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Abstract

By analyzing newly collected SARS‐CoV‐2 genomes and comparing them with our

previous study about SARS‐CoV‐2 single nucleotide variants (SNVs) before June

2020, we found that the SNV clustering had changed remarkably since June 2020.

Apart from that the group of SNVs became dominant, which is represented by two

nonsynonymous mutations A23403G (S:D614G) and C14408T (ORF1ab:P4715L), a

few emerging groups of SNVs were recognized with sharply increased monthly

incidence ratios of up to 70% in November 2020. Further investigation revealed sets

of SNVs specific to patients' ages and/or gender, or strongly associated with mor-

tality. Our logistic regression model explored features contributing to mortality

status, including three critical SNVs, G25088T(S:V1176F), T27484C (ORF7a:L31L),

and T25A (upstream of ORF1ab), ages above 40 years old, and the male gender. The

protein structure analysis indicated that the emerging subgroups of nonsynonymous

SNVs and the mortality‐related ones were located on the protein surface area. The

clashes in protein structure introduced by these mutations might in turn affect the

viral pathogenesis through the alteration of protein conformation, leading to a dif-

ference in transmission and virulence. Particularly, we explored the fact that non-

synonymous SNVs tended to occur in intrinsic disordered regions of Spike and

ORF1ab to significantly increase hydrophobicity, suggesting a potential role in the

change of protein folding related to immune evasion.
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Key Points

• There has been a considerable temporal change of the SARS‐CoV‐2 single nu-

cleotide variants (SNVs) clustering since June 2020. Apart from one group of

SNVs that became dominant, a few emerging groups of SNVs were recognized
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with sharply increased monthly occurrence ratios in November 2020. All of these

individual SNVs could be traced back to February or March of 2020 when they

were identified for the first time, suggesting a potential incubation period of the

collectivity of special groups of SNVs.

• 114 age‐specific SNVs were identified in one or across multiple age groups.

• 42 SNVs showed significantly high rates in either males or females.

• 41 and 30 SNVs were observed with at least twofold higher incidence rates in the

death and the nondeath group, respectively.

• A logistic regression model demonstrated that three critical SNVs, G25088T

(S:V1176F), T27484C (ORF7a:L31L), and T25A (upstream of ORF1ab), ages above

40 years old, and the male group contribute to a relatively higher mortality.

• The emerging subgroups of nonsynonymous SNVs and the mortality‐related ones

were located on the protein surface area. Nonsynonymous SNVs tended to occur

in intrinsically disordered regions of Spike and ORF1ab.

K E YWORD S

age, gender, mortality risk factor, SARS‐CoV‐2, single nucleotide variants

1 | INTRODUCTION

Since its outbreak in December 2019, COVID‐19 has caused

171,514,450 cases and 3,687,419 deaths worldwide as of June 1,

2021.1 The global mortality rate of 2.15% greatly exceeded the es-

timated seasonal flu death rate in the United States, which is less

than 0.1% according to the 2018–2019 data from the United States

Centers for Disease Control and Prevention (CDC, https://www.cdc.

gov/flu/about/burden/2018-2019.html). Since its outbreak, diverse

viral genomic mutations of SARS‐CoV‐2 (2019‐nCoV; Family

Coronaviridae) have been observed,2,3 including insertions, deletions,

and single nucleotide variants (SNVs),4,5 which led to viral protein

structure changes that potentially affect the transmission and viru-

lence. SNVs have been extensively detected by massive and daily

updated whole‐genome sequencing. SARS‐CoV‐2 SNVs presented

clustering characteristics4 in terms of concurrence5–8 that are likely

linked to the complex mechanism of epistatic gene interactions in

SARS‐CoV‐2 viral evolution. Therefore, timely updates of SARS‐CoV‐

2 mutations, especially critical SARS‐CoV‐2 mutations that are as-

sociated with patients' clinical information, including age, gender, and

mortality status, has become a necessary and important step in the

fight against COVID‐19. However, such investigations remain scarce

due to limited clinical information along with whole‐genome

sequences.9–11

Following our previous report,5 we analyzed a total of 146,045

SARS‐CoV‐2 high‐quality complete genomes downloaded from

GISAID with collection dates after June 1, 2020.12 The majority of

SARS‐CoV‐2 genomes have evolved with a dominant SNV cluster

represented by nonsynonymous mutations A23403G (S:D614G) and

C14408T (ORF1ab:P4715L), in addition to C241T at the upstream of

ORF1ab and another synonymous mutation C3037T on ORF1ab.

According to two‐way clustering analysis on SNVs harbored by over

1% of SARS‐CoV‐2 genomes, additional SNVs were uncovered with

increasing occurrence ratios over recent months. Even though two

dominant amino acid (AA) changes, ORF1ab:P4715L and S:D614G

variants, were reported to be strongly correlated with mortality,9 their

death rates have been relatively stable. Or at least they were not

strongly correlated with occurrence ratios of these two mutations

which were carried by over 99% of patients now. Therefore, we did a

systematic analysis of geographical distributions of SNVs and their

corresponding mortality rates. By performing enrichment analysis on

6845 SARS‐CoV‐2 genomes with clinical information, we identified

multiple SNVs that were significantly over‐represented in different

ages, or gender, or specifically related to COVID‐19‐associated mor-

tality. In the meantime, the protein structure analysis on nonsynon-

ymous SNVs showed clashes caused by mutations, which, in turn,

might contribute to viral transmission and mortality. Some SNVs were

also found with the tendency to occur in intrinsically disordered re-

gions (IDRs) of Spike (S) protein and ORF1ab. Our findings may be

helpful for a better understanding of the pathogenesis of SARS‐CoV‐2

at the genetic level, possibly providing insights into therapeutic inter-

vention and vaccine design in the future.

2 | MATERIALS AND METHODS

2.1 | Data collection

SARS‐CoV‐2 genome sequencing data and available clinical in-

formation were downloaded from GISAID with the collection dates
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between December 2019 and November 20, 2020. A total of

146,045 high‐quality complete genomes were used for SNV analysis.

It turned out that 40,172 and 36,844 samples had gender and age

information, separately, while 6845 genomes came with clear death

and deceased information after excluding samples marked with the

ambiguous status of “unknown” or “cryptic.”

2.2 | Enrichment analysis on age/gender/mortality
associated SNVs

The samples with age information were divided by 20‐year bins into

five groups, for example, “Under 20,” “20–39,” “40–59,” “60–79,” “At

least 80.” For each SNV, we calculated its fold enrichment (FE) in

individual age groups in the way of
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where Ni and Si are the total number of samples and the number

of genomes carrying the SNV, S, in the ith group of ages, respectively.

Using the hypergeometric model,13 we evaluated the statistical sig-

nificance of the SNV appearing at least Si times in the ith group. The p

values were then modified based on false‐discovery rate (FDR) ad-

justed multiple test correction. The SNVs harbored by more than 100

samples with FE > 1.1 and FDR < 0.05 in a specific age group were

defined as age‐specific SNVs for corresponding age.

Similar enrichment analysis was conducted on samples with

gender information (two groups only), but with two‐tails for over‐

representation in either the male or female group. The SNV carried

by at least 100 samples was determined as a gender‐specific SNV if

FDR < 0.05 and its FE > 1.1 in either the male or female group.

Candidate SNVs related to mortality were estimated based on their

occurrence rates in the death and nondeath group. Enrichment analysis

was conducted for each SNV in the same way that we did for the gender

association study as above. The FE was calculated as the ratio of the rate

in the death group vs that in the nondeath group for a specific SNV,

indicating either over‐representation in the death group (FE >2) or in the

nondeath group (FE < 0.5). The statistical significance (p value) was eval-

uated based on the hypergeometric distribution model as well.14

2.3 | Logistic regression model

To explore the correlation between different features and mortality sta-

tus, the logistic regression model was adopted for feature analysis on

clinical information and SNVs by using the R glm function.15–19 We se-

lected age, gender, and SNVs related to mortality as the independent

variables while the patient mortality status was chosen as the dependent

variable in the logistic regression model. The significance cutoff was set as

p<0.001 to identify the variable‐related features with coefficients from

the logistic regression model.

2.4 | Protein structure analysis

We selected PyMOL20–22 to analyze and visualize protein structures

for WT (Wuhan‐Hu‐1) and mutated proteins with identified non-

synonymous SNVs. Mutagenesis tools in PyMOL were utilized to

detect if a clash was generated upon the mutation. Properties of AAs

and corresponding hydrophobicity scales were retrieved from the

“Table of standard amino acid abbreviations and properties” on Wi-

kipedia accessed on November 20, 2020. The solved structures of S,

nsp12, and nsp7 were downloaded from Protein Data Bank (PDB)23:

6vyb for S using electron microscopy,24 6m71 for nsp7, nsp12 using

electron microscopy.25 Structures of other proteins/regions, for ex-

ample, incomplete regions of S, ORF3a, ORF10, and N, were pre-

dicted by the C‐I‐Tasser model26–28: QHD43416 for S, QHD43417

for ORF3a, QHI42199 for ORF10, and QHD43423 for N. Hy-

pergeometric test was used to evaluate the statistical significance

whether nonsynonymous SNVs tend to occur in IDR compared to the

whole protein region. Statistical differences of hydrophobicity scales

of residues before and after mutations were calculated using the

Wilcoxon test.

3 | RESULTS

3.1 | Emerging SNV clusters with temporal
occurrence patterns

Previously, we discovered four major SNV groups according to the

analysis of SNVs in genomes collected before June 2020.5 Here we

analyzed 81,042 more SARS‐CoV‐2 complete genomes from the

GISAID database following the exclusion of low‐coverage genomes.

Wuhan‐Hu‐1 (NCBI Reference Sequence: NC_045512.2) was used as

the reference genome to keep consistency.5 A total of 20,477 nu-

cleotide sites were identified to carry SNVs in at least one genome.

Among them, 52 SNVs occurring in greater than 3% of genomes were

used for two‐way clustering in the study.

The clustering pattern of SNVs after June 2020 (Figure 1A) was

distinct from the one before June 2020.5 Before June 2020, four major

groups of basically independent SNVs were linked to the majority of

SARS‐CoV‐2 genomes. It is not surprising to see that group A of SNVs

has prevailed since June 2020, represented by A23403G (S:D614G)

and C14408T (OFR1ab:P4715L).5 This SNV group encompassed over

99% of genomes that harbored at least one of 52 SNVs, confirming

continuity of variant D614G on S protein.29–32 The group C featured

by SNVs G11083T and G26144T disappeared, being detected in only

53 genomes after June 2020. Meanwhile, Group B (T28144C, n = 199)

and Group D (G1440A/G2891 A, n = 7)5 nearly diminished in newly

collected SARS‐CoV‐2 genomes. Interestingly, most SNVs in Figure 1A

were identified for the first time before June 2020 (black boxes in

Figure 1B), but their occurrence ratios gradually increased to higher

levels after several months (blue‐filled boxes in Figure 1B). This phe-

nomenon might suggest potential incubation periods of SNVs during

SARS‐CoV‐2 evolution.
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A few additional SNVs have become dominant recently

(Figure 1B,C). For example, group A.E1 included four other synon-

ymous mutations (G21255C, T445C, C6286T, and C26801G), and

three nonsynonymous mutations, C22227T (S:A222V), G29645T

(ORF10:V30L), C28932T (N:A220V), on proteins S, N, and ORF10,

respectively. All of them were identified in March 2020 for the first

time in several countries, for example, Spain, England, Australia, and

the United States. This SNV group has gradually become dominant

since the summer of 2020 (Figure 1C). Their occurrence ratios were

significantly elevated from 10% in August to 70% in November 2020.

Almost 88% of 22,882 genomes with this group of SNVs (A.E1) were

detected in England, Scotland, and Wales. The remaining 12% were

identified in north European countries, for example, Denmark (7%)

and Switzerland (1.6%) (Figure 1D).

In group A.E2, synonymous SNV C27944T (ORF8:H17H) was

detected in China in January 2020 for the first time, whereas the

other one G204T located upstream of ORF1ab was identified in the

United States in March 2020. Although C27944T on ORF8 is a sy-

nonymous mutation, it falls in a stem‐loop structure of ORF8 mes-

senger RNA which may influence ORF8 translation.33,34 The A.E2

group had a very similar temporal pattern to that of A.E1, both pre-

senting high incidence ratios in November 2020 (Figure 1C,D).

Two more SNVs on S, C21614T (S:L18F) and C24334T

(S:A924A), were identified in group A.E3. S:L18F was found lurking in

humans since February 2020 in England. The origin of S:A924A can

be traced back to Japan in March 2020. Similar to A.E1 and A.E2

groups, the occurrence ratio of A.E3 soared up quickly since August

2020 (Figure 1C). They were carried by about 48% of new SARS‐

CoV‐2 genomes collected in November. Although over 98% of these

SNVs were found in England, we also observed 0.6% in Denmark.

3.2 | Association between SNVs and clinical
information

It is worth investigating the preference of SARS‐CoV‐2 mutations in

different age groups which can be helpful to understand the trans-

mission of the virus with different variants in age‐diverse commu-

nities. We divided samples into five groups, “Under 20,” “20–39,"

“40–59,” “60–79,” and “At least 80.” Approximately 65% of collected

samples were between 20 and 59 years old (Figure 2A). Our analysis

revealed that 114 SNVs were significantly over‐represented in dif-

ferent ages (see Section 2 for details, Figure 2B,C). Twenty‐seven

SNVs were enriched across two groups of different ages (Figure 2B),

for instance, three consecutive SNVs at 28881–28883 were enriched

in the population younger than 40 years old, while C12053T (OR-

F1ab:L3930F) and several other SNVs preferred in the group older

than 60. It is interesting to see several SNVs were over‐represented

in both the younger group (age: 20–39) and the oldest group (age: at

least 80). But the majority of age‐specific SNVs were focused on only

F IGURE 1 SNVs identified in more than 3% of SARS‐CoV‐2 genomes after June 1, 2020. (A) Two‐way clustering of 52 high frequent SNVs
with possible annotated AA changes in 76,926 genomes worldwide. (B) Monthly occurrence ratios of corresponding SNVs. (C) Temporal
patterns of the emerging groups A.E1, A.E2, and A.E3. (D) Geographical distributions of emerging SNVs in groups A.E1–3, respectively.
AA, amino acid; SNV, single nucleotide variant
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one age group (Figure 2C). Only 4 SNVs, including G21724T (S:L54F),

C27046T (M:T175M), C2836T (nsp3:C39C), and C22444T

(S:D294D), were notably enriched in the age between 40 and 59,

even though this group had second largest population. Overall,

47.75% of 40,172 samples were female. We identified 22 and 20

SNVs over‐represented in male and female (Figure 2D), respectively,

with FDR < 0.05 (Figure 2E). Surprisingly, 35 out of 42 SNVs were

age‐specific as well.

To investigate the association between SARS‐CoV‐2 SNVs and

the mortality rate, we analyzed a total of 6845 genomes with patient

death/deceased status retrieved from GISAID. Among them, 665

samples (9.7%) were defined as death group with keywords “death”/

“deceased”/“Hospitalized, deceased” in the clinical information, while

the nondeath group contains 6180 genomes with all the other patient

statuses. The monthly mortality rate kept an increasing tendency

from December 2019 to April 2020 with a peak death ratio of 18.5%

and mainly decreased in the following months (Figure 3A). The

mortality rates seemed independent of the total number of collected

patient samples. To avoid bias from countries/areas with fewer cases

of death, we analyzed a total of 2765 samples from countries with at

least 10 death samples. By comparing SNV occurrence frequencies

between the death and nondeath groups, we identified 71 mortality‐

related SNVs. Forty and thirty SNVs were identified from at least 10

dead patients and at least twofold significantly (p < 0.01) enriched in

the death group (Figure 3B) and the nondeath group (Figure 3C),

respectively.

It is interesting to see remarkable overlap between three groups of

SNVs, which are specific to age, gender, or significantly associated with

mortality (Figure 3D). Seven SNVs were identified in all three groups,

C5700A (nsp3:A994D), C6312A (nsp3:T1198K), C13730T

(nsp12:A97V), C23929T (S:Y789Y), C28311T (ORF9:P13L), C19524T

(nsp14:L495L), and G21724T (S:L54F). All of them were enriched in

the male and nondeath groups but in different age groups, for ex-

ample, C5700A (nsp3:A994D) and G21724T (S:L54F) were over‐

represented in the group under 20 and 40–59, respectively, while the

other five SNVs tended to be in the group of 20–39 years old. There

were another three SNVs specific to males with a strong connection to

the mortality, G11083T (nsp6:L37F), G28878A (ORF9:S202N), and

G22468T (S:T302T), which all were enriched in the nondeath group.

Ten SNVs were specific to the age and mortality but independent of

the gender, including G25088T (S:V1176F), C12053T (nsp7:L71F),

C11916T (nsp7:S25L), C18998T (nsp14:A320V), and G29540A which

were enriched in the death group as well as in aged groups from 60 to

79 and at least 80‐year‐old.

The logistic regression model was applied to integrate impacts of

SNVs enriched in either the death or nondeath group with those from

F IGURE 2 SNVs specific to the age and the gender. (A) Sample distribution for five age groups. (B) SNVs significantly over‐represented in at
least two age groups. (C) SNVs enriched in one age group. (D) SNVs specific to the gender with ratios in the female and male. (E) Statistical
significances of SNVs specific to the gender in (D) represented by FDR‐adjusted p values (−log 10). FDR, false‐discovery rate; SNV, single
nucleotide variant
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the age and gender. After nonsignificantly correlated features

(p > 0.001) were filtered out, the logit of the death event can be

predicted based on the following features: three SNVs enriched in

death group, including G25088T(S:V1176F), T27484C (ORF7a:L31L),

and T25A (upstream of ORF1ab), three age groups above 40 years

old, as well as the gender male in the way that

p Y

p Y
δ δ

δ δ

δ δ

δ

ln
( = death)

1 − ( = death)
= −3.92 + 2.51∙ + 2.83∙

+ 3.11∙ + 2.00∙ ~

+ 2.66∙ ~ + 3.07∙

+ 0.56∙

G T T A

T C age

age age atleast

gender male

25088 25

27484 :40 59

:60 79 : 80

:

where δi stands for the ith feature (either 1 or 0). All these

features increase the probability of the death event. Comparing

to other features, the gender of male has a significant but minor

contribution to the model. The result was in general consistent

with our observations. For example, the effect of age at least

80‐year‐old was 1.5 as great as the effect of age between 40 and

59 on the log‐odds. Any single feature can't have a determining

effect on death. In other words, at least two or more major

features together are expected to remarkably increase the death

probability, for example, aged people with mutation T27484C

may have a 91% probability of death given such a linear combi-

nation of the predictors. The model shows high accuracy with an

area under the curve (AUC) of 0.830 (Figure 3E).

3.3 | Protein structure variations due to SNVs

Four SNVs in groups A.E1–A.E3 are nonsynonymous variants, in-

cluding ORF10:V30L (G29645T), N:A220V (C28923T), and two on S

protein, A222V (C22227T) and L18F (C21614T) (Figure 1A). The

protein structure modeling revealed that all of them were on the

surface area of corresponding proteins. Through mutagenesis ana-

lysis, the changes in the AAs at these sites were all incurring clashes

illustrated by red disks with nearby residues (Figure 4A–D), with

potential impacts on protein configuration. For example, N: A220V

was located at the bottom of a pocket. Mutation to Valine resulted in

a more hydrophobic state which may affect potential binding activity

on the site. Such changes in protein conformation may also affect

virus pathogenesis or vaccine response through interacting proteins.

F IGURE 3 Morality related SNVs. (A) Number of SARS‐CoV‐2 samples and death ratio for each month in the study. (B) Forty‐one SNVs
significantly over‐represented in the death group with corresponding total numbers of occurrences, ratios in the death and nondeath
groups, and enrichment p value. (C) ThirtySNVs significantly enriched in the nondeath group with corresponding total numbers of
occurrences, ratios in the death and nondeath groups, and p value. (D) Overlap of SNVs specific to the age, gender, and mortality.
(E) ROC curve of logistic regression model to predict mortality. SNV, single nucleotide variant
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Similarly, some of the nonsynonymous SNVs significantly

over‐represented in the death group also caused clashes with

nearby residues. For example, the mutation on nsp7:L71F

(C12053T) might clash with D66 (Figure 4E), in addition to

nsp14:A320V (C18998T) with V381 (Figure 4F), ORF3a:S253P

(T26149C) with I249, nsp12:V354A (T14501C) with V299 and

L351, and nsp7:S25L (C11916T) with L28. These variants also

occurred on protein surface area. Consequently, the clashes may

affect their pathogenesis or vaccine response, suggesting con-

tributions to a higher mortality rate. Interestingly, mutation

S:V1176F (G25088T) was in the loop structure of two α‐helix in

the C‐terminal of S (Figure 4G), causing increased mass. This may

have impacts on the protein structure which is necessary for virus

entry into the host cell.

IDR in a protein represents an unfixed or disordered three‐

dimensional structure due to the lack of sufficient hydrophobic

AAs.35,36 The hydrophobic effect is a driving force of protein folding.

The AA alternation in the IDR may influence the IDR conformational

state, further resulting in variations of functional elements within

IDRs and protein function alteration. IDRs determined from experi-

ments cover 28.0% of S protein sequence, 27.6% of ORF3a protein

sequence, and 3.8% of ORF1ab polyprotein respectively.35,36 Non-

synonymous SNVs were found on approximately 62.3%, 65.7%, and

94.6% of S, ORF1ab, and ORF3a, respectively (Figure 4H).

Significantly higher SNV occurrence ratios were observed in IDRs of

S (79.0%, p = 1.7 × 10−15) and ORF1ab (77.1%, p = 9.9 × 10−6), but not

in IDR of ORF3a (97.4%, p = 0.12). Furthermore, these nonsynon-

ymous mutations significantly increased hydrophobicity37 in IDRs of

F IGURE 4 Protein structure variation caused by selected nonsynonymous SNVs. (A) S:A222V, (B) S:L18F, (C) ORF10:V30F, (D) N:A220V, (E)
nsp7:L71F, (F) nsp14:A320V, (G) S:V1176F, (H) Ratios of nonsynonymous SNVs in the whole region or IDR of proteins, S, ORF1ab,
and ORF3a, (I) Hydrophobic scores before (REF) and after alternations (ALT) of nonsynonymous SNVs in the IDRs of proteins, S, ORF1ab,
and ORF3a. SNV, single nucleotide variant
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S (p = 1.2 × 10−4) and ORF1ab (p = 1.4 × 10−3), but not in ORF3a

(p = 0.14) (Figure 4I). It has been reported that G22992A (S:S477N)

was in the S protein receptor‐binding domain (RBD), which is a

flexible and disordered loop in the unbound state but later becomes

ordered in all the available ACE2‐bound SARS‐CoV‐2 S structures.38

The increased mass upon mutation from S to N may affect the

flexibility of this region and the binding of S protein to ACE2. Another

mutation C21614T (S:L18F) in the emerging group A.E3 SNV is lo-

cated in N‐linked glycan sites, which likely play a role in protein

folding and immune evasion and may have implications in viral viru-

lence and vaccine design.39 Other mutations in IDRs of S, for ex-

ample, C21575T (L5F), G25049T (D1163Y), G25062T (G1167V), are

located nearby N‐linked glycan sites (11, 1, and 5 residues, respec-

tively). They may have impacts on glycosylation which in turn play a

role in protein folding and immune evasion.

4 | DISCUSSION

In this study, we monitored group structure changes of SARS‐CoV‐2

SNVs over time by comparing clustering results before and after June

2020. The representative SNVs in group A5 had become dominant by

covering over 99% of detected SARS‐CoV‐2 genomes since June 2020,

while two other groups (B and D) were detected in less than 0.3% of the

population. The occurrence ratio of group C SNVs was also reduced

compared to the previous result before June 2020.5 Although the ma-

jority of groups A and C SNVs were observed to be mutually exclusively

with each other before June 2020, 95% of genomes harboring the re-

presentative SNV in the group C, G11083T (ORF1ab:L3606F), also car-

ried group A SNVs after June 2020, confirming the ruling role of group A

in current SARS‐CoV‐2 genomes. Several emerging SNVs, for example,

groups A.E1‐E3, co‐occurred with group A representative SNV, S:D614G,

in the UK and other Northern European countries (Figure 1B,C). The

incidence rates of these subgroup SNVs had increased quickly since

August 2020. For example, the occurrence ratios of group A.E1 SNVs,

represented by C22227T (S:A222V), G29645T (ORF10:V30L), and

C28932T (N:A220V), increased from 10% in August to 70% in November

2020, while the occurrence ratios of group A.E2, C27944T and G204T,

and group A.E3, C21614T (S:L18F) and C24334T, elevated to about 60%

and 50%, respectively, during the same time period. However, these

SNVs were not new at all because they were observed for the first time

during February and March in 2020, several months before when their

incidences soared up. This suggests a potential incubation period for

SARS‐CoV‐2 dominant SNVs during the evolution. The results also in-

dicate that these SNV groups might make the virus more contiguous. Our

systematic study revealed that apart from the A.E1–3, more SNV groups

occurred more than 3% of the SARS‐CoV‐2 genomes with distinct

temporal patterns, even though some of them did not clearly show an

increasing temporal trend until November 2020 (Figure 1). Cau-

tion should be taken to monitor these SNVs with collectively dynamic

changes.

In December 2020, a set of 23 changes or mutations (VUI‐

202012/01) were found to possibly drive infections in the UK.40,41

The set of signature variants includes 8 changes from S protein:

deletion 69–70, deletion 144–145, N501Y (A23063T), A570D

(C23271A), D614G, P681H (C23604A), T716I (C23709T), S982A

(T24506G), D1118H (G24914C). Viruses with these mutations were

reported to be up to 70% more transmissible than previous strains,

although there was “considerable uncertainty” and “no evidence” that

these variants were more lethal or could render vaccines and treat-

ments useless.42 These SNVs occurred independently before No-

vember 2020 without causing significantly higher viral transmission.

This might suggest that the collective mutations from these SNVs

may speed up COVID‐19 transmission.

With the integration of the clinical information, 114 SNVs were

identified to be specific to age groups. Except 27 out of them enriched

across two groups of different ages, the majority was specific to one

age group. Forty‐two SNVs showed significantly high occurrence rates

in either males or females. We further identified 41 and 30 SNVs with

at least twofold higher occurrence rates in the death and nondeath

group, respectively, including several mutations on the S protein, for

example, G25088T (S:V1176F), G23401T (S:Q613H), G24197T

(S:A879S), and T24811A (S:1083Q). Moreover, seven SNVs over‐

represented in the male were also specific to the age and mortality,

including C5700A (nsp3:A994D), C6312A (nsp3:T1198K), C13730T

(nsp12:A97V), C23929T (S:Y789Y), C28311T (ORF9:P13L), C19524T

(nsp14:L495L), and G21724T (S:L54F).

The logistic regression model used to predict mortality status

explored that three critical nonsynonymous SNVs, S:V1176F,

ORF7a:L31L, and T25A at the upstream of ORF1ab, in addition to

ages above 40 years old, and the gender of male may have significant

contributions to the death event. It is not surprising to see that these

SNVs enriched in the death group increased the mortality probability.

The results of age groups were consistent with observations that

elder people had a higher risk of death associated with COVID‐19.

The smaller coefficient for the male in the model indicates a minor

but un‐neglectable impact on mortality. Of course, the limitation of

well‐defined clinical information or even some incorrect details may

have and impact on our results. Further studies with more accurate

data and evidence collected are under investigation.

The protein structure analysis of emerging SNVs in groups

A.E1–3 and selected mortality‐associated SNVs demonstrated that all

of these mutations occurred on the protein surface area. Some cla-

shes introduced upon mutation may contribute to a higher level of

transmission and even mortality rate. Further investigation of IDRs on

S and ORF1ab protein showed that nonsynonymous SNVs tended to

appear in IDRs, suggesting the connections between IDRs of S and

ORF1ab and their protein conformation and functions. A more

in‐depth study to understand these effects may help therapeutic

intervention and vaccine design.
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