,
virus and fungi in a sample. Our MinION sequence analysis software provides offline real-time species
identification and characterization on a standard laptop without the need for internet connectivity or
high end computing power, thereby enabling true portability and validation of the samples in the field
as well as in the lab.

2. Materials and Methods

2.1. Bacterial Sample

MSA-2002 was purchased from ATCC, Manassas, VA. The sample contains a mixture of
20 different bacterial strains distributed equally (5% ea.): Acinetobacter baumannii (ATCC 17978),
Actinomyces odontolyticus (ATCC 17982), Bacillus cereus (ATCC 10987), Bacteroides vulgatus (ATCC
8482), Bifidobacterium adolescentis (ATCC 15703), Clostridium beijerinckii (ATCC 35702), Cutibacterium
acnes (ATCC 11828), Deinococcus radiodurans (ATCC BAA-816), Enterococcus faecalis (ATCC 47077),
Escherichia coli (ATCC 700926), Helicobacter pylori (ATCC 700392), Lactobacillus gasseri (ATCC
33323), Neisseria meningitidis (ATCC BAA-335), Porphyromonas gingivalis (ATCC 33277), Pseudomonas
aeruginosa (ATCC 9027), Rhodobacter sphaeroides (ATCC 17029), Staphylococcus aureus (ATCC BAA-1556),
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Staphylococcus epidermidis (ATCC 12228), Streptococcus agalactiae (ATCC BAA-611), and Streptococcus
mutans (ATCC 700610).

2.2. Metagenomic Sample Preparation

Working in a field-deployable laboratory requires the thorough vetting of equipment, processes
and procedures prior to deployment due to the resource-limited environments normally encountered
which would curtail sample preparation and analysis. The OmniLyse by Claremont BioSolutions
provides several advantages when working in an austere environment. Effective lysis has been proven
across a variety of cell types including gram-positive bacteria, spores, yeast, and cysts. Only 1–2 min is
required to provide consistent yields of gDNA [23]. The small footprint of the OmniLyse and battery
powered bead beating mechanism allows for easy use inside a glove box or biosafety cabinet when
working with unknown, potentially high threat organisms. Fragmentation length can also be controlled
based on the volume and lysis time of the sample. DNA cleanup was performed using Agencourt
AMPure XP beads to provide high gDNA recovery and reduce the need for centrifugation. From start
of extraction to final gDNA material, the total time is around 35 min. When using the Rapid Library
Kit from Oxford Nanopore, the total time for library completion is one hour. Once loaded on the flow
cell, the data collection can vary from a few thousand reads in an hour to over a hundred thousand
reads in seven hours. Depending on the total number bases needed, the sample to answer using this
method is from two to eight hours.

Genomic DNA was extracted and purified from MSA-2002 (ATCC, Manassas, VA, USA) using
OmniLyse (Claremont BioSolutions, Upland, CA, USA) mechanical disrupter for 5 min in phosphate
buffered saline. Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA) cleanup was performed with
following modifications. A 0.5 sample volume of 5M NaCl (Fisher Scientific, Hampton, NH, USA) with
0.5 sample volume of 30% PEG, 1.5M NaCl (Fisher Scientific, Hampton, NH, USA) was added to the
lysed cells. Then 50 µL of resuspended AMPure XP beads were added and allowed to bind for 15 min.
The beads were washed two times with fresh solution of 70% ethanol (Fisher Scientific, Hampton, NH,
USA). After removal of the ethanol, 10 µL of nuclease-free water (VWR, Radnor, PA, USA) was added
and incubated at 55 ◦C for 10 min to elute the gDNA from the beads [24]. Library preparation was
performed with Rapid Sequencing Kit SQK-RAD004 (Oxford Nanopore Technologies, Oxford, UK)
following manufactures protocol. 400 ng of template DNA was incubated with fragmentation mix at
30 ◦C for 1 min and at 80 ◦C for 1 min and cooled at 4 ◦C. The tagmented genomic DNA was mixed
with the rapid adapter mix for five minutes at room temperature. The prepared DNA library was
placed on ice until loaded on the flow cell. Platform QC was run on an R9.4.1 revD MinION flow cell
(Oxford Nanopore Technologies, Oxford, UK) prior to each sequencing run.

2.3. Sample Sequencing and Bioinformatics Analysis

Reads acquisition (ONT’s MinKNOW core ver. 3.1.20 and base-calling (ONT’s Guppy software
ver. 2.0.10) was integrated on ONT’s MinIT device (MinIT Release 19.01.10, 256 core GPU, 8 GB
RAM, 512 GB SSD storage weighing 290 g) connected wirelessly to a Dell Precision 7720 laptop (Intel
i7-7820HQ CPU, 4 core/8 thread, 2.9 GHz, 64 GB RAM with 3 TB SSD storage running Windows
10 Professional). The laptop was used primarily to run MINDS for downstream analysis (Figure 1).
After 14 h of run time, FASTQ files were submitted to MINDS 1.0.53.

MINDS is a user-friendly GUI written in Microsoft C# incorporating Python (version 3.6) scripts
for file handling, processing, reporting and read mapping using Centrifuge 1.0.4 to perform taxonomic
classification. Report graphics were generated using matplotlib and Seaborn [25–27]. The reads
were searched against an indexed database of all RefSeq bacterial and archeal genome sequences
downloaded periodically from Centrifuge developer’s website [28]. MINDS is available from the
corresponding author by request.
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Figure 1. Schematic demonstrating sequencing and bioinformatic workflow. Reads from the MinION
were acquired with Oxford Nanopore Technologies’ (ONT’s) MinIT real-time base-calling device running
MinKNOW and Guppy software. The downstream MINDS workflow processed the metagenomic
sequence data read wirelessly from the MinIT to identify microorganisms present in the sample.
Barcoded samples were first demultiplexed (if required) using ONT’s qcat software. Centrifuge (Johns
Hopkins Center Computational Biology) mapped reads to taxonomic classifications. Background noise
was filtered by removing species with only sporadic reads: having less than 0.1% of all total reads
mapped and/or having less than 5 unique reads mapped.

Low level sequence data noise/background (near neighbors, and false positives and negatives)
was filtered by removing sporadic mapped reads to species—those having less than 0.1% of all total
reads mapped and/or less than 5 unique mapped reads.

MINDS performance was compared with ONT’s cloud-based EPI2ME What’s In My Pot (WIMP)
workflow [29,30], a Centrifuge based system and also with the taxonomic sequence classifier Kraken [31].
A standard Kraken database of all complete bacterial, archaeal and viral genomes in NCBI’s Reference
Sequence (RefSeq) database was built on 28 June 2019 using a 72 core, 512 Gb RAM server located at
Rutgers University, New Brunswick, NJ. The MinION sequence data was analyzed by Kraken on the
same server.

3. Results

Using ATCC MSA-2002 as a metagenomic mock community allowed us to test the MINDS pipeline
with a variety of gram-positive and gram-negative bacteria. A 3 × 107 cells equal ratio, whole cell mix
containing 20 bacterial strains was lysed for five minutes using OmniLyse. After cleanup, the nucleic
acid concentration was set to 53 ng/µL and library preparation was performed using SQK-RAD004.
The metagenomic mock community sample was run overnight for 14 h. In the first eight hours 170,000
reads were generated. An additional six hours of run time acquired only 3440 more reads due to the
unavailable pores in the flow cell. Nanoplot [32] was used to obtain the statistical results of this run
(Table 1). Over 390 million bases were called and the mean Q score of 9.6. The basecalled FASTQ files
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generated were then submitted to Centrifuge and Figure 2 shows the results generated after filtering.
The overall analysis from sample submission to report took 15 min.

Nineteen of 20 species from the MSA-2002 mock community were correctly identified,
with an additional 10 near-neighbor microorganisms also identified. Table 2 shows the Centrifuge
results after filtering identifying 29 species in the sample listed by total and unique reads. Total reads
are sequences classified to species level (including multi-classified reads). Unique reads are classified to
a single species. Actinomyces odontolyticus was not identified because it was not present in the Centrifuge
database, so reads were assigned to closely related Actinomyces meyeri. Interestingly, it was recently
proposed that both species belong to Schaalia, a new genus in the Actinobacteria [33]. Comparing the
genome sequences of Schaalia odontolytica (NCBI accession NZ_DS264586.1) and Schaalia meyeri (NCBI
accession NZ_CP012072.1) results in a 79% sequence identity with a coverage of 74%. The low coverage
is due to the genome size difference: 2.39 Mb for Schaalia odontolytica vs. 2.05 Mb for Schaalia meyeri.

MINDS also identified nine additional bacterial species closely related to three MSA-2002 species.
Shigella dysenteriae, Shigella boydii, Shigella flexneri, Shigella sonnei and Shigella sp. PAMC 28760 are
close relatives of MSA-2002’s E. coli and belong to a pan-genomic group [34,35]. Likewise, Bacillus
thuringiensis, Bacillus anthracis and Bacillus sp. ABP14 are close relatives and belong to the Bacillus
cereus group [36] Clostridium pasteurianum is a close relative of Clostridium beijerinckii and has been
mistaken for it recently [37].

Table 1. Nanoplot statistics for the MinIT base-calling output and post MinION Detection Software
(MINDS) statistics for the Centrifuge analysis. The average multi-classified read mapped to 2.53 species
(Centrifuge multi-classified reads count/Actual MinION reads that Centrifuge multi-classified).

Mean Read Length 2268 bp

Mean read quality 9.6

Medium read length 1344 bb

Median read quality 9.7

Number of reads 173,440 bp

Read length N50 4275 bp

Total bases 393,502,204 bp

Reads above quality cutoffs > Q5 173,440 (100%)

Reads above quality cutoffs > Q7 173,440 (100%)

Reads above quality cutoffs > Q10 68,766 (39.6%)

Reads above quality cutoffs > Q12 1344 (0.8%)

Reads above quality cutoffs > Q12 0 (0%)

Number of reads mapped by Centrifuge 184,795

Unclassified reads by Centrifuge 5611

Centrifuge total reads count 179,184

Centrifuge unique reads count 160,396

Centrifuge multi-classified reads count 18,788

Actual MinION reads that Centrifuge multi-classified 7433
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Figure 2. MINDS report showing 19 of the 20 MSA-2002 mock species correctly identified from with
an additional 10 near neighbor species identified. (a) The pie chart displays unique read abundance
of each species. Actinomyces odontolyticus was not present in the Centrifuge database, so reads were
assigned to closely related Actinomyces meyeri. MINDS also identified nine additional bacterial species
closely related to three MSA-2002 species: five Shigella spp. from the E. coli/Shigella pan-genomic
group, three Bacillus spp. from the pan-genomic Bacillus cereus group and Clostridium pasteurianum,
a near-neighbor of Clostridium beijerinckii. (b) The MINDS taxonomy report displaying a read abundance
histogram of the 29 species identified.
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Table 2. Filtered Centrifuge results showing all 29 species identified in the MSA-2002 sample. Total reads
are reads classified to species including multi-classified reads. Unique reads are those classified to
a single species. The confidence score is the percentage of unique reads to total reads. The confidence
grades are simply ranges of confidence scores: A = 90–100%, B = 80–90%, C = 70–80%, D = 60–70%,
F = 0–60%. The last column shows the relative abundance of unique reads—the percentage of species
specific unique reads to total unique reads. Except for the incorrectly identified Actinomyces meyeri,
it can be seen that the other 19 MSA-2002 species had high unique reads to total reads ratios (confidence
grades of B or better), while the incorrectly identified near-neighbors had low confidence grades.

Species Total Reads Unique
Reads

Confidence
Score

Confidence
Grade

Relative
Unique Reads

Bacillus cereus 31,810 28,998 91.16% A 18.24%

Enterococcus faecalis 23,458 23,434 99.90% A 14.74%

Streptococcus mutans 14,582 14,546 99.75% A 9.15%

Streptococcus agalactiae 14,164 14,031 99.06% A 8.82%

Staphylococcus aureus 13,056 12,270 93.98% A 7.72%

Acinetobacter baumannii 11,289 11,113 98.44% A 6.99%

Escherichia coli 12,479 10,248 82.12% B 6.45%

Pseudomonas aeruginosa 8475 8403 99.15% A 5.28%

Deinococcus radiodurans 8094 8078 99.80% A 5.08%

Staphylococcus epidermidis 7118 6455 90.69% A 4.06%

Rhodobacter sphaeroides 4907 4900 99.86% A 3.08%

Bacteroides vulgatus 3266 3103 95.01% A 1.95%

Lactobacillus gasseri 2584 2564 99.23% A 1.61%

Neisseria meningitidis 2212 2113 95.52% A 1.33%

Clostridium beijerinckii 2151 2011 93.49% A 1.26%

Porphyromonas gingivalis 1282 1273 99.30% A 0.80%

Cutibacterium acnes 1105 1093 98.91% A 0.69%

Helicobacter pylori 1020 1012 99.22% A 0.64%

Bifidobacterium adolescentis 353 341 96.60% A 0.21%

Actinomyces meyeri 227 219 96.48% A 0.14%

Bacillus thuringiensis 4338 1528 35.22% F 0.96%

Bacillus sp. ABP14 1968 433 22.00% F 0.27%

Shigella sp. PAMC 28760 1776 231 13.01% F 0.15%

Clostridium pasteurianum 290 153 52.76% F 0.10%

Shigella boydii 687 131 19.07% F 0.08%

Shigella dysenteriae 376 98 26.06% F 0.06%

Shigella sonnei 676 83 12.28% F 0.05%

Shigella flexneri 580 78 13.45% F 0.05%

Bacillus anthracis 574 58 10.10% F 0.04%
Total 174,897 158,998 N/A N/A 100%

Offline Centrifuge was compared with other read mappers to benchmark its accuracy. Table 3
categorizes the read mapper results from highest number of MSA-2002 reads to the lowest.
ONT’s “What’s In My Pot” (WIMP) cloud-based classification pipeline was used as a baseline
since this module also uses Centrifuge for identification. The FASTQ files were also compared with
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Kraken for analysis. The three read mappers produced similar results, except the following: Kraken
mapped far fewer reads to Streptococcus agalactiae, but correctly mapped 778 reads to the recently
re-classified Schaalia odontolytica (formerly Actinomyces odontolyticus) [33].

Table 3. Comparison of MINDS’ offline Centrifuge read mappers with ONT’s cloud-based Centrifuge
(WIMP-What’s In My Pot) and Kraken read mappers. All three read mappers produced similar results
except for Streptococcus agalactiae and Actinomyces meyeri as noted below.

Species Offline
Centrifuge

Online Centrifuge
(WIMP) Kraken

Bacillus cereus 28,998 (18.1%) 32,074 (19.2%) 28,205 (17.0%)

Enterococcus faecalis 23,434 (14.6%) 23,914 (14.3%) 23,656 (14.2%)

Streptococcus mutans 14,546 (9.1%) 14,902 (8.9%) 14,208 (8.6%)

Streptococcus agalactiae 14,031 (8.8%) 14,263 (8.5%) 4139 (2.5%)

Staphylococcus aureus 12,270 (7.7%) 12,685 (7.6%) 12,145 (7.3%)

Acinetobacter baumannii 11,113 (6.9%) 10,410 (6.2%) 8998 (5.4%)

Escherichia coli 10,248 (6.4%) 7411 (4.4%) 7226 (4.3%)

Pseudomonas aeruginosa 8403 (5.2%) 8600 (5.2%) 8327 (5.0%)

Deinococcus radiodurans 8078 (5.0%) 8314 (5.0%) 8090 (4.9%)

Staphylococcus epidermidis 6455 (4.0%) 6265 (3.8%) 6146 (3.7%)

Rhodobacter sphaeroides 4900 (3.1%) 5040 (3.0%) 4967 (3.0%)

Bacteroides vulgatus 3103 (1.9%) 3190 (1.9%) 3101 (1.9%)

Lactobacillus gasseri 2564 (1.6%) 2601 (1.6%) 2469 (1.5%)

Neisseria meningitidis 2113 (1.3%) 2163 (1.3%) 1965 (1.2%)

Clostridium beijerinckii 2011 (1.3%) 2308 (1.4%) 1965 (1.2%)

Porphyromonas gingivalis 1273 (0.8%) 1312 (0.8%) 1276 (0.8%)

Cutibacterium acnes 1093 (0.7%) 1114 (0.7%) 1090 (0.7%)

Helicobacter pylori 1012 (0.6%) 1091 (0.7%) 1048 (0.6%)

Bifidobacterium adolescentis 341 (0.2%) 354 (0.2%) 241 (0.2%)

Actinomyces meyeri 219 (0.1%) 229 (0.1%) 778 * (0.5%)

Other identified organisms 4191 (2.6%) 8706 (5.2%) 25,991 (15.6%)

Total Reads 16,0396 16,6946 166,131

* reads classified to Schaalia odontolytica (formerly Actinomyces odontolyticus).

Strain level identification is an important goal of taxonomic classification. For example, it would
be important for a commander to know whether Bacillus anthracis Ames or Bacillus anthracis Sterne was
used in an attack: the former is deadly, the latter is a vaccine strain [38]. Table 4 shows the percentage
of reads mapped to strain by WIMP and Kraken. Few strains had >90% reads mapped to them. The top
strain hit (highest number of strain reads mapped per species) was correct for WIMP in 13 of 20 cases
and for Kraken in 9 of 20 cases.
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Table 4. Percentage of ATCC MSA-2002 reads mapped to strain by ONT’s cloud-based “What’s In My
Pot” (WIMP) and offline Kraken taxonomic classifier. Strains are listed as they are referred to in NCBI’s
RefSeq genome database. Reads and percentages in boldface had the highest number of strain reads
mapped per species.

Strain
Online Centrifuge (WIMP) Kraken

Species Strain % Strain
Mapped Species Strain % Strain

Mapped

Bacillus cereus ATCC 10987 32,074 24,115 75.2% 28,205 18155 64.4%

Enterococcus faecalis OG1RF 23,914 13,420 56.1% 23,656 109 0.5%

Streptococcus mutans UA159 14,902 122 0.8% 14,208 42 0.3%

Streptococcus agalactiae 2603V/R 14,263 1139 8.0% 4139 242 5.8%

Staphylococcus aureus subsp. aureus
USA300_FPR3757 12,685 223 1.8% 12,145 5 0.0%

Acinetobacter baumannii ATCC 17978 10,410 0 0.0% 8998 637 7.1%

Pseudomonas aeruginosa ATCC 9027 8600 7507 87.3% 8327 0 0.0%

Deinococcus radiodurans R1 8314 8206 98.7% 8090 8090 100.0%

Escherichia coli str. K-12 7411 31 0.4% 7226 170 2.4%

Staphylococcus epidermidis ATCC 12228 6265 2506 40.0% 6146 1637 26.6%

Rhodobacter sphaeroides ATCC 17029 5040 4504 89.4% 4967 3646 73.4%

Bacteroides vulgatus ATCC 8482 3190 3190 100.0% 3101 2273 73.3%

Lactobacillus gasseri ATCC 33323 = JCM 1131 2601 2275 87.5% 2469 2076 84.1%

Clostridium beijerinckii ATCC 35702 2308 3 0.1% 1965 1 0.1%

Neisseria meningitidis MC58 2163 414 19.1% 1965 6 0.3%

Porphyromonas gingivalis ATCC 33277 1312 39 3.0% 1276 9 0.7%

Propionibacterium acnes subsp. defendens ATCC 11828 1114 388 34.8% 1090 176 16.1%

Helicobacter pylori 26695 1091 1 0.1% 1048 3 0.3%

Bifidobacterium adolescentis ATCC 15703 354 291 82.2% 341 228 66.9%

Actinomyces meyeri 229 N/A 0.0% 778 * N/A 0.0%

* reads classified to Schaalia odontolytica (formerly Actinomyces odontolyticus).

4. Discussion

As sequencing continues to move into the field, great effort is needed to ensure the user has
the necessary equipment and software required for detection. The OmniLyse kit along with Solid
Phase Reversible Immobilization (SPRI) clean up provides a small consumable footprint for DNA
extraction, removing the need of centrifuge and spin columns used in traditional extraction kits. Small,
portable thermocyclers also allow the library preparation with ONT’s Rapid Sequencing Kit (RAD004)
performed with little space requirements. This rapid extraction and purification method does have
a tradeoff as the quality of the DNA is considerably lower than the values recommended by ONT,
thus affecting the throughput of DNA. However, the quantity obtained using 188 ng/µL afforded
sufficient gDNA for sequencing and would allow for possible refueling of the flow cell to increase the
amount of data generated.

Four repeated experiments were performed to increase the read output of the gram-positive
Actinobacteria: Cutibacterium acnes, Bifidobacterium adolescentis, and Actinomyces meyeri (data not shown).
However, these organisms were consistently underrepresented with respect to the total reads generated.
Even with five minutes of OmniLyse cell disruption, no change in read distribution was observed.
An extraction method with higher quality gDNA output for possible refueling the flow cell might be
required if more genome coverage of these organisms is necessary.

The recent release of ONT’s GPU-based MinIT greatly reduces the computational burden on the
portable laptop and also allows for real-time basecalling with the ability to perform 150 k bases per
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second verses a traditional CPU-based computer with an output of 20 k bases per second. The user
also has the ease of “plug and play” feature of the MinIT and not have to worry about the laptop’s
capability with the MinION. Using MinIT for real time basecalling allowed us to have the FASTQ files
ready for downstream analysis as soon as the sample acquisition on MinION was stopped. Future
efforts will focus on customizing the MINDS pipeline to classify reads in real-time as the FASTQ files
are generated from the MinIT. This has the potential to reduce the run time and more rapidly determine
results allowing for faster decision and countermeasures in the case of a biothreat detection.

Software in the field not only has to work offline, it also needs intuitive interface features that
allows the end user unfamiliar with command line code the ability to quickly analyze data. The MINDS
application provides easy to use graphical interface that minimizes the need for command line expertise
(Figure 3). The end user simply submits the folder holding FAST5/FASTQ files along with other
prevalent information such as flow cell ID, MinION serial number, etc. Once all the relevant information
is submitted, the analysis can be performed by clicking the “Start” button. Based on the workflow
selection, data analysis is performed, and a taxonomy report is generated.

Figure 3. (a) MINDS graphical interface allows users to straightforwardly submit the FASTQ
file, input experimental metadata and conditions, generates intuitive data analysis and (b) easily
interpretable reports.
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The MINDS pipeline has proven its successful adaptability during ONT’s release of new software
and products. Since MINDS acts like a wrapper for the latest tools developed by the ONT community,
it can be easily modified to accommodate the new software and kits released by ONT. For example,
Guppy replaced Albacore and MINDS seamlessly integrated the new base-caller. With changes to
the Centrifuge code, MINDS was able to analyze ONT’s change from single FAST5/FASTQ to multi
FAST5/FASTQ. Lastly, as demultiplexing tools evolved through the past few years, MINDS implemented
various open source software changes with no change to the GUI. The rapidly changing software
development for processing MinION data requires regular patching or updating the command line
code that interfaces with a stable GUI, which has proven easily accomplished with MINDS over the
past few years.

Centrifuge was chosen for its mapping utility on a laptop: it has a relatively small indexed
database size and RAM requirement. For example, our indexed Kraken database was 227 Gb compared
to the 25 Gb Centrifuge database, and RAM requirement for Centrifuge were ~4 Gb: approximately
20× less than Kraken’s. As shown, there is little discernable difference in the performance of the
two read mappers. As more useful read mappers are developed, they can be easily substituted and
incorporated into the MINDS interface.

5. Conclusions

MINDS software was developed for users without a scientific education or laboratory background,
such as enlisted soldiers, sailors, airmen and marines. Real-world metagenomic data can be difficult
to analyze and interpret, especially for a user that is unfamiliar with bioinformatic tools. In contrast,
MINDS allows any user to run sample data and receive quick, actionable results with a clear
interpretation. For example, MINDS generates easy to understand bar graphs and pie charts,
while providing the raw read information in a very intuitive graphical form. In this report, we have
demonstrated an unbiased fieldable detection capability using ONT’s MinION sequencing platform
and the MINDS platform. Our system dramatically reduces the time frame needed to detect targets as
well as providing a sequencing in the field capability which minimizes the burden of overseas shipping
of samples back to a lab such as the Centers for Disease Control or U.S. Army Medical Research
Institute for Infectious Disease. Furthermore, the intuitive GUI of MINDS allows any user to quickly
perform classification on their reads generated from MinIT. Additionally, simple parameter selection
allows the user to provide percent cutoff to remove background noise to minimize false-positives and
false-negatives which can interfere with the identification and decision-making processes.

Several open-source software tools for classification were tested for field applications. Centrifuge
performed faster than the other tools tested on the same computational hardware and did not require
a large computational memory burden due to its database indexing capabilities. A small footprint
database is a decisive feature for field forward computation. The offline Centrifuge classified all 20
organisms very similarly to the cloud-based Centrifuge through WIMP and also with Kraken. However,
neither Centrifuge nor Kraken could convincingly classify the taxa to strain.

Future efforts will include having MINDS run data streaming from the MinION and MinIT in
real time, enhancing MINDS capabilities to provide faster interpretation of the results. Also, further
development in the sample preparation workflow is needed as library preparation still requires
several hands-on steps with various pieces of laboratory equipment and consumables to operate in
a field-forward environment. Efforts have begun to minimize this laboratory equipment burden to
allow sequencing anywhere by anyone. These include future products developed by Oxford Nanopore
including VolTRAX and Ubiq. Strain level identification is an important goal we hope to achieve by first
assembling the reads into larger contigs before classification. Assembled contigs will provide a much
smaller number, yet much longer sequences to map against the database and should provide more
information rich strain determining features than the individual unassembled read sequences alone.
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